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Quantum-enhanced measurements exploit quantum mechanical effects for increasing the
sensitivity of measurements of certain physical parameters and have great potential for
both fundamental science and concrete applications. Most of the research has so far
focused on using highly entangled states, which are, however, difficult to produce and
to stabilize for a large number of constituents. In the following we review alternative
mechanisms, notably the use of more general quantum correlations such as quantum
discord, identical particles, or non-trivial Hamiltonians; the estimation of thermody-
namical parameters or parameters characterizing non-equilibrium states; and the use
of quantum phase transitions. We describe both theoretically achievable enhancements
and enhanced sensitivities, not primarily based on entanglement, that have already been
demonstrated experimentally, and indicate some possible future research directions.
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I. INTRODUCTION

A. Aim and scope

Quantum-enhanced measurements aim at improving
measurements of physical parameters by using quantum
effects. The improvement sought is an enhanced sensitiv-
ity for a given amount of resources such as mean or maxi-
mum energy used, number of probes, number of measure-
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ments, and integration time. Ideas in this direction go
back at least to the late 1960s when the effect of quantum
noise on the estimation of classical parameters started to
be studied in a systematic way using appropriate math-
ematical tools (Helstrom, 1969; Holevo, 1982). In the
early 1980s first detailed proposals appeared on how to
enhance the sensitivity of gravitational wave detectors
by using squeezed light (Caves, 1980, 1981). Nowadays,
squeezed light is routinely produced in many labs, and
used for instance to enhance sensitivity in gravitational
wave observatories (Aasi et al., 2013; Chua, 2015).

Quantum-enhanced measurements have the potential
of enabling many important applications, both scientific
and technological. Besides gravitational wave detection,
there are proposals or demonstrations for the improve-
ment of time- or frequency-standards, navigation, remote
sensing, measurement of very small magnetic fields (with
applications to medical brain- and heart-imaging), mea-
surement of the parameters of space-time, thermometry,
and many more. The literature on the topic of quantum
metrology is vast and for a general introduction we refer
to the available reviews (Degen et al., 2016; Giovannetti
et al., 2006; Paris, 2009; Pezzè and Smerzi, 2014; Pezzè
et al., 2016; Tóth and Apellaniz, 2014; Wiseman and Mil-
burn, 2009).

From the theoretical side, the standard tool for evalu-
ating a possible quantum enhancement has become the
so-called quantum Cramér-Rao bound (Braunstein and
Caves, 1994; Braunstein et al., 1996; Helstrom, 1969;
Holevo, 1982). It provides a lower bound on the vari-
ance Var(θest) of any unbiased estimator function θest
that maps observed data obtained from arbitrary quan-
tum measurements to an estimate of the parameter θ.
The bound is optimized over all possible measurements
and data analysis schemes, in a sense made precise be-
low. In the limit of an infinite number of measurements
the bound can be saturated. It thus represents a valu-
able benchmark that can in principle be achieved once
all technical noise problems have been solved, such that
only the unavoidable noise inherent in the quantum state
itself remains.

A standard classical method of noise reduction is to av-
erage measurement results from N independent, identi-
cally prepared systems. In a quantum mechanical formu-
lation with pure states, the situation corresponds to hav-
ing the N quantum systems in an initial product state,
|ψ〉 = ⊗Ni=1|φ〉i. Suppose that the parameter is encoded
in the state through a unitary evolution with a Hamil-
tonian H(θ) = θ

∑N
i=1 hi, i.e. |ψ(θ)〉 = exp(−iH(θ))|ψ〉.

Based on the quantum Cramér-Rao bound one can show
that with M final measurements, the smallest achievable
variance Var(θest) of the estimation of θ is

Var(θest)min =
1

NM(Λ − λ)2
, (1)

where Λ and λ are the largest and smallest eigenvalue of

hi, respectively, taken for simplicity here as identical for
all subsystems (Giovannetti et al., 2006). In fact, this
1/
√
N scaling can be easily understood as a consequence

of the central limit theorem in the simplest case that one
measures the systems independently. But since (1) is op-
timized over all measurements of the full system, it also
implies that entangling measurements of all systems af-
ter the parameter has been encoded in the state cannot
improve the 1/

√
N scaling.

Unfortunately, there is no unique definition of the Stan-
dard Quantum Limit in the literature. Whereas in the
described 1/

√
N scaling N refers to the number of dis-

tinguishable sub-systems, the term Standard Quantum
Limit is used for example in quantum optics typically for
a scaling as 1/

√
n̄ with the average number of photons n̄,

which in the same mode are to be considered as indistin-
guishable (see Sec.III). In this context, the 1/

√
n̄ scaling

is also called “shot-noise limit”, referring to the quantum
noise that arises from the fact that the electromagnetic
energy is quantized in units of photons. Furthermore,
the prefactor in these scaling behaviors is not fixed. We
therefore may define quite generally Standard Quantum
Limit as the best scaling that can be achieved when em-
ploying only “classical” resources.

While this is not yet a mathematical definition either,
it becomes precise once the classical resources are spec-
ified in the problem at hand. This may be achieved
adopting a resource-theory framework, in which classical
states of some specific sort are identified and formalised
as “free” states (i.e. given at no cost), and any other
state is seen as possessing a resource content which may
allow us to outperform free states in practical applica-
tions, leading specifically to quantum-enhanced measure-
ments beyond the Standard Quantum Limit scaling. For
instance, separable states are the free (classical) states
in the resource-theory of entanglement (Horodecki et al.,
2009), while states diagonal in a reference basis are the
free (classical) states in the resource theory of quantum
coherence (Streltsov et al., 2017). In quantum optics,
Glauber’s coherent states and their mixtures are regarded
as the free (classical) states (Mandel and Wolf, 1965),
and any other state can yield a nonclassical scaling. In
the latter example, considering the mean photon num-
ber n̄ as an additional resource, one can fix the prefactor
of the Standard Quantum Limit scaling, so that quan-
tum enhancements are possible not only by improving
the scaling law, but also by changing the prefactor.

However, basing our review exclusively on a resource-
theory picture would be too restrictive, as cases of en-
hanced sensitivity are readily available for which no re-
source theory has been worked out yet (see (Brandão and
Gour, 2015) and references therein for a recent overview
of existing resource theories). Examples are the use of
quantum phase transitions, for which one can compare
the sensitivity at the phase transition with the sensi-
tivities away from the phase transition, or instances of
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Hamiltonian engineering, for which one can evaluate the
effect of added terms in the Hamiltonian. Rather than
developing resource theories for all these examples, which
would be beyond the scope of this review, we point out
the enhancements achievable compared to the sensitivity
without the use of the mechanism under consideration.

Based again on the quantum Cramér-Rao bound one
can show that initially entangled states can improve
the scaling to 1/N (see e.g. (Giovannetti et al., 2006)),
known as the “Heisenberg-limit”. Similarly to the
Standard Quantum Limit, there is no unique definition
of the Heisenberg-limit in the literature (see the remarks
in sec.IV.A). Nevertheless, achieving “the Heisenberg-
limit” has been the goal of large experimental and
theoretical efforts over the last two decades. However,
only few experiments achieved the 1/N scaling of the
Heisenberg-limit and only for very small numbers of
sub-systems, where the scaling advantage is still far
from allowing one to beat the best possible classical
measurements. This has several reasons: first of all, it
is already very difficult to achieve even the Standard
Quantum Limit, as all non-intrinsic noise sources have to
be eliminated. Secondly, resources such as photons are
cheap, such that classically one can operate with very
large photon numbers, whereas entangled states with
large photon numbers are difficult to produce. Thirdly,
and most fundamentally, quantum-enhanced measure-
ments schemes are plagued by decoherence. Indeed,
it has been shown that a small amount of Markovian
decoherence brings the 1/N scaling for certain highly
entangled states back to the 1/

√
N scaling of the

Standard Quantum Limit (Escher et al., 2011; Huelga
et al., 1997; Ko lodyński and Demkowicz-Dobrzański,
2010). The reduction to the Standard Quantum Limit
also affects the estimation of noise in programmable
and teleportation-covariant channels (Laurenza et al.,
2017). Recent research has focussed on finding optimal
states in the presence of decoherence, and at least for
non-Markovian noise, a certain improvement can still
be obtained from entangled states (Chin et al., 2012;
Matsuzaki et al., 2011). Also, niche applications are pos-
sible, for which the light-intensity must be very small, as
in some biological applications. Nevertheless, it appears
worthwhile to think about alternative possible quantum
enhancement principles other than the use of highly en-
tangled states, and this is the focus of the present survey.

Many results have been obtained over the last years for
such alternative schemes that are worth a comprehensive
and exhaustive review that compares their usefulness
with respect to the main-stream research focused on
highly entangled states. We structure the review by
different ways of breaking the conditions that are known
to lead to Standard Quantum Limit scaling of the sen-
sitivity. Firstly, by going away from pure states, more
general forms of quantum correlations such as quantum

discord become possible. These become naturally
important once we look at estimation of loss parameters,
quantum illumination problems, and other applications
that typically involve the loss of probes. Secondly, in the
derivation of the Standard Quantum Limit the quantum
systems are distinguished by an index i, which supposes
that they are distinguishable. Cold atoms, on the other
hand, have to be considered in general as indistinguish-
able particles, and the same is true for photons, which
have been used for quantum-enhanced measurements
from the very beginning. Hence, statements about
the necessity of entanglement have to be re-examined
for indistinguishable particles. It turns out that the
permutational symmetry of the quantum states required
due to indistinguishability of the particles leads immedi-
ately to the level of quantum-enhanced sensitivity that
for distinguishable particles would require to entangle
them. Thirdly, the structure of the Hamiltonian is
rather restrictive: a.) many hamitonians do not have a
bound spectrum characterized by largest and smallest
eigenvalues Λ and λ as assumed in eq.(1). Indeed, one of
the most common systems used in quantum metrology,
the harmonic oscillator that represents e.g. a single
mode of an electro-magnetic field, has an unbound
spectrum. And b.), the Hamiltonian H(θ) = θ

∑N
i=1 hi

does not allow for any interactions. Taking into account
these freedoms opens the path to many new forms of
enhanced sensitivity. Fourthly, unitary evolutions with a
Hamiltonian that depends on the parameter are not the
only way of coding a parameter in a state. In statistical
mechanics, for example, there are parameters that
describe the statistical ensemble, such as temperature or
chemical potential for systems in thermal equilibrium,
but which are not of Hamiltonian origin. The same
is true for non-equilibrium states. For many of these
situations, the corresponding QCRs have been obtained
only recently, and it often turned out that improvements
beyond the Standard Quantum Limit should be possible.
Furthermore, it is known even in classical statistical
physics that phase transitions can lead to diverging
susceptibilities and hence greatly enhanced sensitivities.
The same is true for quantum phase transitions, and
we therefore review as well the use of quantum phase
transitions for quantum-enhanced measurements.

