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USE OF A TWO PRESSURE-HEAD METHOD TO ASSESS THE WATER 

PERMEABILITY OF STRUCTURAL CONCRETE 

ABSTRACT 

Determining the water permeability of concrete in structures remains a conundrum because of 

difficulties in removing the influences of moisture. This study describes the extended flow-net 

theory developed on the basis of the two pressure head concept, which provides a means of 

measuring permeability under the partially saturated condition. Surface mounted tests and the 

standard laboratory water penetration tests were carried out to verify this approach. Before 

determining the water permeability, steady state flow rates at two different pressure levels were 

evaluated and the effects of initial moisture conditions on flow behaviour were investigated. The 

results indicate that the proposed approach does offer a useful means of determining the water 

permeability of structural concrete, although it cannot be claimed to be universally applicable for all 

moisture conditions likely to be encountered in practice. 

Keywords: in situ water permeability, two pressure head test, extended flow-net theory, 

unsaturated flow 
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INTRODUCTION 

Permeability of structural concrete is an essential parameter in the assessment of the durability of 

concrete structures (1-3). It can be measured through cores extracted from structures using 

laboratory methods (4, 5), but the cost is too high to get a statistically sound conclusion and the 

routine removal of cores could cause damage to the structure in terms of aggravating deterioration 

and/or depleting the structural capacity (3, 6). For this reason, many field permeability tests have 

been developed over time (1, 7-9). However, these methods often yield substantially dissimilar 

permeability values and one main reason is that permeability results are extremely sensitive to 

variations in moisture content of the concrete. 

To control the effect of moisture, two main approaches have been utilised during the last decade. 

The first is to measure the moisture content and then adjust the permeability accordingly. Basheer 

and Nolan (10), and Parrott (11) recommended that to obtain reliable air permeability results the 

internal relative humidity of the near surface concrete should be less than 80%. The second 

approach is to remove moisture from the sample by certain pre-conditioning methods. Dhir et al. 

(12) suggested that vacuum dewatering could be used to eliminate the influence of moisture on 

results. Schonlin and Hilsdorf (13) used a hot air gun to dry out the moisture around test area prior 

to measurements. A high pressure was applied by Dinku and Reinhardt (14) to overcome the 

influence of moisture on air permeability tests. Most of the current research is focused on air 

permeability measurements, while relatively few studies were carried out to assess effects of 

moisture on water permeability tests. It is recognised that under the unsaturated condition, the rate 

of water flow at the concrete surface is influenced by both the permeability and the capillary effect 

(15, 16). The magnitude of the latter depends on a number of factors, e.g. the moisture content at 

the time of testing, the pore structure of concrete (17, 18). Therefore, the influence of unsaturated 

flow on results needs to be isolated to yield reliable estimation. To solve this problem, Hall and 

Hoff (15) suggested that in situ water permeability measurements can be carried out using two 
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pressure heads to separate the effect of moisture from results, but this concept needs to be 

investigated in relation to representative concrete specimens. 

Based on the two pressure head concept, this study has developed the flow-net theory that 

analytically accounts for the influence of saturated and unsaturated flow. Results from experiments 

are presented to illustrate whether repeatable permeability results can be obtained using the 

proposed method under different test conditions. To assess the reliability of the proposed technique, 

two laboratory permeability test methods, the laboratory water penetration test and the air 

permeability test, were also carried out and the results from the new permeability test method and 

the laboratory test method were compared. 

RESEARCH SIGNIFICANCE 

With greater emphasis on the need for characterisation of durability of existing concrete structures, 

there is an increasing interest in the measurement of the permeation properties of near surface 

concrete. An important factor limiting the use of current test techniques is that the effect of moisture 

cannot be easily controlled or eliminated. Based on the concept proposed by Hall and Hoff (15), this 

study presents one approach to determine water permeability of concrete under partially saturated 

conditions. This method does not require assumptions concerning initial moisture content and offers 

one possible solution for removing the moisture influence. 

