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Constant strain accumulation rate between major
earthquakes on the North Anatolian Fault
Ekbal Hussain 1, Tim J. Wright1, Richard J. Walters2, David P.S. Bekaert3, Ryan Lloyd4 & Andrew Hooper1

Earthquakes are caused by the release of tectonic strain accumulated between events. Recent

advances in satellite geodesy mean we can now measure this interseismic strain accumu-

lation with a high degree of accuracy. But it remains unclear how to interpret short-term

geodetic observations, measured over decades, when estimating the seismic hazard of faults

accumulating strain over centuries. Here, we show that strain accumulation rates calculated

from geodetic measurements around a major transform fault are constant for its entire 250-

year interseismic period, except in the ~10 years following an earthquake. The shear strain

rate history requires a weak fault zone embedded within a strong lower crust with viscosity

greater than ~1020 Pa s. The results support the notion that short-term geodetic observations

can directly contribute to long-term seismic hazard assessment and suggest that lower-

crustal viscosities derived from postseismic studies are not representative of the lower crust

at all spatial and temporal scales.
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One of the primary inputs into any probabilistic seismic
hazard assessment (PSHA) model is a catalogue of
earthquake sources that have occurred in the past1, 2. A

major problem with this approach is that catalogues are usually
incomplete, as the time between earthquakes often greatly exceeds
the catalogue length3. With recent improvements in the accuracy
and spatial coverage of geodetic observations from GNSS and
InSAR4, 5, it has been proposed that measurements of inter-
seismic strain may complement or even supersede traditional
PSHA methods6, 7. This approach is supported by the broad
agreement between geodetic strain rates and seismicity rates in
California and Turkey4.

However, in 2-layer linear Maxwell viscoelastic crustal models
of the earthquake deformation cycle, which are commonly used
to interpret interseismic deformation, strain rate varies as a
function of time between earthquakes8–10, with the shear strain
rate in the fault zone decreasing with time since the earthquake. If
this is true then short-term geodetic estimates of surface strain
accumulation rate may give a biased estimate of the long-term
strain rate; observations close in time after an earthquake will
overestimate the long-term strain rate, and hence the seismic
hazard and observations a long time after an earthquake will
underestimate the long-term strain rate11, 12. Alternative models
of the earthquake cycle incoporate rate-and-state friction meth-
odologies developed from labaoratory experiments to explain
geodetic observations from specific parts of the earthquake
cycle13–15, while others employ more complex crustal viscoelastic
rheologies to explain the early postseismic and late interseismic
observations, including non-Newtonian power law models16 or
Burger’s body rheologies17. The evolution of strain rate through
the entire inter-event period provides a powerful test of such
models.

The long inter-event time in many fault zones, typically hun-
dreds to thousands of years, means we do not have deformation
observations spanning a complete inter-event period for most
faults11. Here, we build an inter-event strain history for a single
fault zone by using measurements of strain rate from different
portions of the North Anatolian Fault (NAF) in Turkey, where
the most recent earthquake for each portion has occurred at
different times18, 19. In the last 80 years the NAF has failed in 10
large earthquakes (Mw > 6.5), which have ruptured over 1000 km
of the fault with an average slip of ~2–5 m19. If we assume
rheological properties are similar along the entire fault, we can
build a strain rate history sampling the majority of the ~250-year
inter-event period on the NAF by using geodetic measurements
of strain rate in the location of each of these previous ruptures,
along with GNSS observations collected before the 1999 Izmit
earthquake, ~245 years after the previous major earthquake in
175419. Our results show that strain accumulation reaches near
steady state within ~10 years of an earthquake. We discuss the
implications for seismic hazard assessment and the rheology of
continental lithosphere.

Results
Geodetic measurements of strain accumulation. We mapped
the surface deformation along the entire subaerial expression of
the NAF (~1000 km) with InSAR using satellite radar data from
the European Space Agency’s Envisat mission. Our dataset con-
sists of a total of 608 Synthetic Aperture Radar (SAR) images
from 14 descending and 9 ascending satellite tracks that span the
time interval between 2002 and 2010 (Fig. 1a, b, Supplementary
Figs. 1, 2). We processed the data to obtain average satellite line-
of-sight (LOS) velocities using methods described in Hussain
et al.20. Descending data are complete for the entire fault.
Ascending data are complete except for a gap between about

35° E and 37° E (Fig. 1b), where insufficient acquisitions were
made for us to obtain reliable velocities. Further details of the data
processing for each track are given in Supplementary Table 1 and
the Methods section.