While a growing number of researchers are investi-
gating possibilities of breaking the Standard Quantum
Limit without using entanglement (see e.g. (Tilma et al.,
2010)), these still appear to be a minority. The situa-
tion is comparable to other aspects and fields of quantum
information treatment, where previously it was thought
that entanglement is necessary. For example, for a long
time entanglement has been considered as necessary for
non-locality, until it was realized that certain aspects
of non-locality can arise without entanglement (Bennett
et al., 1999). Recent reviews of quantum-enhanced mea-
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surements schemes using entanglement (Degen et al.,
2016; Giovannetti et al., 2011; Paris, 2009; Pezzè and
Smerzi, 2014; Pezzè et al., 2016; Tóth and Apellaniz,
2014) are available and we do not survey this vast lit-
erature here, but focus rather exclusively on quantum-
enhanced measurements schemes that are not essentially
based on the use of entanglement, hoping that our re-
view will stimulate research in these directions. Before
reviewing these schemes, we give a short introduction to
parameter estimation theory and the precise definition of
the quantum Cramér-Rao bound. A more elaborate ped-
agogical introduction to classical and quantum parameter
estimation theory can be found in (Fräısse, 2017).

B. Parameter estimation theory

Consider the following task in classical statistical anal-
ysis: Given a probability distribution pθ(x) of a random
variable x that continuously varies as function of a sin-
gle real parameter θ, estimate θ as precisely as possi-
ble from M samples drawn, i.e. a set of random values
{xi}, i = 1, 2, . . . ,M . We denote this M -sample as x

for short, and denote the probability to find the drawn
samples in the intervals xi . . . xi+dxi as pθ(x)dMx, with
dMx = dx1 . . . dxM . For independently drawn, identi-
cally distributed samples, pθ(x) = pθ(x1) · . . . · pθ(xM ),
but the formalism allows for arbitrary joint-probability
distributions pθ(x) i.e. also correlations between differ-
ent samplings of the distribution. For simplicity we take
the support of x to be the real numbers.

The task is accomplished by using an estimator func-
tion θest(x1, . . . , xM ) that takes as input the drawn ran-
dom values and nothing else, and outputs an estimate
of the parameter θ. Many different estimator functions
are possible, some more useful than others. Through its
random arguments the estimator will itself fluctuate from
one sample to another. One would like to have an estima-
tor that on average gives the true value of θ, E(θest) = θ,
where E(. . .) =

∫
dMx pθ(x)(. . .) is the mean value of a

quantity over the distribution. This should hold at least
in an infinitesimal interval about the true value of θ; such
an estimator is called “unbiased”. Secondly, one would
like the estimator to fluctuate as little as possible. The
latter request makes only sense together with the first
one, as otherwise we could just choose a constant esti-
mator, which of course would not reproduce the correct
value of θ in most cases. Now consider the following chain

of equalities, valid for an unbiased estimator:

1 =
∂

∂θ
E(θest) =

∫

dMx
∂

∂θ
pθ(x)θest(x)

=

∫

dMx pθ(x)

(
∂

∂θ
ln pθ(x)

)

θest(x)

=

∫

dMx pθ(x)

(
∂

∂θ
ln pθ(x)

)

(θest(x) − θ)

=
〈∂ ln pθ

∂θ
, θest − θ

〉
. (2)

In the step before the last one we used that
θ(∂/∂θ)E(1) = 0 due to the normalization of the prob-
ability distribution valid for all values of θ. The scalar
product in the last step is defined for any two real func-
tions a(x), b(x) as 〈a, b〉 =

∫
dMx pθ(x)a(x)b(x). Using

the Cauchy-Schwarz inequality for this scalar product, we
immediately arrive at the (classical) Cramér-Rao (lower)
bound for the variance of the estimator

Var(θest) ≥
1

J
(M)
θ

, (3)

where the (classical) Fisher information Jθ is defined as

J
(M)
θ =

∫

dMxpθ(x)

(
∂ ln pθ(x)

∂θ

)2

=

∫

dMx
1

pθ(x)

(
∂pθ(x)

∂θ

)2

. (4)

The bound can be saturated iff the two vectors in
the scalar product are parallel, i.e. for ∂ ln pθ(x)/∂θ =
A(θ)(θest(x)− θ), where A(θ) is a possibly θ−dependent
proportionality factor. If one differentiates this condi-
tion once more and then integrates it over with pθ(x),

one finds that A(θ) = J
(M)
θ . Hence, an unbiased estima-

tor exists iff there is a function f(x) independent of θ

such that ∂ ln pθ/∂θ = J
(M)
θ (f(x) − θ). In that case one

can choose θest(x) = f(x). One can show that for many
(but not all) members of the family of exponential proba-
bility distributions, i.e. distributions that can be written
in the form pθ(x) = a(x) exp(b(θ)c(x) + d(θ)) with some
functions a(x), b(θ), c(x), d(θ), this condition is satisfied,
meaning that in such cases the Cramér-Rao bound can
be saturated even for finite M . For M → ∞ and iden-
tically, independently distributed samples, the so-called
maximum-likelihood estimator saturates the bound. One
easily shows from eq.(4) that the Fisher information is
additive, such that for independently drawn, identically

distributed samples J
(M)
θ = MJθ with Jθ ≡ J

(1)
θ .

C. Quantum parameter estimation theory

In quantum mechanics the state of a system is given
by a density matrix ρθ, i.e. a positive hermitian operator
with trace equal one that can depend on the parameter
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θ, which we assume to be a classical parameter. Ran-
dom data are created when measuring some observable
of the system whose statistics will depend on θ through
the quantum state ρθ. Again we would like to estimate θ
as precisely as possible based on the measurement data
(see FIG.1).

Figure 1 (Color online) General setup of quantum parameter
estimation. A quantum measurement of a system in quantum
state ρθ that depends on a classical parameter θ is performed
(general POVM measurement) and produces data x1, . . . , xM .
The data are analysed with an estimator function that out-
puts an estimate θest of θ. The goal is to obtain an unbiased
estimate with as small as possible statistical fluctuations.

The most general measurements are so-called POVM
measurements (POVM=positive-operator-valued mea-
sure). These are measurements that generalize and in-
clude projective von Neumann measurements and are rel-
evant in particular when the system is measured through
an ancilla system to which it is coupled (Peres, 1993).
They consist of a set of positive operators Mx, where x
labels possible measurement outcomes that we take again
as x ∈ R for simplicity. They obey a completeness rela-
tion,

∫

R
Mxdx = I, where I is the identity operator on

the Hilbert-space of the system. The probability-density
to find outcome x is given by pθ(x) = tr(ρθMx), and it is
through this equation that the contact with the classical
parameter estimation theory can be made: Plugging in
pθ(x) in eq. (4) with M = 1, we are led to the Fisher
information

Jθ =

∫

dx
1

tr(ρθMx)

(

tr

(
∂ρθ
∂θ

Mx

))2

=

∫

dx
1

tr(ρθMx)

(

tr

(
1

2
(ρθLρθ + Lρθρθ)Mx

))2

,(5)

where in the last step we have introduced the so-called
symmetric logarithmic derivative Lρθ , defined indirectly
through

∂ρθ
∂θ

=
1

2
(ρθLρθ + Lρθρθ) , (6)

in analogy to the classical logarithmic derivative
∂ ln ρθ/∂θ. Compared to the classical case, one has in
the quantum mechanical setting the additional freedom
to choose a suitable measurement in order to obtain a
distribution pθ(x) that contains as much information as
possible on the parameter θ. Based on eq. (5), one can
find a similar chain of inequalities as in the classical case

based on the Cauchy-Schwarz inequality that leads to the
bound

Jθ ≤ Iθ ≡ tr(ρθL
2
ρθ

) , (7)

where Iθ is known as the “quantum Fisher information”.
Similarly as for the classical Fisher information, the

quantum Fisher information of uncorrelated states is ad-
ditive, (Fujiwara and Hashizumé, 2002):

Iθ(ρ(θ) ⊗ σ(θ)) = Iθ(ρ(θ)) + Iθ(σ(θ)) , (8)

such that for M independent identical POVM measure-
ments of the same system, prepared always in the same
state, the total quantum Fisher information satisfies

I
(M)
θ = MIθ with Iθ ≡ I

(1)
θ . Inequalities (7) and (3)

then lead to the so-called quantum Cramér-Rao bound,

Var(θest) ≥
1

MIθ
. (9)

Additivity of the quantum Fisher information also
immediately implies the 1/

√
N scaling in eq.(1), as the

quantum Fisher information of the N uncorrelated sub-
systems is just N times the quantum Fisher information
of a single subsystem. Inequality (7) can be saturated
with a POVM that consists of projectors onto eigenstates
of Lθ (Braunstein and Caves, 1994; Helstrom, 1969;
Holevo, 1982). As the quantum Cramér-Rao bound
is already optimized, no measurement of the whole
system, even if entangling the individual systems, can
improve the sensitivity when the parameter was already
imprinted on a product state.

The quantum Cramér-Rao bound has become the most
widely used quantity for establishing the ultimate sensi-
tivity of measurement schemes. It derives its power from
the facts that firstly it is already optimized over all possi-
ble data analysis schemes (unbiased estimator functions)
and all possible (POVM-) measurements, and that sec-
ondly it can be saturated at least in the limit of infinitely
many measurements and using the optimal POVM con-
sisting of projectors onto the eigenstates of Lρθ .

In (Braunstein and Caves, 1994) it was shown that Iθ
is a geometric measure on how much ρ(θ) and ρ(θ + dθ)
differ, where dθ is an infinitesimal increment of θ. The
geometric measure is given by the Bures-distance,

ds2Bures(ρ, σ) ≡ 2
(

1 −
√

F (ρ, σ)
)

, (10)

where the fidelity F (ρ, σ) is defined as

F (ρ, σ) = ||ρ1/2σ1/2||21 , (11)

and ||A||1 ≡ tr
√
AA† denotes the trace norm (Miszczak

et al., 2009). With this (Braunstein and Caves, 1994)
showed that

Iθ = 4ds2Bures(ρ(θ), ρ(θ + dθ))/dθ2 , (12)
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unless the rank of ρ(θ) changes with θ and thus produces
removable singularities (Banchi et al., 2015; Šafránek,
2017), a situation which we do not consider in this re-
view. The quantum Cramér-Rao bound thus offers the
physically intuitive picture that the parameter θ can be
measured the more precisely the more strongly the state
ρ(θ) depends on it. For pure states ρ(θ) = |ψ(θ)〉〈ψ(θ)|,
the quantum Fisher information reduces to the overlap
of the derivative of the state |∂θψ(θ)〉 with itself and the
original state (Braunstein et al., 1996; Paris, 2009),

Iθ(|ψθ〉|〈ψθ| = 4(〈∂θψθ|∂θψθ〉 + 〈∂θψθ|ψθ〉2) . (13)

If the parameter is imprinted on a pure state via a
unitary transformation with hermitian generator G as
|ψθ〉 = exp(iθG)|ψ〉, eq.(13) gives Iθ = 4Var(G) ≡
4(〈ψθ|G2|ψθ〉−〈ψθ|G|ψθ〉2). With a maximally entangled
state of the N subsystems and a suitable measurement,
one can reach a scaling of the quantum Fisher informa-
tion proportional to N2 (Giovannetti et al., 2006), the
mentioned Heisenberg-limit. This can be seen most eas-
ily for a pure state of the form |ψ〉 = (|Λ〉⊗N+|λ〉⊗N )/

√
2,

where |Λ〉 and |λ〉 are two eigenstates of G to two different
eigenvalues Λ, λ.