PRINCIPLES AND GOVERNING RELATIONSHIP 

The exact mathematical treatment of unsaturated flow is complex but it can, by approximation, be 

greatly simplified. The underlying principle of the proposed approach is the flow-net theory. One 

advantage is that the determination of the water permeability is not dependent on achieving a uni-

directional flow (19, 20). In this theory, steady state flow into partial saturated concrete within a 

ring maintaining a constant pressure head is described using a pressure flux and a capillary flux 

based on Darcy’s law: 
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where qs is the steady (or quasi-steady) volumetric flux (m/s); QS is the corresponding steady 

volumetric flow rate, the volume passing per unit time, (m3/s); r is the ring radius (m);  is the total 

head (m), consisting of the hydraulic pressure of ponded water in the ring (H) and the capillary 

pressure of unsaturated concrete (i );  )(K is the permeability-pressure relationship, which can 

be represented by the following model (15): 

0,)(   SKK          (2-a) 

0),()(   gKK S         (2-b) 

where KS is the saturated permeability (m/s).  

Then, Eq (1) can be simplified using a generalised flux potential: 
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where ĭ is the generalised flux potential (m2/s) and Eq (1) becomes: 

m/s)()()(  gradgradKqS       (4) 

Using mass balance, the total flow (QS) out of the ring can be written as: 

 
SS A SA SSS dAgraddAqQ /sm)( 3     (5) 

where AS is the area of the ponded surface (m2). 

By assuming that unsaturated concrete is a rigid, homogeneous, isotropic and semi-infinite porous 

media, total flow (QS) can be estimated using the flow-net theory (19, 20): 
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where C is a shape factor (m) that can be determined based upon the water flow patterns (see Fig. 1), 

for which detailed calculation procedures have been reported in previous studies (19, 20); ĭS is the 

total flux potential (including both pressure and capillary potential); nf is the number of paths (flow 

channels); nd is the number of equipotential drops; a is the distance normal to symmetry axis (m); b 

is the width of flow path (m); l is the distance between equi-potentials (m). 

As indicated in Eq (2) and (3), the total flux potential (ĭS) can be expressed to 
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where ĭC is the flux potential representing the effect of capillarity of unsaturated concrete, 

equivalent to CS dgKdK
ii

  


00
)()( . 

Substituting Eq (7) into (6) produces: 

/sm)( 3CSSS HKCCQ         (8) 

This relationship indicates that two main components affect steady-state flow: flow due to the 

hydrostatic pressure (KsH) and flow due to capillary suction of the unsaturated concrete (ĭC). Note 

that this equation cannot be solved without additional information of Ks and ĭC.  

According to Hall and Hoff (15), two pressures can be successively applied in the measuring ring to 

generate two simultaneous equations. Supposing two pressures (H1 and H2) are used and the 

resulting stead-state flow rates (Q1 and Q2) are measured, the solution of Eq (8) is: 
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where Q1 and Q2 are the steady-state flow rates (m3/s) corresponding to H1 and H2 respectively 

(H2>H1). Physically, Ks represents the property of concrete, water permeability, and the effect of 

capillary on flow equals ĭC. The proposed extended flow-net theory provides a tool for gaining 

insights into the problem of unsaturated flow and through the use of two different pressure a means 

of solving Eq (9). 

EXPERIMENTAL PROGRAMME 

Raw materials and concrete 

The concrete studied was made with a water to cement (W/C) ratio of 0.375. Mix proportions are 

reported in Table 1. Portland cement used in this project was manufactured by Lafarge and 

conformed to GB-175 (21). The superlasticiser was a polycarboxylic acid based polymer in 

accordance with GB-8076 (22).  

The fine aggregate was medium graded natural sand and the coarse aggregate crushed basalt with 

10 mm [0.39 in.] and 20 mm [0.78 in.] size proportioned in equal mass. The moisture condition of 

the aggregates was controlled by pre-drying in an oven at 105(±5)oC [221±9.0 0F] for 24 hours 

followed by cooling to 20(±2)oC [68±3.6 0F] for one day before concrete preparation. 

The basic properties of concrete (slump, air content and compressive strength) were tested and are 

also reported in Table 1. 

Preparation of the specimens  

Six 300×250×150 mm3 [11.81×9.84 ×5.91in.3] slabs were manufactured, which were divided into 

three groups for different curing regimes. According to the simulation of water flow in the previous 

study, the water flow is a combined function of specimen thickness and testing area. The diameter 
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of the testing area in this study is 50 mm and beyond 40 mm depth from the testing surface water 

flow would be very small. As such, 150 mm thickness was selected to eliminate the influence of 

geometry of specimen on results. The mixing procedure was based on BS-1881: part 125 (23). 