To estimate the uncertainties in the LOS data we calculate the
RMS misfit in velocities in the overlapping areas between
neighbouring tracks, after projection into horizontal velocities
using the local incidence angles20 (Supplementary Fig. 3). The
residuals between neighbouring tracks are approximately Gaus-
sian with mean values close to zero. The average RMS misfits
between these independent estimates of horizontal velocities are
4.4 mm yr−1 for descending tracks and 5.4 mm yr−1 for ascend-
ing tracks, giving empirical uncertainties of ~3 and ~4 mm yr−1,
respectively, for the individual tracks in the horizontal and an
uncertainty of 1.2–1.6 mm yr−1 in the LOS.

We transform the estimated LOS velocities for each track from
a local reference north of the fault (an average of pixels in a 2 km
radius), into a Eurasia-fixed reference frame by first resampling
the InSAR LOS velocities onto a 1 km by 1 km regular grid. For
each track, we then determine the best-fit plane between the
GNSS velocities projected into the LOS and the InSAR velocities
within 1 km of each GNSS site, and remove this from the InSAR
velocity maps. For pixels with both ascending and descending
LOS velocities, we invert for the east-west and vertical
components of motion using the smooth, interpolated north
component of the GNSS velocities (Supplementary Fig. 4) to
constrain the north-south component in the inversion20. Using a
smooth north-south velocity field does not lead to smoothed east-
west velocities in the inversion because the LOS is not very
sensitive to the north component. For the areas with LOS data
from only a single geometry we also assume no vertical motion.

An interseismic strain history for the NAF. Our resulting east-
west velocity field (Fig. 1c) clearly shows a north-south gradient
in east-west velocity across the NAF, consistent with strain
accumulation along the entire NAF with the expected right-lateral
sense of motion. There is no systematic pattern in vertical velo-
cities across the fault (Supplementary Fig. 5).

To investigate the spatial variation in strain accumulation
along the fault we plot profiles of fault parallel velocity at regular
intervals (every 1/2 degree). The profiles show a remarkably
consistent pattern along the entire fault, with the transition from
Eurasian velocities in the North to Anatolian Velocities in the
south occurring over a region that is ~70 km wide. The exception
is in the two regions where fault creep is known to occur, at
Ismetpasa and Izmit14, 21, 22. Here, there is a sharp step in east-
west velocity across the fault superimposed upon the broader
strain accumulation signal, consistent with previous interpreta-
tions that the shallow part of the fault is creeping at a rate less
than the plate loading rate.

There is considerable local scatter in the east-west velocity field
which prevents us from estimating the strain rate directly from
the data. Instead we use a simple arctangent functional fit through
the InSAR and GNSS velocities, based on the analytical solution
to an infinitely long screw dislocation in an elastic half space23.
This function has two parameters: the slip rate, which is an
estimate of the far-field change in velocity between Anatolia and
Eurasia, and the locking depth, which is dependent on the length-
scale of the transition. The surface strain rate at the fault is
proportional to the slip rate and inversely proportional to the
locking depth (see Methods section for details). Note that we also
account for the rotation of Anatolia and, in the areas of creep, we
solve for the shallow creep rate and depth using a simple elastic
dislocation model20, so that we can remove this contribution to
the strain. The simple dislocation model (see Methods) is
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Fig. 1 InSAR derived horizontal velocity field. Satellite line-of-sight (LOS) velocities for northern and eastern Turkey. LOS velocities are relative to Eurasia
for the descending (a) and ascending (b) tracks used in this study. Tracks labelled in black in a and b were processed by Walters et al.58. Red colours show
motion away from the satellite. The maroon vectors are published GNSS velocities from the Global Strain Rate Model61. c The east-west component of
motion, relative to Eurasia, decomposed from the LOS measurements and the interpolated GNSS north velocities; see text for details. White in the colour
scale is set at −10 mm yr−1 to emphasise the change in velocity across the fault. Negative velocities show motion towards the west. The bold black lines
indicate the main strands of the North Anatolian Fault (NAF) and the East Anatolian Fault (EAF). The polygons indicate regions with both ascending and
descending data. The pale regions outside the polygons are covered by only ascending or descending data
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sufficient to account for the effect of aseismic creep in this case
because the creep is generally limited to shallow portions of the
locked fault (≤~5 km) causing deformation with a spatial
wavelength of about 10 km22. In comparison, the deep inter-
seismic strain, the main focus of this study, has a much broader
deformation signal, ~100 km wide. Additionally, the profiles
through the velocities (Supplementary Fig. 6) show that any
deviation from zero north of the fault is likely the result of
atmospheric or other noise in the InSAR data.