For mixed states, the Bures-distance is in general diffi-
cult to calculate, but Iθ(ρ(θ)) is a convex function of ρ(θ),
i.e. for two density matrices ρ(θ) and σ(θ) and 0 ≤ λ ≤ 1
we have (Fujiwara, 2001a)

Iθ(λρ(θ) + (1 − λ)σ(θ)) ≤ λIθ(ρ(θ)) + (1 − λ)Iθ(σ(θ)) .
(14)

This can be used to obtain an upper bound for the
quantum Fisher information. Convexity also implies
that the precision of measurements cannot be increased
by classically mixing states with mixing probabilities
independent of the parameter (Braun, 2010).

In principle, the optimal measurement that saturates
the quantum Cramér-Rao bound can be constructed by
diagonalizing L(θ). The projectors onto its eigenstates
form a POVM that yields the optimal measurement.
However, such a construction requires that the precise
value of the parameter θ is already known. If that was
the case, one could skip the measurement altogether and
choose the estimator as θest = θ, with vanishing uncer-
tainty, i.e. apparently violating the quantum Cramér-Rao
bound in most cases (Chapeau-Blondeau, 2015) (note,
however, that for a state that depends on θ, the condi-
tion θest = θ for an unbiased estimator cannot be fulfilled
in a whole ǫ-interval about θ, such that there is no for-
mal contradiction). If θ is not known, the more common
approach is therefore to use the quantum Cramér-Rao
bound as a benchmark as function of θ, and then check
whether physically motivated measurements can achieve
it. More general schemes have been proposed to mitigate
the problem of prior knowledge of the parameter. This in-
cludes the van Trees inequality (Gill and Levit, 1995; van

Trees, 2001), Bayesian approaches (Macieszczak et al.,
2014; Rivas and Luis, 2012), adaptive measurements (Ar-
men et al., 2002; Berry and Wiseman, 2000, 2002, 2006,
2013; Fujiwara, 2006; Higgins et al., 2009; Okamoto et al.,
2012; Serafini, 2012; Wheatley et al., 2010; Wiseman,
1995), and approaches specialized to particular param-
eter estimation problems such as phase estimation (Hall
et al., 2012). Another point to be kept in mind is that
the quantum Cramér-Rao bound can be reached asymp-
totically for a large number of measurements, but not
necessarily for a finite number of measurements. The
latter case is clearly relevant for experiments and subject
of active current research (see e.g. (Liu and Yuan, 2016)
).
These limitations not withstanding, we base this review
almost exclusively on the quantum Cramér-Rao bound
(with the exception of Sec.II.G on quantum channel dis-
crimination and parts of Sec.IV.B.1, where a signal-to-
noise ratio is used), given that the overwhelming major-
ity of results have been obtained for it and allow an in-
depth comparison of different strategies. A certain num-
ber of results have been obtained as well for the quan-
tum Fisher information optimized over all input states
(Fujiwara, 2001b; Fujiwara and Imai, 2003), a quantity
sometimes called channel quantum Fisher information.
We do not review this literature here, as in this type of
work sensitivity is typically not separately optimized over
entangled or non-entangled initial states.

The Fisher information can be generalized to multi-
parameter estimation (Helstrom, 1969; Paris, 2009), θ =
(θ1, θ2, . . . ). The Bures distance between two infinitesi-
mal close states then reads

ds2Bures(ρθ, ρθ+dθ) = 2

(

1 − tr
√√

ρθ ρθ+dθ
√
ρθ

)

. (15)

An expansion of ds2Bures(ρθ, ρθ+dθ) leads to the quantum
Fisher information matrix (Paris, 2009; Sommers and Zy-
czkowski, 2003),

ds2Bures(ρθ, ρθ+dθ) =
Iθk,θk′

4
dθkdθk′ , (16)

where Iθk,θk′ = trρθ(LθkLθk′ +Lθ′kLθk)/2, and Lθk is the
symmetric logarithmic derivative with respect to param-
eter θk. The quantum Cramér-Rao bound generalizes to
a lower bound on the co-variance matrix Cov[θ] of the
parameters θi (Helstrom, 1969, 1976; Paris, 2009),

Cov[θ] ≥ 1

M
(I(θ))−1 , (17)

where Cov[θ]ij = 〈θiθj〉 − 〈θi〉〈θj〉, and A ≥ B means
that A−B is a positive-semidefinite matrix. Contrary to
the single parameter quantum Cramér-Rao bound, the
bound (17) can in general not be saturated, even in the
limit of infinitely many measurements. The Bures metric
has also been called fidelity susceptibility in the frame-
work of quantum phase transitions (Gu, 2010).
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II. QUANTUM CORRELATIONS BEYOND

ENTANGLEMENT

A. Parallel versus sequential strategies in unitary quantum

metrology

One of the most typical applications of quantum
metrology is the task of unitary parameter estimation,
exemplified in particular by phase estimation (Giovan-
netti et al., 2006, 2011). Let Uθ = exp (−iθH) be a
unitary transformation, with θ the unknown parameter
to be estimated, and H a selfadjoint Hamiltonian opera-
tor which represents the generator of the transformation.
The typical estimation procedure then consists of the fol-
lowing steps: a) preparing an input probe in a state ρ;
b) propagating the state with the unitary transformation

Uθ; c) measuring the output state ρθ = UθρU
†
θ ; d) per-

forming classical data analysis to infer an estimator θest
for the parameter θ.

Let us now assume one has the availability of N uti-
lizations of the transformation Uθ. Then, the use of N
uncorrelated probes in a global initial state ρ⊗N , each
of which is undergoing the transformation Uθ in paral-
lel, yields an estimator whose minimum variance scales
as 1/N (Standard Quantum Limit). On the other hand,
by using an initial entangled state ρ of the N probes,
and propagating each with the unitary Uθ in parallel,
one can in principle achieve the Heisenberg-limit, mean-
ing that an optimal estimator θest can be constructed
whose asymptotic variance, in the limit N ≫ 1, scales as
1/N2. However, it is not difficult to realize that the very
same precision can be reached without the use of entan-
glement, by simply preparing a single input probe in a
superposition state with respect to the eigenbasis of the
generator H, and letting the probe undergo N sequential
iterations of the transformation Uθ.

For instance, thinking of each probe as a qubit for sim-
plicity, and fixing the generator H to be the Pauli matrix
σz, one can either consider a parallel scheme with N in-
put probes in the Greenberger-Horne-Zeilinger (GHZ, or
cat-like) maximally entangled state |Ψ〉 = (|00 . . . 0〉 +
|11 . . . 1〉)/

√
2, or a sequential scheme with a single probe

in the superposition |ψ〉 = (|0〉 + |1〉)/
√

2. In the first
case, the state after imprinting the parameter reads
U⊗N
θ |Ψ〉 = (e−iNθ|00 . . . 0〉 + eiNθ|11 . . . 1〉)/

√
2, while

in the second case UNθ |ψ〉 = (e−iNθ|0〉 + eiNθ|1〉)/
√

2.
Hence, in both schemes one achieves an N -fold increase
of the phase between two orthogonal states, and both
schemes reach therefore the Heisenberg-limit scaling in
the estimation of the phase shift θ, meaning that the
quantum Cramér-Rao bound can be asymptotically sat-
urated in both cases by means of an optimal measure-
ment, associated to a quantum Fisher information scal-
ing quadratically with N . The equivalence between en-
tanglement in parallel schemes and coherence (namely,
superposition in the eigenbasis of the generator) (Baum-

gratz et al., 2014; Marvian and Spekkens, 2016; Streltsov
et al., 2017) in sequential schemes further extends to cer-
tain schemes of quantum metrology in the presence of
noise, namely when the unitary encoding the parame-
ter to be estimated and the noisy channel commute with
each other (e.g. in the case of phase estimation affected
by dephasing) (Boixo and Heunen, 2012; Demkowicz-
Dobrzański and Maccone, 2014), although in more gen-
eral instances entanglement is shown to provide an ad-
vantage (Demkowicz-Dobrzański and Maccone, 2014; Es-
cher et al., 2011; Huelga et al., 1997). In general, se-
quential schemes such that individual probes are ini-
tially correlated with an ancilla (on which the param-
eter is not imprinted) and assisted by feedback control
(see Sec. IV.F.4) can match or outperform any paral-
lel scheme for estimation of single or multiple param-
eters encoded in unitary transformations even in the
presence of noise (Demkowicz-Dobrzański and Maccone,
2014; Huang et al., 2016; Nichols et al., 2016; Sekatski
et al., 2017; Yousefjani et al., 2017; Yuan, 2016; Yuan
and Fung, 2015). While probe and ancilla typically need
to be entangled for such sequential schemes to achieve
maximum quantum Fisher information, this observation
removes the need for large-scale multiparticle entangled
probes in the first place.

Similarly, in continuous variable optical interferometry
(Caves, 1981), equivalent performances can be reached
(for unitary phase estimation) by using either a two-
mode entangled probe, such as a N00N state, or a
single-mode non-classical state, such as a squeezed state.
These are elementary examples of quantum-enhanced
measurements achievable without entanglement, yet ex-
ploiting genuinely quantum effects such as nonclassical-
ity and superposition. Such features can be understood
by observing that both optical nonclassicality in infinite-
dimensional systems and coherence (superposition) in
finite-dimensional systems can be converted to entangle-
ment within a well-defined resource-theoretic framework
(Asbóth et al., 2005; Killoran et al., 2016; Streltsov et al.,
2015; Vogel and Sperling, 2014), and can be thought-of as
equivalent resources to entanglement for certain practical
purposes, as is evidently the case for unitary metrology.
1.