Concrete was compacted using a poker and compaction was considered to have been completed 

when no air bubbles rose to the surface of concrete. After compaction, the specimens were covered 

with plastic sheets immediately and were removed from the mould after 24 hours. To remove any 

influence of cement hydration on permeability test results, they were cured as follows until the age 

of 90 days: 

 Air cured (designation AC): air-stored in a controlled environment (20 ± 2 oC [68±3.6 0F], 50 ± 

10% RH) after demoulding. 

 Sealed cured (designation SC): wrapped by plastic sheets and moved to a temperature controlled 

environment (20 ± 2 oC [68±3.6 0F]) after 3-day water curing. 

 Moisture cured (designation MC): transferred into a fog room (20 ± 2 oC [68±3.6 0F]) after 

demoulding until test. 

Three curing regimes were selected to produce different permeability properties especially for the 

near surface region (3, 13, 24). The proposed water permeability tests were carried out on the 

300×250 mm2 [11.81×9.84 in.2] surface.  

Initial moisture conditions of the water permeability tests  

The aim of this research was to validate if the proposed approach can yield repeatable and reliable 

water permeability results under different initial conditions. It is therefore of interest to vary initial 

moisture conditions experimentally and to study the performance of the proposed approach. To 

achieve this, four initial conditions were investigated: 

 Condition 1 (designation C1): at the age of 90 days after being cured. 
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 Condition 2 (designation C2): after C1, samples were placed on the supports in a container, in 

which water was filled to 5 mm above the test surface, and after water absorption for 2 days the 

permeability tests were carried out. 

 Condition 3 (designation C3): after C2, samples were dried in an environment controlled 

environment (20 ± 2 oC [68±3.6 0F], 50 ± 10% RH) for 3 days. 

 Condition 4 (designation C4): after C3, samples were dried in an environment controlled 

environment (20 ± 2 oC [68±3.6 0F], 50 ± 10% RH) for another 7 days. 

Figure 2 summarises the curing regimes and the initial moisture conditions. Water permeability of 

concrete was tested under the 12 combinations of test conditions and three replicates were carried 

out for each condition.  

Experimental devices and measurements 

Surface mounted water permeability test 

The water permeability test used in this study was based on the surface mounted permeability tests 

(1, 20). Figure 3 shows the test instrument, details of which are available in the previous study (20). 

The test set-up was calibrated before carrying out measurements on the concrete. At the beginning, 

a cylinder at the top of the head which supplies water to the test region was filled with water. The 

test head was then clamped onto a given specimen and water was admitted by a syringe through the 

tube, as shown in Fig. 3-b. The test system was then pressurised using compressed air. Once the 

pressure in the test system was slightly above 1 bar [14.5 psi], the initial pressurisation was 

complete and a volume reading was recorded as the initial value (t=0 min). As water ingressed into 

the concrete during tests, pressure inside the test head decreased. To maintain the pressure at 1 bar 

[14.5 psi], the piston was manually advanced, which was used to record the volume of water 

penetrating into the concrete every minute. After 80 mins, the test pressure was increased to 2 bar 
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[29 psi], while the measuring process was repeated for another 80 mins. At the end of 160 mins of 

test period, the measurement was considered to have been completed.  

The extended flow net theory requires that the region of concrete being tested has a similar moisture 

profile and isotropic water permeability. Therefore, to remove influences of possible heterogeneity 

encountered between pressures 1 and 2, the test duration to reach quasi-steady state flow was 

selected based on previous experience (19, 20). 

Surface-mounted air permeability test 

Figure 4 shows the surface mounted air permeability test instrument used in this study to examine 

the air permeability of the near-surface concrete, further details of which have been reported in the 

literature (10,17,18). The test area considered was the inner 50 mm circle, isolated using a base 

ring, of the 100 mm cylindrical specimens cut from the 300×250×150 mm3 [11.81×9.84 ×5.91in.3] 

slabs. To remove the influence of moisture on air permeability, the specimens were placed in the 

drying cabinet at 40 oC until constant mass (M40C) was achieved. The instrument was pressurised 

manually by a syringe and when the pressure in the test chamber reached 0.5 bar (7.25psi), the test 

commenced automatically. The pressure inside the test chamber then decreased due to air escaping 

through the pores in the specimen. The rate of pressure decay was monitored every minute for 20 

minutes, which was used to compute the air permeability index, API (unit: ln(bar)/min) using the 

following equation: 

it

t

i

tt

P

P

API



ln

           (10) 

where t is the time (s); Pi and Pt (N/m2) are the pressures in the chamber at the start and at any time, 

t, respectively. Three samples were tested for each concrete. 