The results (Figs. 2, 3 and Supplementary Figs. 6, 7) show the
variation in slip rate, locking depth and hence surface strain rate
along the NAF. We see a general pattern of westward increasing
slip rates from an average ~22 ± 3 mm yr−1 on the eastern section
of the NAF to ~30 ± 3 mm yr−1 in the west (Fig. 3b). This
increase is due to internal deformation (east-west extension) in
Anatolia24 and can clearly be seen by comparing fault-
perpendicular profiles of GPS velocities (Supplementary Fig. 7).
We correct for this along-strike variation in slip-rate (see
Methods) to ensure that any residual variation in strain-rate
can be compared directly to the time since the last earthquake.

In general, our maximum a posteriori probability (MAP)
solutions for the locking depth show no clear systematic variation
along strike. The two higher estimates of the locking depth along
the Izmit portion could represent a variation in the locking depth
through the earthquake cycle25, but this is complicated by the fact
that the NAF in this region breaks into multiple strands, thus
widening the zone of strain accumulation26. The high locking
depth in both pre-1999 (Supplementary Fig. 8) and post-1999
profiles support the fact that the strain has split onto multiple
strands. Although slip rate and locking depth estimates co-vary,
the slip rates are not greatly affected by locking depth in this case
(Supplementary Fig. 9).

If we assume no internal deformation within central Turkey
then the projection of far field GNSS velocities onto the fault also
gives the estimated slip rate from GNSS alone with no required
prior assumption on the deformation model. These velocities are
indicated by the purple lines in Fig. 3b for five broad profiles
(~150 km wide, Supplementary Fig. 10), which show good
agreement with the slip rates derived from the velocity field.

The fact that slip rate increases from east to west necessitates
internal deformation of Anatolia, consistent with the estimates
from GNSS24 for east-west extension within Anatolia.

The estimated surface strain rates at the fault (Fig. 3d) are
remarkably constant along the fault, with a value of ~0.5
microstrain yr–1. There is no clear spatial correlation in slip rate,
locking depth, or strain rate with the location of previous large
ruptures along the NAF.

If we assume that the rheological properties are similar along
the fault, we can plot the strain rate as a function of time since the
most recent earthquake (Fig. 4). Our results derived from Envisat
cover the period from 10 years to 85 years following an
earthquake. We add an additional measurement at 245 years
post-earthquake by assessing the slip rate, locking depth, and
strain rate from GNSS data acquired before the 1999 earthquakes
where the previous earthquake had occurred in 175427 (Supple-
mentary Fig. 8). We also estimate surface strain rates from GNSS
observations for the first 7 years of the postseismic period using
data collected following the 1999 earthquakes28 (see Methods).
Collectively, this strain rate history spans the majority of the
~250-year period in Turkey. We make a small correction to the
strain rates for the internal extension of Anatolia using the far-
field GNSS measurements, normalising to an average slip rate of
26 mm yr−1 (see Methods).

Implications for seismic hazard assessment. The results (Fig. 4)
show that interseismic strain rate is independent of time since the
most recent earthquake, once a ~10-year postseismic transient
period has passed. If this result holds for other fault zones, short-
term observations of present-day tectonic strain accumulation are
representative of long-term deformation rates. Geodetic strain
rates could therefore be used as a measure of future seismic
hazard7.