1 An additional scenario in which the quantum limit can be
reached without entanglement is when a multipartite state is
used to measure multiple parameters, where each parameter is
encoded locally onto only one subsystem — it has recently been
shown that entanglement between the subsystems is not advanta-
geous, and can even be detrimental, in this setting (Knott et al.,
2016; Proctor et al., 2018)
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B. General results on the usefulness of entanglement

More generally, for unitary metrology with multipar-
tite probes in a parallel setting, a quite general formalism
has been developed to identify the metrologically useful
correlations in the probes in order to achieve quantum-
enhanced measurements (Pezzè and Smerzi, 2009) (see
(Pezzè and Smerzi, 2014; Tóth and Apellaniz, 2014) for
recent reviews). Specifically, let us consider an input
state ρ of N qubits and a linear interferometer with

Hamiltonian generator given by H = Jl = 1
2

∑N
i=1 σ

(i)
l ,

i.e. a component of the collective (pseudo-)angular mo-
mentum of the N probes in the direction l = x, y, z, with

σ
(i)
l denoting the lth Pauli matrix for qubit i. If ρ is
k-producible, i.e., it is a convex mixture of pure states
which are tensor products of at most k-qubit states, then
the quantum Fisher information is bounded above as fol-
lows (Hyllus et al., 2012; Tóth, 2012),

Iθ(ρ, Jl) ≤ nk2 + (N − nk)2 , (18)

where n is the integer part of N/k. This means that
genuine multipartite entangled probes (k = N) are re-
quired to reach the maximum sensitivity, given by the
Heisenberg-limit Iθ ∝ N2, even though partially entan-
gled states can still result in quantum-enhanced measure-
ments beyond the Standard Quantum Limit.

A similar conclusion has been reached in (Augusiak
et al., 2016) considering the geometric measure of entan-
glement, which quantifies how far ρ is from the set of fully
separable (1-producible) states according to the fidelity.
Namely, for unitary metrology with N parallel probes
initialized in the mixed state ρ, in the limit N → ∞ a
nonvanishing value of the geometric measure of entangle-
ment of ρ is necessary for the exact achievement of the
Heisenberg-limit. However, a sensitivity arbitrarily close
to the Heisenberg-limit, Iθ ∝ N2−ǫ for any ǫ > 0, can
still be attained even if the geometric measure of entan-
glement of ρ vanishes asymptotically for N → ∞. In
deriving these results, the authors proved an important
continuity relation for the quantum Fisher information
in unitary dynamics (Augusiak et al., 2016).

C. Role of quantum discord in parameter estimation with

mixed probes

Here we will focus our attention on possible advantages
stemming from the use of quantum correlations more gen-
eral than entanglement in the (generally mixed) state of
the input probes for a metrological task. Such correla-
tions are usually referred to under the collective name
of quantum discord (Henderson and Vedral, 2001; Ol-
livier and Zurek, 2001), see also (Adesso et al., 2016;
Modi et al., 2012) for recent reviews. The name quan-
tum discord originates from a mismatch between two
possible quantum generalizations of the classical mutual

information, a measure of correlations between two (or
more) variables described by a joint probability distri-
bution (Ollivier and Zurek, 2001). A direct generaliza-
tion leads to the so-called quantum mutual information
I(ρ) = S(TrAρ) + S(TrBρ) − S(ρ), that quantifies to-
tal correlations in the state ρ of a bipartite system AB,
with S(ρ) = −Tr(ρ log ρ) being the von Neumann en-
tropy. An alternative generalization leads instead to
J (A)(ρ) = sup{ΠA} I(ΠA[ρ]), a measure of one-sided clas-
sical correlations that quantifies how much the marginal
entropy of, say, subsystem B is decreased (i.e., how much
additional information is acquired) by performing a mini-
mally disturbing measurement on subsystem A described
by a POVM {ΠA}, with ΠA[ρ] being the conditional state
of the system AB after such measurement (Henderson
and Vedral, 2001). The difference between the former
and the latter quantity is precisely the quantum discord,

D(A)(ρ) = I(ρ) − J(ρ) , (19)

that quantifies therefore just the quantum portion of the
total correlations in the state ρ from the perspective of
subsystem A. It is clear from the definition above that
the state ρ of a bipartite system AB has nonzero discord
(from the point of view of A) if and only if it is altered by
all possible local measurements performed on subsystem
A: disturbance by measurement is a genuine quantum
feature which is captured by the concept of discord, see
(Adesso et al., 2016; Modi et al., 2012) for more details.
Every entangled state is also discordant, but the converse
is not true; in fact, almost all separable states still exhibit
nonzero discord (Ferraro et al., 2010). The only bipartite
states with zero discord, from the point of view of sub-
system A, are so-called classical-quantum states, which
take the form

χ(A) =
∑

i

pi|i〉〈i|A ⊗ τBi , (20)

where the states {|i〉A} form an orthonormal basis for
subsystem A, and {τBi } denote a set of arbitrary states
for subsystem B, while {pi} stands for a probability dis-
tribution. These states are left invariant by measuring A
in the basis {|i〉A}, which entails that D(A)(χ(A)) = 0.

In a multipartite setting, one can define fully classi-
cal states as the states with zero discord with respect
to all possible subsystems, or alternatively as the states
which are left invariant by a set of local measurements
performed on all subsystems. Such states take the form
χ =

∑

i1,...,iN
pi1,...,iN |i1〉〈i1|A1 ⊗ · · · ⊗ |iN 〉〈iN |AN for an

N -particle system A1 . . . AN ; i.e., they are diagonal in
a local product basis. One can think of these states as
the only ones which are completely classically correlated,
that is, completely described by a classical multivariate
probability distribution {pi1,...,iN }, embedded into a den-
sity matrix formalism. An alternative way to quantify
discord in a (generally multipartite) state ρ is then by
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taking the distance between ρ and the set of classically
correlated states, according to a suitable (quasi)distance
function. For instance, the relative entropy of discord
(Modi et al., 2010) is defined as

DR(ρ) = inf
χ
S(ρ‖χ) , (21)

where the minimization is over all classically correlated
states χ, and S(ρ‖χ) = Tr(ρ log ρ − ρ logχ) denotes the
quantum relative entropy. For a dedicated review on dif-
ferent measures of discord-type quantum correlations we
refer the reader to (Adesso et al., 2016).

Let us now discuss the role of quantum discord in
metrological contexts. (Modi et al., 2011) investigated
the estimation of a unitary phase θ applied to each of N
qubit probes, initially prepared in mixed states with ei-
ther (a) no correlations; (b) only classical correlations;
or (c) quantum correlations (discord and/or entangle-
ment). All the considered families of N -qubit probe
states were chosen with the same spectrum, i.e. in partic-
ular the same degree of mixedness (which is a meaning-
ful assumption if one is performing a metrology experi-
ment in an environment with a fixed common tempera-
ture), and were selected due to their relevance in recent
nuclear magnetic resonance (NMR) experiments (Jones
et al., 2009). In particular, given an initial thermal state
ρ0(p) =

(
1+p
2 |0〉〈0| + 1−p

2 |1〉〈1|
)

for each single qubit
(with purity parameter 0 ≤ p ≤ 1), the product states

ρ
(a)
N (p) = [Hρ0(p)H]

⊗N
were considered for case (a), and

the GHZ-diagonal states ρ
(c)
N (p) = CH1Cρ0(p)⊗NCH1C

were considered for case (c), with H denoting the single-
qubit Hadamard gate (acting on each qubit in the first
case, and only on the first qubit in the second case), and
C = ⊗Nj=2 C-Not1j a series of Control-Not operations
acting on pairs of qubits 1 and j. These two classes of

states give rise to quantum Fisher information I
(a)
θ =

p2N and I
(c)
θ ' p2N2, respectively. By comparing the

two cases, the authors of (Modi et al., 2011) concluded

that a quantum enhancement, scaling as I
(c)
θ /I

(a)
θ ≈ N ,

is possible using pairs of mixed probe states with arbi-
trary (even infinitesimally small) degree of purity. This
advantage persists even when the states in strategy (c)
are fully separable, which occurs for p . a + b/N (with
a and b determined numerically for each value of N), in
which case both strategies are unable to beat the Stan-
dard Quantum Limit, yet the quadratic enhancement of
(c) over (a) is maintained, being independent of p. The
authors then argue that multipartite quantum discord
— which increases with N according to the relative en-
tropy measure of eq. (21) and vanishes only at p = 0
— may be responsible for this enhancement. Let us re-
mark that, even though the quantum Fisher information
is convex (which means that for every separable but dis-
cordant mixed state there exists a pure product state
with a higher or equal quantum Fisher information), the

analysis in (Modi et al., 2011) was performed at fixed
spectrum (and thus degree of purity) of the input probes,
a constraint which allowed the authors to still identify
an advantage in using correlations weaker than entan-
glement, as opposed to no correlations. However, it is
presently unclear whether these conclusions are special to
the selected classes of states, or can be further extended
to more general settings, including noisy metrology.

In a more recent work, (Cable et al., 2016) analyzed
a model of unitary quantum metrology inspired by the
computational algorithm known as deterministic quan-
tum computation with one quantum bit (DQC1) or
“power of one-qubit” (Knill and Laflamme, 1998). Using
only one pure qubit supplemented by a register of l maxi-
mally mixed qubits, all individually subject to a local uni-
tary phase shift Uθ, their model was shown to achieve the
Standard Quantum Limit for the estimation of θ, which
can be conventionally obtained using the same number of
qubits in pure uncorrelated states. They found that the
Standard Quantum Limit can be exceeded by using one
additional qubit, which only contributes a small degree
of extra purity, which, however, for any finite amount
of extra purity leads to an entangled state at the stage
of parameter encoding. In this model, incidentally, the
output state after the unitary encoding was found to be
always separable but discordant, with its discord vanish-
ing only in the limit of vanishing variance of the estima-
tor for the parameter θ. It is not quite clear if and how
the discord in the final state can be interpreted in terms
of a resource for metrology, but the achievement of the
Standard Quantum Limit with all but one probes in a
fully mixed state was identified as a quantum enhance-
ment without the use of entanglement. This suggests
that further investigation on the role of quantum discord
(as well as state purity) in metrological algorithms with
vanishing entanglement may be in order. A protocol for
multiparameter estimation using DQC1 was studied in
(Boixo and Somma, 2008), although the resource role of
correlations was not discussed there. In (MacCormick
et al., 2016) a detailed investigation of a DQC1-based
protocol was made based on coherently controlled Ryd-
berg interactions between a single atom and an atomic
ensemble containing N atoms. The protocol allows one
to estimate a phase shift assumed identical for all atoms
in the atomic ensemble with a sensitivity that interpo-
lates smoothly between Standard Quantum Limit and
Heisenberg-limit when the purity of the atomic ensemble
increases from a fully mixed state to pure states. It leads
to a cumulative phase shift proportional to N , and the
scheme can in fact also be seen as an implementation of
“coherent averaging”, with the control qubit playing the
role of the “quantum bus” (see Sec. IV.F.3).
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D. Black-box metrology and the interferometric power

As explicitly discussed in Sec. II.A, for unitary param-
eter estimation, if one has full prior information on the
generator H of the unitary transformation Uθ imprinting
the parameter θ, then no correlations are required what-
soever, and probe states with coherence in the eigenbasis
of H suffice to achieve quantum-enhanced measurements
in a sequential scheme. Recently, (Adesso, 2014; Giro-
lami et al., 2014, 2013) investigated quantum metrology
in a so-called black-box paradigm, according to which the
generator H is assumed not fully known a priori. In such
a case, suppose one selects a fixed (but arbitrary) input
single-particle probe ρ, then it is impossible to guarantee
a precision in the estimation of θ for all possible non-
trivial choices of H. This is because, in the worst case
scenario, the black-box unitary transformation may be
generated by a H which commutes with the input state
ρ, resulting in no information imprinted on the probe,
hence in a vanishing quantum Fisher information. It is
clear then that, to be able to estimate parameters inde-
pendently of the choice of the generator, one needs an
ancillary system correlated with the probe. But what
type of correlations are needed? It is in this context
that discord-type correlations, rather than entanglement
or classical correlations, are found to play a key resource
role.