BS-EN water penetration test 
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Water penetration test according to BS-EN: 12390-8 (25) was carried out to verify conclusions 

derived from the proposed method. Three 100 mm [3.94 in.] diameter cores extracted from the from 

the 300×250×150 mm3 [11.81×9.84 ×5.91in.3] slab specimens were tested for each concrete mix. 

The test set up is illustrated in Fig. 5. A constant test pressure of 7.0 bar [101.5 psi] was applied for 

three days using compressed air at one end of the test specimen. At the end of the test, specimens 

were split open and the depth of water penetration measured. The average value of penetration 

depth is reported. 

RESULTS AND DISCUSSION 

Determination of steady-state flow rate under two pressure heads 

The computation of water permeability using the extended flow-net theory needs steady state flow 

rates under the two different pressure levels to be determined before conducting the following 

analysis. In this study, steady-state flow rates are assumed to be attained when two requirements are 

satisfied (19, 20): one is that a linear relationship exists between the volume of water penetrating 

into the concrete and the elapsed time; and the other is that there is no significant variation in the 

flow rates during a specific period of time. To verify these two aspects, the following approach was 

used: 

 Plot the water volume against the elapsed time to obtain overall flow behaviours under two 

pressure levels. 

 Determine the flow rates through regression analysis at interval of 10 min and graphically 

display to illustrate the relative change. 

 Compare the variation of flow rates and identify the period for water flow to reach the steady 

state flow. 

Due to similarity of the general responses, three sets of results were selected and presented as an 

example of interpretation in this section. The specimens were air cured (AC), sealed cured (SC) and 
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moisture cured (MC). The test condition was after 90-day curing (C1). Figure 6 gives the volume 

of water and the flow rates against elapsed time. Note that the scale in Fig. 6 for zoomed in part of 

the data is different for the different test conditions, but it depended on the main influencing factors, 

the curing regime and the initial condition. The same scale for the curing regime, 300 µL for MC, 

600 µL for SC and 2200 µL for AC, is used to examine the influence of initial moisture conditions. 

Meanwhile, the differences between three curing regimes can be easily identified in three different 

scales. The analysis of Fig. 6 is based on the pressure applied: 

First stage (pressure-1 from 0 to 80 min): initially, the relationship between the volume of water 

flowing into concrete and time is not linear for all three cases. This phenomenon is not surprising to 

be observed, as unsaturated water flow rate and time are not linearly related at the start (15, 26, 27). 

However, curvatures of the water volume versus time plots were comparatively small after 60 min 

and variations of the flow rates became small. Furthermore, the regression coefficients were close to 

a value of one. This observation agrees with results reported previously (20). 

Second stage (pressure-2 from 80 to 160 min): after 80 mins, the test pressure was increased to 2 

bar [29 psi]. As shown in Fig. 6, the general trend for the second pressure is similar to the first 

pressure. The volume of water entering into the concrete also displays a nonlinear relationship with 

time and flow rates gradually declines, but no significant reduction occurred after 40 mins (in total 

120 min). 

Another feature noticed in Fig. 6 is that the flow at 2 bar [29 psi] shows uncertainties at the initial 

stage (from 80 to 120 min). For MC, flow rates were around 1.4×10-9m3/min [8.54×10-5in.3/min], 

slightly above the flow rate (1.1×10-9m3/min [6.71×10-5in.3/min]) at 1 bar [14.5 psi], while an 

increase in pressure did not give a higher flow rates for SC and AC at the beginning. As indicated in 

Eq (8), flow rates are a function of capillary suction (ĭC) and hydraulic pressure (H). Although the 

test location was not changed and variance due to the test location was controlled, the moisture 

content at the second pressure was different from the first pressure. After 1 bar [14.5 psi] testing, 
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the moisture content in the surface region increased, meaning a reduction in capillary suction at the 

2 bar [29 psi] test. Meanwhile, the effect of hydraulic pressure is less significant and the capillary 

suction governed flow features at the start, as illustrate in Fig 6. (a) (15, 17). As such, it is possible 

to observe lower flow rates at 2 bar [29 psi] due to decreases in capillary suction. For the three cases, 

the flow rates at 2 bar [29 psi] were higher than those for 1 bar [14.5 psi] after 120 min. This is 

because the impact of capillary suction decreases as time increases and the hydraulic pressure 

begins to dominate the overall flow response. Furthermore, regression coefficients were greater than 

0.98. Therefore, the corresponding quasi-steady state flows for pressures 1 and 2 can be determined 

using data recorded between 60-80 and 140-160 mins respectively. 

