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Data Space Adaptation for Multiclass Motor Imagery-based BCI

Joshua Giles,1 Kai Keng Ang2, Lyudmila Mihaylova1, Mahnaz Arvaneh1

Abstract— Various adaptation techniques have been proposed
to address the non-stationarity issue faced by electroencephalo-
gram (EEG)-based brain-computer interfaces (BCIs). However,
most of these adaptation techniques are only suitable for
binary-class BCIs. This paper proposes a supervised multiclass
data space adaptation technique (MDSA) to transform the
test data using a linear transformation such that the distri-
bution difference between the multiclass train and test data is
minimized. The results of using the proposed MDSA on BCI
Competition IV dataset 2a improved the classification accuracy
by an average of 4.3% when 20 trials per class were used
from the test session to estimate adaptation transformation.
The results also showed that the proposed MDSA algorithm
outperformed the multi pooled mean linear discrimination
(MPMLDA) technique with as few as 10 trials per class used for
calculating the transformation matrix. Hence the results showed
the effectiveness of the proposed MDSA algorithm in addressing
non-stationarity issue for multiclass EEG-based BCI.

I. INTRODUCTION

EEG-based brain-computer interfaces (BCIs) are systems

which use the electrical signals generated from the user’s

brain to allow communication directly between the brain

and a computer interface [1]. Among the different types

of BCI, motor imagery-based BCI is a rapidly advancing

area of research due to its capability of allowing direct

communication between the brain and a computer without

the need for additional external stimuli [1]. These interfaces

have the potential to help a range of people who struggle

to communicate with the outside world due to lack of

muscular control or damaged neural pathway [2], although,

there are currently flaws with BCI systems. High accuracy

can be achieved by the majority of users, however for 20

to 25% of people [3] the interface is unable to produce the

minimum accuracy of 70% [3]. The people who do find BCI

effective then find they require 20-30 minute long calibration

sessions [4] where the filters, feature extraction techniques

and classifiers are retrained, before each use due to the non-

stationary nature of the EEG signals being recorded. After

these calibration sessions the BCI can then often be presented

with the problem of low information transfer rates (ITR).

In order to improve the accuracy of users facing BCI

deficiency, and reduce the calibration time required before

each session a lot of research has been done to develop
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optimal components within the BCI. These range from

optimizing the feature extraction through implementing a

bank of common spatial pattern filters [5] to adaptive linear

discrimination analysis classifiers which updates the global

mean [6] referred to as pooled mean linear discrimination

analysis. Through years of research the calibration time

required has slowly been reduced and the levels of accuracy

improved allowing faster communication between the user

and the computer [3], [4], [6], [7],however the majority of

this research has been focused on binary class BCIs.

Recently there has been a shift from binary class towards

multi-class BCI systems, this is due to the opportunity they

present of drastically increasing ITR. Multi-class BCIs have

the potential to allow faster communication with the user as

well as control of complex actuators providing more degrees

of freedom. Due to this potential, research is being conducted

on multi-class BCIs, with different BCI components such

as feature extraction techniques [8] and classifiers [7] being

compared and optimized.

A number of adaptation techniques initially developed for

binary BCIs have been modified to be applicable in multi-

class BCIs to explore their viability when additional classes

are present. Pooled mean linear discrimination analysis [6]

has been altered to multi-class pooled mean linear discrim-

ination analysis (MPMLDA) [9] allowing it to work within

a multi-class setting. Other adaptive classifiers such as the

enhanced Bayesian linear discrimination analysis [10] have

also been developed as an adaptive classifier for multi-class

BCIs. These altered adaptation techniques have proven to be

effective at reducing the fall in accuracy caused by the non-

stationary nature of EEG, but there is still a lot of room for

improvement.