Consider a standard two-arm interferometric configu-
ration, and let us retrace the steps of parameter esti-
mation in the black-box scenario (Girolami et al., 2014):
a) an input state ρ of two particles, the probe A and
the ancilla B, is prepared; b) particle B is transmit-
ted with no interaction, while particle A enters a black-
box where it undergoes a unitary transformation Uθ =
exp(−iθH) generated by a Hamiltonian H, whose spec-
trum is known but whose eigenbasis is unknown at this
stage; c) the agent controlling the black-box announces
the full specifics of the generator H, so that parties A and
B can jointly perform the best possible measurement on
the two-particle output state ρθ = (Uθ ⊗ I)ρ(Uθ ⊗ I)†;
d) the whole process is iterated N times, and an opti-
mal unbiased estimator θest is eventually constructed for
the parameter θ. In the limit N ≫ 1, for any specific
black-box setting H, the corresponding quantum Fisher
information Iθ(ρ,H) determines the maximal precision
enabled by the input state ρ in estimating the param-
eter θ generated by H, as prescribed by the quantum
Cramér-Rao bound.

One can then introduce a figure of merit quantifying
the worst case precision guaranteed by the state ρ for
the estimation of θ in this black-box protocol. This is
done naturally by minimizing the quantum Fisher infor-
mation over all generators H within the given spectral
class (the spectrum is assumed nondegenerate, with a
canonical choice being that of equispaced eigenvalues)
(Girolami et al., 2014, 2013). This defines (up to a nor-

malization constant) the interferometeric power of the
bipartite state ρ with respect to the probing system A,

P (A)(ρ) =
1

4
min
H

Iθ(ρ,H) . (22)

Remarkably, as proven in (Girolami et al., 2014), the in-
terferometric power turns out to be a measure of discord-
type correlations in the input state ρ. In particular, it
vanishes if and only if ρ takes the form of a classical-
quantum state, eq. (20). This entails that states with
zero discord cannot guarantee a precision in parameter
estimation in the worst case scenario, while any other bi-
partite state (entangled or separable) with nonzero dis-
cord is suitable for estimating parameters encoded by
a unitary transformation (acting on one subsystem) no
matter the generator, with minimum guaranteed preci-
sion quantified by the interferometric power of the state.
This conclusion holds both for parameter estimation in
finite-dimensional systems (Girolami et al., 2014), and
for continuous-variable optical interferometry (Adesso,
2014). Recently, it has been shown more formally that
entanglement accounts only for a portion of the quantum
correlations relevant for bipartite quantum interferome-
try. In particular, the interferometric power, which is
by definition a lower bound to the quantum Fisher in-
formation (for any fixed generator H), is itself bounded
from below in bipartite systems of any dimension by a
measure of entanglement aptly named the interferometric
entanglement, which simply reduces to the squared con-
currence for two-qubit states (Bromley et al., 2017). The
interferometric power can be evaluated in closed form,
solving analytically the minimization in eq. (22), for all
finite-dimensional states such that subsystem A is a qubit
(Girolami et al., 2014), and for all two-mode Gaussian
states when the minimization is restricted to Gaussian
unitaries (Adesso, 2014). An experimental demonstra-
tion of black-box quantum-enhanced measurements rely-
ing on discordant states as opposed to classically corre-
lated states has been reported using a two-qubit NMR
ensemble realized in chloroform (Girolami et al., 2014).

We finally notice that, while (quantum) correlations
with an ancilla are required to achieve a nonzero worst
case precision when minimizing the quantum Fisher in-
formation over the choice of the generator H within a
fixed spectral class, as in the scenario considered here,
single-probe (non-maximally mixed) states may however
suffice to be useful resources in the arguably more prac-
tical case in which the average precision, rather than the
minimal, is considered instead as a figure of merit. This
scenario is further discussed in Sec. II.H.

E. Quantum estimation of bosonic loss

Any quantum optical communication, from fibre-based
to free-space implementations, is inevitably affected by
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energy dissipation. The fundamental model to describe
this scenario is the lossy channel. This attenuates an in-
coming bosonic mode by transmitting a fraction η ≤ 1
of the input photons, while sending the other fraction
1 − η into the environment. The maximum number of
bits per channel use at which we can transmit quan-
tum information, distribute entanglement or generate
secret keys through such a lossy channel are all equal
to − log(1 − η) (Pirandola et al., 2017), a fundamental
rate-loss tradeoff that only quantum repeaters may sur-
pass (Pirandola, 2016). For these and other implications
to quantum communication, it is of paramount impor-
tance to estimate the transmissivity of a lossy channel in
the best possible way.

Quantum estimation of bosonic loss was first studied
in (Monras and Paris, 2007) by using single-mode pure
Gaussian states (see also (Pinel et al., 2013)). In this
setting, the performance of the coherent state probes at
fixed input energy provides the shot-noise limit or classi-
cal benchmark, which has to be beaten by truly quantum
probes. Let us denote by n̄ the mean number of photons,
then the shot-noise limit is equal to Iη ≃ η−1n̄ (Monras
and Paris, 2007; Pinel et al., 2013). The use of squeez-
ing can beat this limit, following the original intuition
for phase estimation of (Caves, 1981). In fact, (Mon-
ras and Paris, 2007) showed that, in the regime of small
loss η ≃ 1 and small energy n̄ ≃ 0, a squeezed vac-
uum state can beat the Standard Quantum Limit. The
use of squeezing for estimating the interaction parameter
in bilinear bosonic Hamiltonians (including beam-splitter
interactions) was also discussed in (Gaiba and Paris,
2009), showing that unentangled single-mode squeezed
probes offer equivalent performance to entangled two-
mode squeezed probes for practical purposes.

The optimal scaling Iη ≃ [η(1−η)]−1n̄ can be achieved
by using Fock states at the input (Adesso et al., 2009).
Note that, because Fock states can only be used when the
input energy corresponds to integer photon numbers, in
all the other cases one needs to engineer superpositions,
e.g., between the vacuum and the one-photon Fock state
if we want to explore the low-energy regime n̄ . 1. Non-
Gaussian qutrit and quartet states can be designed to
beat the best Gaussian probes (Adesso et al., 2009). It
is still an open question to determine the optimal probes
for estimating loss at any energy regime. It is certainly
known that the bound Iη ≤ [η(1 − η)]−1n̄ holds for any
n̄, as it can be proven by dilating the lossy channel into
a beam-splitter unitary and then performing parameter
estimation (Monras and Paris, 2007). Note that this
bound is computed by considering N uncorrelated probes
in parallel. It is therefore an open question to find the
best performance that is achievable by the most general
(adaptive) strategies.

Interestingly, the problem of estimating the loss pa-
rameters of a pair of lossy bosonic channels has been
proven formally equivalent to the problem of estimat-

ing the separation of two incoherent optical point-like
sources (Lupo and Pirandola, 2016). In this con-
text (Tsang et al., 2016) showed that a pair of weak
thermal sources can be resolved independently from their
separation if one adopts quantum measurements based
on photon counting, instead of standard intensity mea-
surements. Thus, quantum detection strategies enables
one to beat the so-called “Rayleigh’s curse” which af-
fects classical imaging (Tsang et al., 2016). This curse
is reinstated in the classical limit of very bright ther-
mal sources (Lupo and Pirandola, 2016; Nair, R. and
Tsang, T., 2016). On the other hand, (Lupo and Pi-
randola, 2016) showed that quantum-correlated sources
can be super-resolved at the sub-Rayleigh scale. In fact,
it is possible to engineer quantum-correlated point-like
sources that are not entangled (but discordant) which
displays super-resolution, so that the closer the sources
are the better their distance can be estimated.

The estimation of loss becomes complicated in the
presence of decoherence, such as thermal noise in the en-
vironment and non-unit efficiency of the detectors. From
this point of view, (Spedalieri et al., 2016) considered a
very general model of Gaussian decoherence which also
includes the potential presence of non-Markovian mem-
ory effects. In such a scenario, (Spedalieri et al., 2016)
showed the utility of asymmetrically correlated thermal
states (i.e., with largely different photon numbers in the
two modes), fully based on discord and void of entangle-
ment. These states can be used to estimate bosonic loss
with a sensitivity that approaches the shot noise limit and
may also surpass it in the presence of correlated noise and
memory effects in the environment. This kind of thermal
quantum metrology has potential applications for practi-
cal optical instruments (e.g., photometers) or at different
wavelengths (e.g., far infrared, microwave or X-ray) for
which the generation of quantum features, such as coher-
ence, number states, squeezing or entanglement, may be
challenging.

F. Gaussian quantum metrology

Clearly we may also consider the estimation of other
parameters beyond loss. In general, Gaussian quantum
metrology aims at estimating any parameter or mul-
tiple parameters encoded in a bosonic Gaussian chan-
nel. As shown in (Pirandola and Lupo, 2017), the most
general adaptive estimation of noise parameters (such
as thermal or additive noise) cannot beat the Standard
Quantum Limit. This is because Gaussian channels are
teleportation-covariant, i.e., they suitably commute with
the random operations induced by quantum teleporta-
tion, a property which is shared by large class of quantum
channels at any dimension (Pirandola et al., 2017). The
joint estimation of specific combinations of parameters,
such as loss and thermal noise, or the two real compo-
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nents of a displacement, has been widely studied in the
literature (Bellomo et al., 2009, 2010a,b; Duivenvoorden
et al., 2017; Gagatsos et al., 2016; Gao and Lee, 2014;
Genoni et al., 2013; Monras and Illuminati, 2011), but
the ultimate performance achievable by adaptive (i.e.,
feedback-assisted) schemes is still unknown.