Effects of initial moisture condition on behaviour of unsaturated flow 

Figure 7 gives results of the water permeability tests under the 12 test conditions, which result from 

three curing regimes under four initial conditions. For ease of comparison under different 

combinations, different scales of y-axis were used. As shown in Fig. 7, the difference of volume of 

water flowing into the concrete is above one order of magnitude and for all 12 combinations a 

constant flow rate is almost impossible for the first 60 min, while beyond this point the volume is 

roughly proportional to time for both pressure conditions. Consequently, the steady flow rates were 

evaluated based on regression analysis described in the previous section. 

Steady state flow rates under four different initial conditions have been plotted against the pressure 

in Fig. 8. Average steady state flow rates obtained for all concretes were relatively low, ranging 

from 0.10 to 8.9×10-9m3/min [6.10×10-6 to 5.43×10-4in.3/min]. It is clear that in all cases (C1-C4), 

the flow rates of AC are much higher than those of MC and SC. This links in the fact that the three 

curing regimes resulted in different permeation properties and initial moisture contents at near 

surface concrete (28, 29). MC refers to the moisture cured concrete, under which condition 

additional moisture was present in the concrete and no significant drying occurred from the surface 

in the whole curing period. The moisture content in the surface region was sufficient to yield low 
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permeability (12, 14). With respect to SC, concrete was sealed after 3 day water curing. That is, 

curing was also in a good condition, but the moisture content was relatively less than MC due to 

hydration (4, 24). For AC, concrete was moved to a controlled environment condition (20oC [68 F], 

50%RH) after demoulding and no additional water was provided. It can be deduced that AC has the 

lowest moisture content and the highest permeability. Against these backgrounds, it is reasonable to 

observe that flow rates of AC are significantly greater than the other two concretes. 

Clearly from Fig 8-a, concretes after curing (C1) gives the highest flow rates, especially for SC and 

AC. This is due to the strong capillary suction caused by comparatively low moisture content. As 

indicated in Eq (8), the unsaturated component (ĭC) can exert an important influence on flow rate 

under the dry condition. After 2 day water absorption (C2), values of capillary suction significantly 

decreased (16, 27). As such, a significant reduction in flow rate was found in Fig. 8. Comparison of 

flow rates of SC and AC between C1 and C2 also indicates that SC has a much higher relative 

decrease (more than 80%) after ponding (C2) despite of a less absolute decrease. This implies that 

flow of SC was mainly caused by capillary suction, while the pressure contributed relatively less to 

the total flow. It can be deduced that water permeability might be slightly overestimated in porous 

concrete (AC), but significantly overestimated in dense concrete (MC and SC), if the unsaturated 

component (ĭC) is not considered. 

Further, it is clear from Fig. 8 that effects of drying after water absorption (C3 and C4) depended 

upon the nature of concrete studied. Flow rates of AC showed a steady increase as drying duration 

increased, while no clear trend can be found for MC and SC. Based on Eq (7), for the two parts of 

steady state flow (KsH and ĭC), the value of the KsH is unaffected by variations of the moisture 

content, but the extent of flow rate which the ĭC will influence relies on the value of capillary 

pressure ( i ) and unsaturated permeability ( )(K ). AC has a porous and permeable surface 

(higher )(K ), meaning the moisture loss was faster than the other two. This naturally resulted in 

higher capillary pressure (i ), yielding an increase in the flow rates for drying from 3 days to 10 
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days (4, 24). However, a denser surface of MC and SC makes the drying process slow, which could 

cause a limited increase in capillary pressure (i ). Along with the lower permeability, the flow 

rates of these two concretes seem not to be sensitive to drying.  

Example calculation of water permeability and capillarity using the two pressure head 

approach 

The primary aim of this study was to justify if the two pressure head approach can be used to 

estimate in situ water permeability (Ks) and capillary effect (ĭC). To show procedures of 

determining these two parameters, an example of calculation is provided next: 

 Environmental conditions in the laboratory during the measurement: Temperature 18.7 oC [65.66 

0F]; Relative humidity 53%.  

 Curing regime: air cured (AC). 

 Initial moisture condition: after air curing for 90 days (C1). 

 Age of concrete: 90 days. 