Data space adaptation (DSA) is a method of changing the

distribution of data directly before it has gone through feature

extraction or classification [11]. This method minimizes the

distribution difference between the data used to train the

BCI and the data being tested using a linear transform. This

means that DSA is not restricted by any particular feature

extraction techniques or classifiers. In this paper, DSA is

modified so it can be applied to multi-class BCIs. In the case

of unsupervised DSA the number of classes does not affect

the algorithm however supervised DSA does require altering

due to the change in the number of classes. The proposed

Multiclass data space adaptation (MDSA) will be evaluated

using BCI Competition IV dataset 2a [12]. The proposed

MDSA will then be compared to two other adaption methods,

unsupervised DSA [11] and MPMLDA [9], providing an

evaluation of the algorithms ability to improve multiclass

BCI ITRs.



The remainder of this paper is organized as follows.

Section II describes the proposed MDSA as well as the data

used for evaluation, Section III contains the results collected

the algorithms implementation and Section IV concludes the

paper.

II. METHODOLOGY

A. Proposed Multi-class Data Space Adaptation (MDSA)

The proposed MDSA is an extension of supervised binary

DSA [11] allowing the adaptation method to be incorporated

into a multi-class BCI. This adaptation method is imple-

mented to alter the test EEG data being tested, after it has

been band-pass filtered, so it is as similar to the data used

for training as possible through the application of a linear

transform. The training data is collected from a separate

session and is used to train the feature extraction method

and classifier.

Assume the training data is defined as D = (xi, yi)
N

i=1

where for each ith trial recorded xi ∈ X ⊂ Rn×t is the

recorded data with n being the number of channels and

t representing the time sample. yi ∈ Y ⊂ R represents

the corresponding class label. The test data contains a few

labelled EEG trials collected from the same user in a second

session. In this data D = (xi, yi)
Nl

i=1 where xi ∈ X ⊂ Rn×t

is the ith recorded trial and yi ∈ Y ⊂ R represents its

corresponding class label. The proposed MDSA aims to use

a linear transform, V ⊂ R
n×n, to minimize the distribution

difference between the training data and the test data. The

ideal goal of V is to have the adapted test data S(V TX,Y )
to have the same distribution of data as the trained data,

so that both the feature extraction and classification obtain

optimal results.

In order to calculate the optimum V a few characteristics

of the training and test data distributions must be known.

The normalized co-variance matrix of the EEG data can be

estimated using the EEG data x, as shown in (1), where

tr is the trace, known as the sum of the diagonal of the

matrix; While the mean is zero due to the EEG signal being

band-passed. The EEGs data distribution can be modelled as

Gaussian based on the maximum entropy principle [13] with

zero mean and the co-variance matrix calculated.

Σ =
1

N

N∑

i=1

xix
T
i

tr(xix
T
i )

(1)

The difference between the two Gaussian distributions can

then be calculated using the Kullback Leibler criteria [13] as

shown (2) as they have the same dimension k. The Gaussian

distributions used to demonstrate the KL divergence are

shown as N0(µ,Σ) and N1(µ,Σ) with µ and µ representing

the means of the distribution while Σ and Σ co-variances.

KL[N0 ‖ N1] =
1

2
[(µ− µ)TΣ

−1
(µ− µ)

+tr(Σ
−1

Σ)− ln(
det(Σ)

det(Σ)
)− k],

(2)

To find the optimum V for supervised adaptation, the KL

divergence is applied on the training and testing data of each

class separately. In order to minimize the total loss function

from across all the classes the differences are summed before

the V is calculated. The transformed test data distribution is

defined as Nt(0, V
TΣjV ) and training data distribution as

Ns(0,Σj) for class j in (3) while m is used to represent the

total number of classes in the BCI.

L(v) = min

m∑

j=1

1

2
[tr(Σ

−1

j V TΣjV )− ln(
det(V TΣjV )

det(Σ)
)]

(3)

To find the optimum V that minimizes L given in (3), the

first derivative of L is calculated with respect to v and set

to zero, as shown in (4).

dL

dv
=

m∑

j=1

1

2
[2tr(Σ

−1

j ΣjV )− 2tr(V −1)] = 0 (4)

V = m−0.5
m∑

j=1

(Σ
−1

j Σj)
†0.5 (5)

Using (5) the optimum V is calculated then applied to the

test data before it has the features extracted and classified

using components previously trained with the training data.

In (5) † represents the pseudo-inverse.