If we employ Gaussian states at the input of a Gaus-
sian channel, then we have Gaussian states at the out-
put and we may exploit closed formulas for the quantum
Fisher information. These formulas can be derived by
direct evaluation of the symmetric logarithmic deriva-
tive (Jiang, 2014; Monras, 2013; Nichols et al., 2017;
Šafránek et al., 2015) or by considering the infinitesi-
mal expression of the quantum fidelity (Banchi et al.,
2015; Pinel et al., 2012, 2013). The latter approach may
exploit general and handy formulas. In fact, for two arbi-
trary multi-mode Gaussian states, ρ1 and ρ2, with mean
values u1 and u2, and covariance matrices V1 and V2,
we may write the Uhlmann-Jozsa fidelity (Banchi et al.,
2015)

F (ρ1, ρ2) =
Ftote

− 1
2 (u2−u1)

T (V1+V2)
−1(u2−u1)

√

det(V1 + V2)
, (23)

F 2
tot = det

[

2

(√

11 +
(VauxΩ)−2

4
+ 11

)

Vaux

]

,(24)

where we set Vaux := ΩT (V1 + V2)−1 (Ω/4 + V2ΩV1)
with Ω being the symplectic form (Banchi et al., 2015).
Specific expressions for the fidelity were previously
given for single-mode Gaussian states (Scutaru, 1998),
two-mode Gaussian states (Marian and Marian, 2012),
multi-mode Gaussian states assuming that one of the
states is pure (Spedalieri et al., 2013), and multi-mode
squeezed thermal Gaussian states with vanishing first
moments (Paraoanu and Scutaru, 2000).

From eq. (23) we may derive the Bures metric ds2Bures.
In fact, consider two infinitesimally-close Gaussian states
ρ, with statistical moments u and V , and ρ + dρ, with
statistical moments u + du and V + dV . Expanding at
the second order in du and dV , one finds (Banchi et al.,
2015)

ds2Bures = 2[1−
√

F (ρ, ρ+ dρ)] =
duTV −1du

4
+
δ

8
, (25)

where δ := 4Tr[dV (4LV + LΩ)−1dV ], LAX := AXA,
and the inverse of the superoperator 4LV + LΩ refers to
the pseudo-inverse. A similar expression was also com-
puted by (Monras, 2013) using the symmetric logarithmic
derivative, with further refinements in (Šafránek et al.,
2015). From the Bures metric in eq. (25) we may derive
the quantum Fisher information (see eq. (12)) for the
estimation of any parameter encoded in a multi-mode
(pure or mixed) Gaussian state directly in terms of the
statistical moments. Eq. (25) is written in a com-
pact basis-independent and parametrization-independent

form, valid for any multi-mode Gaussian state. For an
explicit parametrization via multiple parameters θ =
(θ1, θ2, . . . ), one can expand the differential and write
dV =

∑

k ∂θkV dθk, and similarly for du. In this way,
ds2Bures =

∑

k,k′
1
4Iθk,θk′dθkdθk′ as in Eq. (16), with

Iθk,θk′ = (∂θku
T )V −1(∂θk′u)

+ 2Tr[(∂θkV )(4LV + LΩ)−1(∂θk′V )] . (26)

Eqs. (25) and (26) have been derived following eq. (12),
namely explicitly computing the fidelity function for two
most general multi-mode Gaussian states, and then tak-
ing the limit of two infinitesimally close states. A sim-
ilar approach was used for fermionic Gaussian states
in (Banchi et al., 2014).

An alternative derivation of the bosonic quantum
Fisher information for multi-mode Gaussian states, based
on the use of the symmetric logarithmic derivative,
has been recently obtained in (Nichols et al., 2017).
Furthermore, (Nichols et al., 2017) derived a neces-
sary and sufficient compatibility condition such that the
quantum Cramér-Rao bound eq. (17) is asymptotically
achievable in multiparameter Gaussian quantum metrol-
ogy, meaning that a single optimal measurement exists
which is able to extract the maximal information on
all the parameters simultaneously. For any pair of pa-
rameters θk, θk′ ∈ θ, in terms of the symmetric log-
arithmic derivatives Lρθk and Lρθ

k′
, the correspond-

ing quantum Fisher information matrix element is de-

fined as Iθk,θk′ ≡ Re
[

Tr
(

ρθLρθkLρθk′

)]

, while the mea-

surement compatibility condition amounts to Yθk,θk′ ≡
Im
[

Tr
(

ρθLρθkLρθk′

)]

= 0 (Ragy et al., 2016). In terms

of the first and second statistical moments u and V of a
m-mode Gaussian state ρθ, we have then (Nichols et al.,
2017):

Iθk,θk′ = (∂θku
T )V −1(∂θk′u) + 2Tr(∂θk′V Kθk), (27)

Yθk,θk′ =
1

2
(∂θku

T )V −1ΩV −1(∂θk′u) + 16Tr
(
ΩKθk′V Kθk

)
,

(28)

with Kθ =
∑m
i,j=1

∑3
l=0

(aθ)
ij
l

νiνj−(−1)l
ST

−1
M ij
l S

−1, where

(aθ)
ij
l = Tr

(

S−1∂θV S
T−1

M ij
l

)

, {νi} are the symplec-

tic eigenvalues of the covariance matrix V , S−1 is the
symplectic transformation that brings V into its diago-

nal form, S−1V ST
−1

=
⊕m

i=1 νi11, and the set of ma-

trices M ij
l have all zero entries except for the 2 × 2

block in position ij which is given by
{

(M)ijl
}

l∈{0,...,3} =
1√
2

{
iσy, σz, 11, σx

}
. Note that eq. (27) can also be

obtained from (25) by explicitly writing all the opera-
tors in the basis in which V is diagonal, observing that
(4LV + LΩ)−1(∂θV ) = Kθ. On the other hand, Eq. (28)
cannot be obtained from the limit of the fidelity formula.
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In the context of this review, (Pinel et al., 2012)
studied in particular the quantum Cramér-Rao bound
for estimating a parameter θ which is encoded in a
pure multi-mode Gaussian state. It was realized that,
in the limit of large photon number, no entanglement
nor correlations between different modes are necessary
for obtaining the optimal sensitivity. Rather, a de-
tection mode can be used based on the derivative of
the mean photon field with respect to the parameter
θ, into which all the resources in terms of photons and
squeezing should be put. The mean photon field is de-
fined as āθ(r, t) = 〈ψθ|a(r, t)|ψθ〉, with all parameter
dependence in the pure Gaussian quantum state |ψ〉θ,
a(r, t) =

∑

i aivi(r, t), where vi(r, t) are orthonormal
mode functions found from solving Maxwell’s equation
with appropriate boundary conditions, ai is the annihi-
lation operators of mode i, and the sum is over all modes.
The mean field can be normalized, uθ = āθ(r, t)/||āθ||,
where the norm ||f(r, t)|| = (

∫
|f(r, t)|2d2rdt)1/2 con-

tains spatial integration over a surface perpendicular to
the light beam propagation and temporal integration over
the detection time. The detection mode is then defined
as ṽ1(r, t) =

ā′θ(r,t)
||ā′θ||

, where ′ means derivative with re-

spect to θ. The detection mode can be complemented
by other, orthonormal modes to obtain a full basis, but
these other modes need not be excited for achieving max-
imum quantum Fisher information. The quantum Fisher
information reads then

Iθ = Nθ

(

4||u′θ||2 +

(
N ′
θ

Nθ

)2
)

V −1
θ,[1,1] , (29)

whereNθ is the mean photon number, and V −1
θ,[1,1] the ma-

trix element of the inverse covariance matrix of the Gaus-
sian state corresponding to the detection mode ṽ1(r, t).
All other modes are chosen orthonormal to it. The Stan-
dard Quantum Limit corresponds to a quantum Fisher
information of a coherent state, in which case V −1

θ,[1,1] = 1.

Hence, an improvement over the Standard Quantum
Limit is possible with pure Gaussian states by squeezing
the detection mode. The scaling with Nθ can be modi-
fied if V −1

θ,[1,1] depends on Nθ. For a fixed total energy a

scaling Iθ ∝ N
3/2
θ can be achieved. This was proposed

in (Barnett et al., 2003) for measuring a beam displace-
ment. The quantum Cramér-Rao bound in eq.(29) can be
reached by homodyne detection with the local oscillator
in this detection mode.

By using compact expressions of the quantum Fisher
information for multi-mode Gaussian states, (Šafránek
and Fuentes, 2016) developed a practical method to find
optimal Gaussian probe states for the estimation of pa-
rameters encoded by Gaussian unitary channels. Appli-
cations of the method to the estimation of relevant pa-
rameters in single-mode and two-mode unitary channels,
such as phase, single-mode squeezing, two-mode squeez-
ing, and transmissivity of a beam splitter, confirmed that

separable probes can achieve exactly the same precision
as entangled probes, leading the authors of (Šafránek and
Fuentes, 2016) to remark how entanglement does not play
any significant role in achieving the Heisenberg-limit for
unitary Gaussian quantum metrology.

The same conclusion has been reached by consider-
ing the estimation of any small parameter θ encoded in
Bogoliubov transformations, i.e., Gaussian unitary chan-
nels corresponding to arbitrary linear transformations of
a set of n canonical mode operators (Friis et al., 2015).
In the limit of infinitesimal transformations (θ ≪ 1), and
considering an arbitrary (Gaussian or not) pure n-mode
probe state with input mean photon number Nθ, (Friis
et al., 2015) showed by means of a perturbative analysis
that the maximal achievable quantum Fisher informa-
tion scales as Iθ ∝ N2

θ , that is, at the Heisenberg-limit.
Remarkably, such a quantum-enhanced scaling requires
nonclassical (e.g., squeezed) but not necessarily entan-
gled states.

Further results on the use of bosonic probes and the
role of mode entanglement in Gaussian and non-Gaussian
quantum metrology are presented in Sec. III.B.

G. Quantum channel discrimination

A fundamental protocol which is closely related to
quantum metrology is quantum channel discrimina-
tion (Acin, 2001; Childs et al., 2000; Invernizzi et al.,
2011; Lloyd, 2008; Pirandola, 2011; Sacchi, 2005; Tan
et al., 2008), which may be seen as a sort of digitalized
version of quantum metrology. Its basic formulation is
binary and involves the task of distinguishing between
two quantum channels, E0 or E1, associated with two a
priori probabilities π0 := π and π1 = 1 − π. During the
encoding phase, one of such channels is picked by Alice
and stored in a box which is then passed to Bob. In the
decoding phase, Bob uses a suitable state at the input
of the box and performs a quantum measurement of its
output. Bob may also use ancillary systems which are
quantum correlated with the input probes and are di-
rectly sent to the measurement. For the specific tasks of
discriminating bosonic channels, the input is assumed to
be constrained in energy, so that we fix the mean num-
ber of photons n̄ per input probe, or more strongly, the
mean total number of photons which are globally irradi-
ated through the box (Weedbrook et al., 2012).