It is clear that significant displacement occurs during the
postseismic transient, and therefore an assessment of the total
strain accumulation would require knowledge (or a model) of the
deformation pattern during the early stages of the interseismic
period. This depends on the magnitude of the postseismic strain
transient and the inter-event time interval. For example, the total
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strain due to the ~10-year postseismic transient in Fig. 4 is about
10% of the total strain accumulation in the 250 interseismic period
due to long-term loading. For long inter-event periods the fraction
of the total strain due to postseismic deformation would be smaller,
and thus the impact on the hazard estimate would be minimal.
However, the opposite is true for short inter-event periods. While a
1/t decay of postseismic velocities appears to be a common feature
of many earthquakes globally29, there are significant variations in
the magnitude of postseismic signals and hence the duration for
which they make a significant impact. In a global compilation of
postseismic deformation29, the fastest postseismic transients were
found to occur at a rate that is ~2.5 times larger than those
observed after the 1999 earthquakes on the NAF. This rapid rate of
postseismic deformation would account for about 21% of the total
strain accumulation for a 250-year period.

Translating interseismic strain rates into forecasts of seismic
hazard, for example, via a PSHA assessment, is not straightforward,

but several approaches have recently been proposed6, 30–32. A
major assumption necessary for translating geodetic strain to
seismic strain is the proportion of strain that is released aseismically
by fault creep, slow slip, or plastic deformation4. Other required
assumptions include the Gutenberg-Richter b-value, the expected
maximum magnitude, the seismogenic thickness and the type of
the earthquake mechanism that might occur. At present earthquake
forecasts from geodesy require calibration against historical
seismicity to determine how the proportion of aseismic strain
release varies across different tectonic regions7. Since the long-term
interseismic deformation occurs at a long wavelength relative to the
short wavelength shallow creep signal22, it might be possible to
disentangle the two signals along creeping sections33, or use
auxiliary strain measurements from creep metres or strain metres
to account for the aseismic creep signal34.

In regions where very large earthquakes occur with low
frequency (inter-event intervals of centuries to millenia), PSHA
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models are reliant on catalogues of historical seismicity, which are
often incomplete. This is demonstrated in the Himalayas, where
geodetic results predict that larger earthquakes are required to
close the strain budget35, but these missing earthquakes are not
yet accounted for in current PSHA models.

Rheology of the lower crust and upper mantle. Our inter-event
strain rate history for the NAF also places strong constraints on the
rheology of the lower crust and mantle. A simple yet instructive
model that attempts to predict strain rates as a function of time for
a strike-slip fault is the viscoelastic-coupling model, in which
repeating earthquakes occur in an elastic layer overlying a uniform
linear-Maxwell viscoelastic half space8, 9, 36. While this model does
not represent the full complexity and spatial variability of potential
rheologies, its relative simplicity allows us to understand the broad
constraints that the observations place on the properties of the
lithosphere in and around fault zones.

The key parameter that controls the temporal behaviour of
these models is τ0, the ratio of inter-event time (T) to the Maxwell
relaxation time of the viscoelastic substrate (2η/μ), where η is the
viscosity and μ is the shear modulus. Models with τ0 � 1, i.e.,
Maxwell relaxation time ≪ inter-event time, predict a rapidly
decreasing strain rate with time, while models with τ0≲ 1 predict
a nearly constant strain rate between earthquakes (Fig. 4).

We compare our observations at the NAF with predictions of
the strain rate variation with time for different substrate
viscosities using T= 250 years19 and μ= 3 × 1010 Pa (Fig. 4).
We fix the thickness of the elastic lid, which ruptures completely
in each earthquake, to 16 km. In the long term the upper crustal
blocks slide past each other at a geodetically determined rate of
26 mm yr−126, 37, which is at the upper end of geological

estimates of the slip rate38–40. We calculate strain rate histories
for τ0 values of 1000, 100, 10, 1, and 0.1, corresponding to average
viscosities in the viscoelastic substrate (lower crust and mantle) of
~1017, ~1018, ~1019, ~1020, and ~1021 Pa s, respectively, using the
equations given in Appendix A of Savage10.

There are two key observations from the NAF that models of
the earthquake deformation cycle must match—the long-term
invariance of strain rate and the rapid decay of postseismic strain.
Each provides important constraints on different parts of the
system; we argue below that the rheology of the substrate away
from the fault controls the long-term interseismic strain, and the
rheology of the fault zone itself controls the temporal decay of
postseismic deformation.

Viscoelastic coupling models with high τ0 cannot explain time-
invariance of strain rate that we observe following the initial
postseismic period. To obtain the observed strain rates at long
times after an earthquake requires relaxation times that are
approximately equal to or longer than the inter-event time—long-
lived focused interseismic strain in the viscoelastic coupling
model is really postseismic deformation that has yet to decay.
Therefore, for the NAF, this translates to a high long-term
viscosity of the substrate of ≳1020 Pa s.