 Test parameters: 

 Radius of the test area: 0.025 m [0.984 in.]. 

 Calibration factor: C=122.31 m [4815.35 in.] determined from the pattern of flow net (19, 

20). 

 Pressure applied: H1=1 bar [14.5 psi] (10.336 m [406.93]) and H2=2 bar [29 psi] (20.672 m 

[813.86 in.])  

 Steady state flow rates: 

1 bar [14.5 psi]: Q1=6.42 ×10-9 m3/min=1.070 ×10-10 m3/s [6.53 ×10-6 in.3/s] 
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2bar [29 psi]: Q2=8.94 ×10-9 m3/min= 1.491×10-10 m3/s [9.10 ×10-6 in.3/s] 

 Calculation: 
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Assessment of reliability of two pressure head technique 

Average values of water permeability (Ks) and capillarity (ĭC) determined by the proposed method 

are shown in Fig. 9. For the three curing regimes, the values of water permeability (Ks) under four 

initial moisture conditions are reasonably consistent and do not show any marked trend, which 

means the proposed approach is able to give repeatable results under different initial moisture 

conditions. The results, therefore, can be used in the following discussion. 

As expected, no significant difference in water permeability of SC and MC can be found, while AC 

has much larger water permeability than the other two. It confirms the effect of curing on 

permeability (4, 24). To verify this observation, the results of the water penetration test and the air 

permeability test were compared, which are reported in Table 2. Note that the penetration depth 

was not used to calculate the water permeability coefficient, but as a parameter to qualitatively 

reflect water permeability of the tested concretes. This is because for a non-steady state water 

permeability test, permeability coefficient is a combination of permeability coefficient and 

accessible porosity in the test region (17, 30), meaning that the permeability coefficients determined 

from the steady-state method and the non-steady state method may not be compared directly. As 

seen in Table 2, the water penetration front for AC is about 6 times higher than MC or SC, while 

the penetration depths of MC and SC are of comparable magnitude. Similar trend was also observed 
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for air permeability. Considering the inherent variance of the concrete permeability, it can be 

concluded that a similar conclusion can be obtained for three permeation test methods.  

Examination of capillarity (ĭC) shows that this parameter is highly variable under different initial 

conditions. Very limited information about this parameter is available for the present study, but 

from a physical point of view, this trend is perhaps not surprising, as pressurised flow tends to 

maximise the hydrostatic pressure components of flow (Ks) rather than the capillary component 

(C). Another important feature noted in Fig. 9 is that four unrealistic negative values of capillarity 

(C) are found among the twelve test conditions. This discrepancy made it desirable to investigate 

reasons behind, as the proposed approach is not able to yield realistic results in some cases.  

According to Eq (9), for the valid results, i.e. positive water permeability (Ks) and the capillarity 

(C), the value of Q2 should be in the region between Q1 and 2Q1. In mathematical terms, if Q2 is 

less than Q1, the water permeability (Ks) becomes negative, while the negative capillarity (C) 

would be found, if Q2 is higher than 2Q1. Figure 8 clearly shows that Q2 is always higher than Q1, 

meaning positive water permeability (Ks). However, values of Q1 are very low for four conditions, 

viz. MC-C1, MC-C2, SC-C2, AC-C2, under which conditions negative values of capillarity (C) 

are found. These observations may be due to the moisture distribution. As indicated previously, 

water absorption is able to remove the effect of capillary suction, but only the top surface layer is 

saturated by this treatment (13, 28). If the water flow remained in the top surface region during the 

1 bar [14.5 psi] test, where capillary effect was insignificant, a low flow rate was generally 

observed. As time elapsed and a higher testing pressure was applied, water moved deeper and 

beyond the top region, where unsaturated flow may dominate the overall response, leading to a 

greater flow rate. This suggests that the proposed equations cannot be applied if the moisture 

content at the test surface is wet. 

The results indicate that for a wet surface, 10 day drying is helpful to obtain an acceptable condition 

for a reliable measurement, as both water permeability (Ks) and capillarity (C) become positive 
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for C4. It suggests that the two pressure head approach can be reliable in assessing water 

permeability of near surface concrete under partially saturated condition, provided the test surface is 

relatively dry. 