Quantum channel discrimination is an open problem
in general. However, when we fix the input state, it is
translated into an easier problem to solve, i.e., the quan-
tum discrimination of the output states. In the binary
case, this conditional problem has been fully solved by
the so-called Helstrom bound which provides the mini-
mum mean error probability p̄ in the discrimination of
any two states ρ0 and ρ1. Assuming equiprobable states
(π = 1/2), this bound is simply given by their trace dis-
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tance D, i.e., we have (Helstrom, 1976)

p̄ =
1

2
[1 −D(ρ0, ρ1)] . (30)

In the case of multi-copy discrimination, in which we
probe the box N times and we aim to distinguish the two
outputs ρ⊗N0 and ρ⊗N1 , the mean error probability p̄(N)
may be not so easy to compute and, therefore, we resort
to suitable bounds. Using the quantum fidelity F (ρ0, ρ1)
from (11), and setting

Q(ρ0, ρ1) := inf
0≤s≤1

Tr(ρs0ρ
1−s
1 ), (31)

we may then write (Audenaert et al., 2007; Banchi et al.,
2015; Fuchs and de Graaf, 1999)

1 −
√

1 − F (ρ0, ρ1)N

2
≤ p̄(N) ≤ QN (ρ0, ρ1)

2
, (32)

where QN (ρ0, ρ1)/2 is the quantum Chernoff bound
(QCB) (Audenaert et al., 2007). In particular, the QCB
is asymptotically tight for large N . Furthermore, it can
be easily computed for arbitrary multi-mode Gaussian
states (Pirandola and Lloyd, 2008).

Since the conditional output states can be optimally
distinguished, the non-trivial part in quantum channel
discrimination is the optimization of the mean error prob-
ability p̄ over the input states. For this reason, it is an
extremely rich problem and depending on the types of
quantum channels, quantum correlations may play an im-
portant role or not. We now discuss some specific cases
in more detail.

Quantum channel discrimination has various practical
applications. One which is very well known is quantum
illumination (Lloyd, 2008; Tan et al., 2008) which forms
the basis for a “quantum radar” (Barzanjeh et al., 2015).
Despite the fact that entanglement is used at the input
between the signal (sent to probe a potential target) and
the idler (kept at the radar state for joint detection), en-
tanglement is completely absent at the output between
reflected and idler photons. Nevertheless the scheme as-
sures a superior performance with respect to the use of
coherent states; in particular, an increase by a factor 4
of the exponent −(lnP (e))/M of the asymptotic error
probability P (e) (where M is the number of transmis-
sions) (Tan et al., 2008). For this reason, the quantum
illumination advantage has been studied in relation with
the consumption of other discord-type quantum correla-
tions beyond entanglement (Bradshaw et al., 2016; Weed-
brook et al., 2016). More precisely, the enhanced per-
formance of quantum illumination (with respect to sig-
nal probing not assisted by an idler) corresponds to the
amount of discord which is expended to resolve the tar-
get (i.e., to encode the information about its presence or
absence). Quantum illumination was demonstrated ex-
perimentally in (Lopaeva et al., 2013; Zhang et al., 2015,
2013).

Another application of quantum channel discrimina-
tion is quantum reading (Pirandola, 2011). Here the ba-
sic aim is to discriminate between two different channels
which are used to encode an information bit in a cell of
a classical memory. In an optical setting, this means to
discriminate between two different reflectivities, gener-
ally assuming the presence of decoherence effects, such
as background stray photons. The maximum amount of
bits per cell that can be read is called “quantum reading
capacity” (Pirandola et al., 2011). This model has also
been studied in the presence of thermal and correlated de-
coherence, as that arising from optical diffraction (Lupo
et al., 2013). In all cases, the classical benchmark as-
sociated with coherent states can be largely beaten by
non-classical states, as long as the mean number of pho-
tons hitting the memory cells is suitably low.

Depending on the regime, we may choose a different
type of non-classical states. In the presence of thermal
decoherence induced by background photon scattering,
two-mode squeezed vacuum states between signal modes
(reading the cells) and idler modes (kept for detection)
are nearly-optimal. However, in the absence of decoher-
ence, the sequential readout of an ideal memory (where
one of the reflectivities is exactly 100%) is optimized by
number states at the input (Nair, 2011). (Roga et al.,
2015) showed that, in specific regimes, the quantum ad-
vantage can be related with a particular type of quantum
correlations, the discord of response, which is defined as
the trace, or Hellinger, or Bures minimum distance from
the set of unitarily perturbed states (Roga et al., 2014).
(Roga et al., 2015) also identified particular regimes in
which strongly discordant states are able to outperform
pure entangled transmitters.

Let us consider the specific case of unitary channel dis-
crimination. Suppose that the task is to decide whether
a unitary Uθ was applied or not to a probing subsystem
A of a joint system (A,B). In other words, the aim is
to discriminate between the two possible output states
ρθ = (Uθ ⊗ I)ρ(Uθ ⊗ I)† (when the unitary Uθ has acted
on A) or ρ (equal to the input, when the identity has
acted on A instead). In the limit of an asymptotically
large number N ≫ 1 of copies of ρ, the minimal proba-
bility of error in distinguishing between ρθ and ρ, using
an optimal discrimination strategy scales approximately
as the QCB Q(ρ, ρθ)

N/2.
It is clear that the quantity 1−Q(ρ, ρθ) plays a similar

role in the present discrimination context as the quantum
Fisher information in the parameter estimation scheme.
One can therefore introduce an analogous figure of merit
quantifying the worst case ability to discriminate, guar-
anteed by the state ρ. The discriminating strength of the
bipartite state ρ with respect to the probing system A is
then defined as (Farace et al., 2014)

D(A)(ρ) = min
H

[1 −Q(ρ, ρθ)] , (33)

where the minimization is performed once more over all
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generators H within a given non-degenerate spectrum.

As proven in (Farace et al., 2014), the discriminating
strength is another measure of discord-type correlations
in the input state ρ, which vanishes if and only if ρ is a
classical-quantum state as in eq. (20). The discriminating
strength is also computable in closed form for all finite-
dimensional states such that subsystem A is a qubit. In
the latter case, the discriminating strength turns out to
be proportional to the local quantum uncertainty (Giro-
lami et al., 2013), a further measure of discord-type cor-
relations defined as in eq. (22), but with the quantum
Fisher information replaced by the Wigner-Yanase skew
information (Girolami et al., 2013). The discriminating
strength has also been extended to continuous-variable
systems, and evaluated for special families of two-mode
Gaussian states restricting the minimization in eq. (33) to
Gaussianity-preserving generators (i.e., quadratic Hamil-
tonians) (Rigovacca et al., 2015).

Finally, we notice that the presence and use of quan-
tum correlations beyond entanglement has also been in-
vestigated in other tasks related to metrology and illumi-
nation, such as ghost imaging with (unentangled) ther-
mal source beams (Ragy and Adesso, 2012). Adopting a
coarse-grained two-mode description of the beams, quan-
tum discord was found to be relevant for the implementa-
tion of ghost imaging in the regime of low illumination,
while more generally total correlations in the thermal
source beams were shown to determine the quality of the
imaging, as quantified by the signal-to-noise ratio.

H. Average precision in black-box settings

The results reviewed so far in this Section highlight a
clear resource role for quantum discord, specifically mea-
sured by operational quantifiers such as the interferomet-
ric power and the discriminating strength, in black-box
metrology settings, elucidating in particular how quan-
tum correlations beyond entanglement manifest them-
selves as coherence in all local bases for the probing sub-
system. Discordant states, i.e., all states but those of
eq. (20), are not only disturbed by all possible local mea-
surements on A, but are also modified by — hence sensi-
tive to — all nontrivial unitary evolutions on subsystem
A. This is exactly the ingredient needed for the estima-
tion and discrimination tasks described above.

In practice, however, one might want to assess the gen-
eral purpose performance of probe states, rather than
their worst case scenario only. One can then introduce
alternative figures of merit quantifying how suitable a
state is, on average, for estimation or discrimination of
unitary transformations, when the average is performed
over all generators of a fixed spectral class. This can
be done by replacing the minimum with an average ac-
cording to the Haar measure, in Eqs. (22) and (33), re-
spectively. Such a study has been carried out in (Farace

et al., 2016) by defining the local average Wigner-Yanase
skew information, which corresponds to the average ver-
sion of the discriminating strength in case the probing
subsystem A is a qubit (Farace et al., 2014).

Unlike the minimum, the average skew information is
found not to be a measure of discord anymore. In par-

ticular, it vanishes only on states of the form I
A

dA
⊗ τB ,

that is, tensor product states between a maximally mixed
state on A, and an arbitrary state on B (Farace et al.,
2016). This entails that, to ensure a reliable discrimina-
tion of local unitaries on average, the input states need
to have either one of these two (typically competing) in-
gredients: nonzero local purity of the probing subsystem,
or nonzero correlations (of any nature) with the ancilla.
The interplay between the average performance and the
minimum one, which instead relies on discord, as well
as a study of the role of entanglement, are detailed in
(Farace et al., 2016). A similar study has been recently
performed in continuous variable systems, in which the
average quantum Fisher information for estimating the
amount of squeezing applied to an input single-mode
probe, without previous knowledge on the phase of the
applied squeezing, was investigated with and without the
use of a correlated ancilla (Rigovacca et al., 2017).

III. IDENTICAL PARTICLES

Measuring devices and sensors operating with many-
body systems are among the most promising instances for
which quantum-enhanced measurements can be actually
experimented; indeed, their large numbers of elementary
constituents play the role of resources according to which
the accuracy of parameter estimation can be scaled. Typ-
ical instances in which the quantum-enhanced measure-
ment paradigm has been studied are in fact interferome-
ters based on ultracold atoms confined in optical lattices
(Cronin et al., 2009; Gerry and Knight, 2005; Giorgini
et al., 2008; Haroche and Raimond, 2006; Inguscio et al.,
2006; Köhl and Esslinger, 2006; Leggett, 2001, 2006;
Pethick and Smith, 2004; Pitaevskii and Stringari, 2003;
Yukalov, 2009) where a precise control on the state prepa-
ration and on the dynamics can nowadays be obtained.
These systems are made of spatially confined bosons or
fermions, i.e. of constituents behaving as identical parti-
cles, a fact that has not been properly taken into account
in most of the literature.

In systems of distinguishable particles, the no-
tion of separability and entanglement is well-
established (Horodecki et al., 2009): it is strictly
associated with the natural tensor product structure of
the multi-particle Hilbert space and expresses the fact
that one is able to identify each one of the constituent
subsystems with their corresponding single-particle
Hilbert spaces. On the contrary, in order to describe
identical particles one must extract from the tensor
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product structure of the whole Hilbert space either the
symmetric (bosonic) or the anti-symmetric (fermionic)
sector (Feynman, 1994; Sakurai, 1994). This fact
demands a more general approach to the notions of
non-locality and entanglement based not on the particle
aspect proper for first quantization, rather on the mode
description typical of second quantization (Argentieri
et al., 2011; Barnum et al., 2004, 2005; Benatti and
Floreanini, 2014; Benatti et al., 2010a, 2011, 2012a,b,
2014a,b, 2017; Marzolino, 2013; Narnhofer, 2004;
Summers and Werner, 1985, 1987a,b; Zanardi et al.,
2004).