B. Adaptation Techniques for Comparison

In order to assess the effectiveness of the proposed MDSA

algorithm, the experimental results were compared against

the results of two other alternative adaptation techniques,

described below:

1) Multi-pooled mean linear discriminant analysis: In

this study, MPMLDA [9] is one of the two adaptation

methods used for comparison. This method adapts linear

discriminate analysis (LDA) classifier used in the multi-class

BCI by updating the global mean, µi,j , of each of the pair-

wise LDAs as new trials are classified. The change caused

by the new data is weighted by the probability of the new

data belonging to a relevant class for the LDA as shown

in (6). Here i and j represent the two classes the LDA

is classifying, Pi(x) and Pj(x) are the probabilities of the

previous trial being that class and is the learning rate, β, set

to 0.03 as suggested in [9]. The updated global mean, µ′
i,j ,

is then utilized to recalculate the LDA before the next trial

is classified.

µ′
i,j = (1−(Pi(x)+Pj(x))β)µi,j+(Pi(x)+Pj(x))βx (6)

2) Unsupervised data space adaptation: The unsuper-

vised DSA technique (DSA-US) does not require altering due

to the fact it is independent from the classes relying only on

the EEG data; as such it is used as a second comparison

for the proposed MDSA. This method also uses a linear

transform to adapt the test data to the trained data however

it does not split the data into its classes. DSA-US uses all

the data at once to calculate the optimum linear transform

as shown (7), where Σ represents the co-variance.



Vunsupervised = Σ
−0.5

Σ0.5 (7)

C. Experiment

The dataset used for these BCI is the publicly available

data set, BCI Competition IV dataset 2a [14]. This data set

contains EEG data from nine users who each completed two

sessions, each containing six runs, on different days. Each

run consists of 48 trials containing 12 trials from each of the

four classes making a total of 288 trials from each session.

The four classes are all variations of motor imagery with the

user imagining the movement of their right hand, left hand,

both feet or tongue. To examine the adaptation capabilities

of the different techniques the first session was used to train

the common spatial patterns (CSP) and LDA which are then

used on the second session with the techniques as testing

data.

D. Data processing

The EEG data for each user was split into its different

sessions, one used to training and the other used for testing

the adaptation methods. To allow the adaptation methods to

make some progress the first 80 trials of the testing data were

set aside for adaptation and not included in the results. The

same processing was performed for each of the adaptation

methods. After the training data was band pass filtered from

8Hz to 35Hz, a pair wise CSPs was trained for 6 class pairs

and then these features were used to create and train 6 pair

wise LDAs.

III. RESULTS AND DISCUSSION

A. Adaptation accuracy

Fig. 1 shows the increase in accuracy for each of the

different adaptation algorithms across different number of

trials used for adaptation. As shown in Fig. 1, compared

to the base BCI design without any adaptation, all the

three examined adaptation algorithms improved the average

classification accuracy of the test data. MPMLDA does not

require any test trials initially provided to calculate the

adaptation parameters as it updates the global mean after

every new trial added to the test data. Thus, the MPMLDA

accuracy presented in Fig. 1 is fixed across the x-axis.

Initially when only 10 trials per class are used for adapta-

tion, there is a very little difference between the accuracies

of the three adaptation algorithms. The limited number of

trials may have restricted the accurate estimation of the

adaptation parameters in both MDSA and DSA-US as the

estimation could be easily distorted by artefact corrupted

trials. By increasing the number of trials per class to 15,

DSA-US slightly outperformed the MDSA algorithm. In this

case estimation of co-variance matrices of test data was based

on 60 trials in DSA-US compared to 15 trials in the proposed

MDSA. Having more trials for estimating co-variance matrix

in DSA-US could have led to a better estimation of adap-

tation matrix and subsequently better results although using

unlabelled data.
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Fig. 1. Average improvement in accuracy for DSA-US, MPMLDA and
the proposed MDSA compared to no adaptation, using different number of
trials per class for adaption. When 20 trials per class are used for adaptation
the proposed MDSA outperforms the other techniques.