The requirement for viscosities away from the fault to be high
in order to match interseismic strain observations is consistent
with more complex viscous models that explicitly separate out the
viscosity of the fault zone from that of the substrate12, or models
in which the effective viscosity of the fault zone is reduced
through shear-heating and non-Newtonian effects16. Models in
which the entire earthquake cycle is explained through frictional
processes embedded within an elastic crust41 are of course also
consistent with a high viscosity away from the fault. A lower crust
that, away from fault zones, relaxes on a timescale that is long
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compared to the inter-event time is an inescapable inference of
the widespread observation of focused interseismic strain11, 42,
and an essential requirement when focused interseismic strain is
present late in the earthquake cycle4. Simply put, if the lower
crust relaxes on a short timescale, there is no plausible reason for
interseismic strain to focus around the upper-crustal fault.

For the postseismic period, no single value of τ0 can explain the
observed evolution of strain that dominates the geodetic signals
for the first few years following a large earthquake. The
viscoelastic coupling model, with a uniform linear Maxwell
rheology in the substrate, predicts an exponential decay in
postseismic velocities (and strain rate). The effective viscosity
required to match the observations would need to increase with
time. Ingleby and Wright29 compiled geodetic observations of
postseismic velocities from all continental earthquakes worldwide
and showed that they decayed as a function of 1/t. A 1/t decay in
strain rate fits the observations of the NAF (red line in Fig. 4).

A 1/t decay in postseismic strain rate is consistent with
postseismic strain being driven entirely by rate and state frictional
afterslip29, by viscoelastic relaxation of a non-Newtonian power-
law material with a high stress exponent43, or by relaxation of a
substrate with multiple relaxation times, for example where
viscosity decreases as a function of depth44, 45. Models that
explicitly test the size of the region that relaxes in the postseismic
period show that it must be confined both laterally and in its
depth extent12, 46. Moore and Parsons47 showed that the
localisation of shear in a narrow zone beneath a strike slip fault
is a natural consequence of realistic substrate properties—depth-
dependent viscosity, shear heating, and non-Newtonian effects.
Postseismic deformation therefore results from the relaxation of
material in the fault zone itself, embedded in a stronger substrate.

Previous studies have used the depth distribution of earthquakes
in the continents to suggest that the strength of the lithosphere
resides in the upper crust48. However, our analysis of the strain rate
shows that the lower crust away from the fault zone must also be
relatively strong. Furthermore, the evolution of postseismic
deformation suggests that the presence of fault zones modifies the
local rheology16 rather than requiring the entire lower crust to have
a low viscosity. Seismogenic thickness may therefore not be a useful
proxy for crustal strength at major fault zones.

Methods
InSAR data processing. We process the InSAR data following the methods
described in Hussain et al.20. We focus the Envisat SAR images using ROIPAC49 and
use the DORIS software50 to construct interferograms that minimise the temporal and
perpendicular baselines while producing a redundant network for each track (Sup-
plementary Figs. 1, 2). We correct for topographic contributions to the radar phase
using the 90m SRTM Digital Elevation Model51 and account for the oscillator drift
for Envisat52. We unwrap the interferograms using an iterative unwrapping procedure
for small baseline InSAR measurements described in Hussain et al.20. We correct each
interferogram for an estimate of the tropospheric noise using auxiliary data from the
ERA-Interim global atmospheric model reanalysis product53, 54. On average the ERA-
I correction reduces the standard deviation of phase within our tracks by about 5%
(Supplementary Table 1). We use the StaMPS (Stanford Method for Persistent
Scatterers) small baseline time series technique55, 56 to remove incoherent pixels and
reduce the noise contribution to the deformation signal, and to calculate the average
LOS velocity for each track. We present 1-sigma uncertainties on the final velocities
for each pixel, estimated using bootstrap resampling57.

Our InSAR dataset includes five tracks published by Walters et al.58 (descending
tracks 78, 307 and 35, and ascending tracks 171 and 400), and an additional track
that was previously unpublished (descending track 493), which cover the eastern
section of the NAF (Fig. 1). The interferograms for these tracks were created using
ROIPAC, with the InSAR corrections applied as discussed above, and the velocity
maps formed using the π-RATE software package59. The main difference between
π-RATE and StaMPS is related to the selection of the pixels, while the
mathematical expression for the rate-computation does not change. See the original
paper58 for more details on the processing of these tracks.