CONCLUSIONS 

Assessment of in situ water permeability is a difficult task due to the range of influencing factors 

involved. Of primary difficulty is an approach to eliminate the effect of moisture. Hall and Hoff 

suggested a two pressure head technique to address this challenge. On the basis of this idea, the 

flow-net theory was developed to analyse partially saturated flow and verification of the proposed 

method was carried out. The following conclusions have been drawn: 

1. Measurement of the steady state flow rates at the two pressure heads permits the calculation of 

the water permeability through a direct application of the extended flow-net theory and the 

results indicate that relatively consistent water permeability can be obtained under different 

initial conditions. 

2. Reliability of the proposed approach was assessed by comparing with the water penetration test 

and surface-mounted air permeability test. It was found that the new method can yield a trend 

similar to the other two permeability test methods. 

3. Water flow is very sensitive to the moisture content at the test surface and can lead to 

meaningless results (negative ĭC) on a wet surface. From a practical point of view and current 

results, it is recommended that both water permeability (Ks) and capillarity (ĭC) are 

determined and results can be considered to be valid and accurate when both parameters are 

positive. 

4. With respect to a wet test surface, pre-drying is useful in order to achieve reliable data and the 

preliminary results indicate that drying for 10 days (20 oC [68 0F], 55% relative humidity) may 

be sufficient to precondition the test surface.  
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Although some encouraging results have been obtained, more research work needs to be carried out 

to further verify this approach. Future work will focus on establishment of the relationship between 

the test pressure and the steady-state flow rate to refine the test method, and estimation of the 

variability of structural concrete. 
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Table 1 Mix proportions and general properties of concrete tested 

Concrete Value 
Cement (kg/m3) 400 
Water (kg/m3) 150 
Sand (kg/m3) 700 
Coarse aggregate (kg/m3) 1090 
Superplasticiser (percentage by mass of the cement content) 1.1 
Slump (mm) 195 
Air content (%) 1.2 
28 day Compressive strength (MPa) 68.6 
56 day Compressive strength (MPa) 74.9 

(Note: 1 kg/m3= 0.0624 lb/ft3; 1MPa= 1.45×10-7 psi; 1mm= 0.039 in.) 

 

Table 2 Results of water penetration depth and air permeability index 

Curing regime applied Air permeability index 
(Ln(bar)/min) 

Water penetration depth  
(mm) 

MC 0.083 5.1 
SC 0.094 4.8 
AC 0.135 31.4 

(Note: MC, SC and AC are defined in Fig. 2; 1mm= 0.039 in.; 1 bar = 14.5 psi) 
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Fig. 1 Illustration of basic information and a flow-net determined from a model 
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Note: 

1. Curing regime applied: MC refers to moisture cured; SC refers to sealed cured; AC refers to air cured. 

2. Initial moisture condition: C1 refers to specimens after curing for 90 days; C2 refers to specimens after 2 day water 
absorption; C3 refers to specimens room dried for 3 days after water absorption; C4 refers to concrete room dried for 
10 days after water absorption. 

Fig. 2 Illustration of curing regimes applied and different initial moisture conditions 
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Fig.3-a The measuring unit of the instrument                   Fig. 3-b Illustration of the clamped test head 

Fig. 3 Surface mounted water test instrument 
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Fig. 4 Surface mounted air permeability test instrument 
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Fig. 5 Water penetration test instrument 
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Fig. 6-a Moisture cured concrete (MC) 

 

Fig. 6-b Sealed cured concrete (SC) 

 

Fig. 6-c Air cured concrete (AC) 
Fig. 6 Graphical interpretation of flow behaviours  

(Note: 1 m3=6.10×104 in.3) 
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Note: 

1. Initial moisture condition: C1 to C4 are defined in Fig. 2. 

2. Curing regimes applied: MC, SC and AC are defined in Fig. 2. 

Fig. 7 As received data for three curing regimes under four different initial conditions 

(Note: 1 m3=6.10×104 in.3) 
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Fig.8-a: C1      Fig.8-b 

 

Fig.8-c: C3                    Fig.8-d: C4 

Note: 

1. Initial moisture condition: C1 to C4 are defined in Fig. 2. 

2. Curing regimes applied: MC, SC and AC are defined in Fig. 2. 

Fig. 8 Steady state flow rates for four different initial moisture conditions  

(Note: 1 m3=6.10×104 in.3) 
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Note: initial moisture conditions (C1 to C4) are defined in Fig. 2. 

Fig. 9 Results of the water permeability and capillarity under different initial moisture conditions 

(Note: 1 m=39.4 in.; 1 m2=1.55×103 in.2) 