In the case of 20 trials per class being provided for

adaptation, MDSA outperformed DSA-US, possibly due to

each class having enough trials to estimate an accurate

distribution of the data. This does highlight one of the faults

of MDSA, as it requires more trials than its unsupervised

counterpart to produce its best level of accuracy. However,

it is also capable of producing higher levels of accuracy

when the trials are available. This could be due to the

MDSA creating representative data distributions for each

class for the adaptation while still being able to recognize

changes in the EEG signals relatively quickly unlike DSA-

US. The DSA-US algorithm uses the 80 previous trials for

each calculation of the linear transform, so if the user’s EEG

signals start to change, due to fatigue or changes in their

mental state, it takes a while to be seen by DSA-US as the

change is diluted by the 79 other trials. This problem is not

very pronounced in MDSA due to the trials being split by

class so the change is only diluted by 19 other trials per

class.

B. User comparison

The plots presented in Fig. 2 compare the classification

accuracies of the proposed MDSA, DSA-US and MPMLD.

As shown in Fig.2, the proposed MDSA and DSA-US both

outperformed MPMLDA when implemented with users who

were able to achieve levels of accuracy above 70%. Users

1, 3, 7 and 8 all achieved better accuracies when DSA-US

or MDSA were applied compared to MPMLDA. The only

user who achieved accuracy higher than 70% and performed

best with MPMLDA was user 9. Conversely, the users with

low levels of accuracy found MPMLDA most effective at

improving their accuracy in all cases except for user 5. Fig.2

also displays that the MDSA outperformed the DSA-US in

66% of users, excluding users with less than 1% difference

between the two algorithms. Suggesting that although all the

adaptation algorithms are capable of improving the average

accuracy of the BCI, MDSA and MPMLDA outperformed
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Fig. 2. Scatter plots comparing the classification accuracies of the different adaptation algorithms; Each subject is presented with a dot with black dots
being used if the difference between the techniques being less than 1%. Having the dot on the left hand side of the line means the adaptation technique
on the y axis works better for the corresponding subject. 20 trials per class were used for estimating transformation matrix for DSA-US and MDSA.

DSA-US when used with users encountering BCI deficiency.

In Table 1 the users were grouped into two groups based

on their accuracy without adaptation; i.e. either above 70%

accuracy or below 70%. As shown in Table 1, on average

MPMLDA and MDSA perform similarly for subjects with

accuracies less than 70%, while DSA-US is shown to be

less effective for this group. This suggests that MDSA is

as useful as MPMLDA when implemented to reduce BCI

deficiency. High accuracy users see little improvement from

MPMLDA while DSA-US and MDSA both perform equally

well. Suggesting that MDSA has a good overall increase in

accuracy for users who obtain high levels of accuracy and

those encountering BCI deficiency.

TABLE I

AVERAGE ACCURACY IMPROVEMENT FOR EACH TECHNIQUE FOR USERS

ENCOUNTERING BCI DEFICIENCY (BELOW 70% WITHOUT

ADAPTATION) AND USERS WITH GOOD ACCURACY (ABOVE 70%

WITHOUT ADAPTATION)

<70% >70%

MPMLDA DSA-US MDSA MPMLDA DSA-US MDSA

4.44% 3.96% 4.44% 2.89% 4.23% 4.23%
The average changes were calculated by comparing accuracy of each

technique with the accuracy without adaptation for each user.

IV. CONCLUSION

The proposed MDSA has shown to be effective in improv-

ing accuracy of multi-class BCIs, capable of outperforming

MPMLD and DSA-US when enough data is provided, how-

ever the improvement is not statistically significant. Despite

the proposed MDSA not showing significant improvement

over the other algorithms it did improve accuracy for both

users who were proficient with BCIs and users encountering

BCI deficiency unlike the DSA-US or MPMLDA. This range

of effectiveness suggests that although the overall improve-

ment of accuracy was not statistically significant the MDSA

adaptation could be applicable to a wide range of users. It is

also important to note that the adaptation occurs in the data

space making it independent from the feature selection and

classification used by BCI. Thus, combining this adaptation

method with a separate technique which focuses on adapting

either features or classification could be explored to further

improve the BCIs accuracy.
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