Modelling profiles. We fit a simple 1-D elastic dislocation model20 to the fault
parallel velocities (vpar), using a screw dislocation model (Eq. (1)) for most of the
fault to solve for slip rate (S) and locking depth (d1). For creeping sections (see

Fig. 3) we also solve for the creep rate (C) and creep depth (d2) (Eq. (2)).

vparðxÞ ¼ S
π
arctan

x
d1

� �
þ xθrot þ a; ð1Þ

vparðxÞ ¼ S
π
arctan

x
d1

� �
þ C

1
π
arctan

x
d2

� �
�HðxÞ

� �
þ xθrot þ a; ð2Þ

where a is a static offset, x is the perpendicular distance to the fault, HðxÞ is the
Heaviside function, and θrot corrects for the proximity of the profile points to the
pole of rotation of Anatolia in a Eurasia-fixed reference frame. θrot is calculated
using the linear trend through the far-field GNSS velocities on five broad profiles
(Supplementary Fig. 10), and assuming the pole of rotation is fixed at the location
found by Reilinger et al.26. The values used and the longitude extent to which they
apply are given in Supplementary Table 2.

We find the best-fit values for each model parameter using a Markov Chain
Monte Carlo (MCMC) Bayesian sampler22, 60. The MCMC sampler explores the
parameter space constrained by: −60 < S (mm yr−1) < 0, 0 < d1 (km), <60, −30 < C
(km), <0, 0 < d2 (km), <40, −40 < a (mm yr−1) < 40, assuming a uniform prior
probability distribution over each range. For creeping profiles an important
constraint we impose is that the maximum creep depth cannot be greater than the
locking depth, i.e., d2 ≤ d1. Our MCMC model runs over 300,000 iterations and
produces 48,000 samples of the posterior distribution from which we estimate both
the MAP solution and marginalised probability distributions for each parameter.

Calculating strain rates. Differentiating Eq. (1) and setting x= 0 gives the surface
shear strain rate at the fault:

_ϵ ¼ S
2d1

: ð3Þ

We use Eq. (3) to calculate the strain rate at the fault for each of our profiles
ensuring we propagate the full covariance information for the slip rate and locking
depths.

In Fig. 3b we showed that the slip rates increase from an average ~22 ± 3mm yr−1

on the eastern section of the NAF to ~30 ± 3mm yr−1 in the west. Most of this
increase is related to the east-west extension within central and western Anatolia24.
This is an overall feature of the large-scale deformation field in Turkey and is not
related to time since last earthquake. Therefore, we need to correct for this effect
before comparing the strain rates from different positions along the fault.

We do this by using assuming that the far-field GNSS velocities inform us about
the large-scale spatial changes in slip-rate independent of inter-seismic
deformation on the fault, whereas the InSAR velocites inform us about these spatial
changes and also temporal changes associated with inter-seismic deformation.
Therefore, the far-field GNSS slip rates estimated in Supplementary Fig. 10, can be
used to correct for the large-scale deformation signal.

We calculate the difference between the GNSS slip rate and an average slip rate
of 26 mm yr−1, i.e., Δs= si− s0, where s0= 26 mm yr−1 and si is the slip rate
estimated from our inversion. When calculating the strain rate for plotting in the
comparison Fig. 4, we use (si− Δs) instead of si. This results in an average change
of 5%, which has minimal effect on our interpretation.

We calculated the postseismic strain rates after the 1999 Izmit earthquake using
the GNSS time series recorded for 7 years following the earthquake28. To do this,
we calculated the relative displacement time series between two stations located
15–20 km either side of the fault (KAZI and SEFI) and divided by the distance
between the two stations. We are confident that the postseismic strain signal
recorded between these stations reflect the deeper depth-average afterslip rather
than the shallow creep on the fault, because previous work22 has shown that the
spatial wavelength of deformation due to aseismic creep on the Izmit portion of the
NAF is mostly constrained to around 5–10 km either side of the fault.

Data availability. The SAR data from the Envisat satellite mission, used in this
study, are available to download for free from the European Space Agency’s Virtual
Archive 4 website: http://eo-virtual-archive4.esa.int.
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