The notion of entanglement in many-body systems has
already been addressed and discussed in the literature:
for instance, see (Amico et al., 2008; Balachandran et al.,
2013; Banuls et al., 2006; Bloch et al., 2008; Calabrese
et al., 2012; Dowling et al., 2006; Eckert et al., 2002;
Ghirardi et al., 2002; Grabowski et al., 2011; Hines
et al., 2003; Kraus et al., 2009; Lewenstein et al., 2007;
Li et al., 2001; Micheli et al., 2003; Modi et al., 2012;
Paskauskas and You, 2001; Schliemann et al., 2001;
Schuch et al., 2004; Song et al., 2012; Tichy et al., 2013;
Wiseman and Vaccaro, 2003; Y.Shi, 2004) and references
therein. Nevertheless, only limited results actually apply
to the case of identical particles and their applications
to quantum-enhanced measurements. From the existing
literature on possible metrological uses of identical parti-
cles, there emerges as a controversial issue the distinction
between particle and mode entanglement. Before il-
lustrating the general approach developed in (Benatti
et al., 2010a, 2012a, 2014a) within which this matter can
be settled, we shortly overview the main aspects of the
problem. Readers who feel that the discussion whether
the states in question are to be considered as entangled
or not is rather academic may be reassured by the very
pragmatical result that independently of this discussion,
systems of indistinguishable bosons offer a metrological
advantage over distinguishable particles, in the sense
that for certain measurements one would have to
massively entangle the latter for obtaining the same sen-
sitivity as one obtains “for free” from the symmetrized
states of the former. This we show explicitly in Sec.III.B.

Entanglement based on the particle description proper
for first quantization has been discussed for pure states
in (Li et al., 2001; Paskauskas and You, 2001; Schliemann
et al., 2001). In the fermionic case, Slater determinants
are identified as the only non-entangled fermionic pure
states, for, due to the Pauli exclusion principle, they are
the least correlated many-particle states. In the case of
bosons, two inequivalent notions of particle entanglement
have been put forward: in (Paskauskas and You, 2001), a
pure bosonic state is declared non-entangled if and only
if all particles are prepared in the same single particle
state, thus leading to a bosonic product state. In (Li
et al., 2001), bosonic non-entangled pure states are iden-

tified as those corresponding to permanents (the bosonic
analogue of Slater determinants); in other words, a pure
bosonic state is non-entangled not only when, as in the
first approach mentioned above, it is a product state, but
also when all bosons are prepared in pairwise orthogonal
single particle states. The particle-based entanglement
was then studied in (Eckert et al., 2002) both for bosons
and fermions, and then generalized within a more math-
ematical and abstract setting in (Grabowski et al., 2011,
2012).

From the point of view of particle description, a dif-
ferent perspective was provided in (Ghirardi et al., 2002,
2004), based on the fact that non-entangled pure states
should possess a complete set of local properties, iden-
tifiable by local measurements. For a more recent non
standard approach, still based on the particle descrip-
tion, see (Lo Franco and Compagno, 2016).

In all these approaches, only bipartite systems consist-
ing of two identical particles are discussed; however, in
the fermionic case, simple necessary and sufficient crite-
ria of many particle-entanglement, based on the single-
particle reduced density matrix, have been elaborated
in (Plastino et al., 2009).

A change of perspective occurred in (Barnum et al.,
2004, 2005; Vedral, 2003; Zanardi et al., 2004) where
the focus moved from particles to orthonormal modes;
within this approach, states that are not mode-entangled
are characterized by correlations that can be explained
in terms of joint classical occupation probabilities of
the modes. It then follows that entanglement and
non-locality depend on the mode description which has
been chosen. In all cases, however, identical-particle
states represented by fermionic Slater determinants or
bosonic permanents can be neither particle nor mode-
entangled, in direct conflict with claims that these states
are particle-entangled and hence metrologically useful
(Demkowicz-Dobrzański et al., 2014). In an attempt
to resolve the conflict, in (Killoran et al., 2014) it is
shown that such a pseudo, or “fluffy-bunny” entangle-
ment as called in (Beenakker, 2006; Wiseman et al.,
2003), which is due to bosonic state symmetrization, can
be turned into the entanglement of distinguishable, and
thus metrologically accessible, modes; however, the op-
erations needed for such a transformation are non-local
in the mode picture and thus ultimately responsible for
the achieved sub shot-noise accuracies.

The variety of approaches regarding entanglement in
identical particle systems and their use in metrological
applications, in particular whether entanglement is nec-
essary or not to achieve sub-shot-noise accuracies, can
be looked at from the unifying point of view provided by
the algebraic approach to quantum many-body systems
proper to second quantization (Bratteli and Robinson,
1987; Strocchi, 1985). Within this scheme, we first ad-
dress the relations between mode and particle entangle-
ment. Then, we focus on specific quantum metrological
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issues and show that neither entangled states, nor prelim-
inary state preparation as spin-squeezing are necessary in
order to achieve sub shot-noise accuracies using systems
of identical particles.

A. Particle and mode entanglement

In quantum mechanics, indistinguishable particles can-
not be identified by specific labels, whence their states
must be either completely symmetrized (bosons) or anti-
symmetrized (fermions). This makes second quantization
a most suited approach to deal with them, while the par-
ticle representation proper for first quantization results
to be too restrictive for a consistent treatment of entan-
gled identical particles.

As a simple example of the consequences of indis-
tinguishability, consider two qubits, each of them de-
scribed by the Hilbert space H = C

2, where we select
the orthonormal basis {|0〉, |1〉} of eigenvectors of σz:
σz|0〉 = |0〉, σz|1〉 = −|1〉. If the two qubits describe
distinguishable particles, the tensor product structure of
the common Hilbert space C

4 = C
2⊗C

2 exhibits the fact
that one knows which is qubit 1 and which one qubit 2.
Instead, if the two qubits are indistinguishable, the corre-
sponding Hilbert space loses its tensor product structure
and becomes, in the bosonic case, the three-dimensional
subspace C3 spanned by the orthogonal two-particle sym-

metric vectors |00〉, |11〉 and |ψ(2)
+ 〉 := (|01〉 + |10〉)/

√
2,

whereas, in the Fermionic case, it reduces to the anti-

symmetric two-particle vector |ψ(2)
− 〉 := (|01〉 − |10〉)/

√
2.

An important consequence of this fact is that generic
mixed states of indistinguishable particles must be rep-
resented by density matrices that arise from convex lin-
ear combinations of projectors onto symmetrized or anti-
symmetrized pure states. Indeed, while operators must
be symmetrized in order to comply with particle in-
distinguishability, by symmetrizing density matrices of
distinguishable particles, say sending ρ = ρ1 ⊗ ρ2 into
(
ρ1 ⊗ ρ2 + ρ2 ⊗ ρ1

)
/2 one cannot in general obtain an

appropriate bosonic or fermionic state, unlike sometimes
stated in the literature (see e.g. (Demkowicz-Dobrzański
et al., 2014)). For instance, the two qubit symmetric
mixed state ρ ⊗ ρ cannot be a fermionic density ma-

trix since the only fermionic state is |ψ(2)
− 〉〈ψ(2)

− |. On
the other hand, in the bosonic case, ρ ⊗ ρ can be a
bona-fide bosonic state only if ρ is pure. Indeed, as

ρ⊗ ρ|ψ(2)
− 〉 = det(ρ)|ψ(2)

− 〉, if the determinant of the den-
sity matrix, det(ρ) 6= 0, then ρ ⊗ ρ has support also in
the anti-symmetric component of the Hilbert space. A
careful discussion of the relationship between permuta-
tionally invariant density matrices and symmetric/anti-
symmetric states can be found in (Damanet et al., 2016).

Instead of on the standard particle picture, second
quantization is based on the so-called mode picture. In
general, a mode is any of the normalized vectors |ψ〉 of

the same single particle Hilbert space H that is used to
describe each one of a system of identical particles. In
practice, one fixes an orthonormal basis {|ψi〉} in H and
populates the i-th mode by acting on the so-called vac-
uum vector with (powers of) the creation operator a†i ,

a†i |0〉 = |ψi〉, while the adjoint operators ai annihilate the

vacuum, ai|0〉 = 0. For bosons, [ai , a
†
j ] = aia

†
j − a†jai =

δij and one can find arbitrarily many particles in a given

mode, while for fermions {ai , a†j} = ai a
†
j + a†j ai = δij

and each mode can be occupied by one fermion, at most.

Typical modes are given by the eigenvectors of a given
single particle Hamiltonian, orthogonal polarization di-
rections, the left and right position in a double-well po-
tential, or the atomic positions in an optical lattice. In
the case of free photons, typical modes are plane waves
labeled by wave vector and polarization, arising from the
quantization of classical electrodynamics in terms of inde-
pendent harmonic oscillators. Within this picture, saying
that there are n photons in a certain energy mode can
also be interpreted as a quantum oscillator being pro-
moted to its n-th excited state.

In dealing with distinguishable particles, quantum
entanglement (Horodecki et al., 2009) is basically ap-
proached by referring to the tensor product structure of
the total Hilbert space which embodies the fact that par-
ticles can be identified. From the previous discussion, it
follows that, in the case of identical particles, one ought
to consider the entanglement of modes rather than the
entanglement of particles. The relations between the two
approaches are studied in detail in (Benatti et al., 2014b);
here, we briefly compare them in the case of two two-
mode indistinguishable bosons associated with orthogo-
nal single-particle pure states |ψ1,2〉 ∈ H, as, for instance,
orthogonal polarization states, described by creation and
annihilation operators ai, a

†
i , i =, 2. The pure state

|1, 1〉 = a†1a
†
2|0〉 (34)

belongs the two-particle sector of the symmetric Fock
space and represents a pure state with one boson in each
mode. In the particle picture of first quantization, the
same state corresponds to the symmetrized vector

|ψ+〉 =
1√
2

(

|ψ1〉 ⊗ |ψ2〉 + |ψ2〉 ⊗ |ψ1〉
)

, (35)

which describes a balanced superposition of two states:
one with the first particle in the state |ψ1〉 and the second
particle in the state |ψ2〉, the other with the two states
exchanged. The net result is that, given the state (35),
we can only say that one particle is surely in the state
|ψ1〉 and that the other one is surely in the state |ψ2〉, but
we cannot attribute a specific state to a specific particle.

As an example of the misunderstandings that can re-
sult from sticking to the particle picture when dealing
with identical particles, state (35) is often referred to as
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entangled: actually, it is only formally so in the parti-
cle picture, while, as we shall show below, it is separable
in the mode picture. Indeed, (35) would clearly display
particle entanglement as the state cannot be written as
a tensor product of single particle states. Instead, in
(34), the same state is expressed as the action on the
vacuum state of two independent creation operators and
thus should correspond to a mode-separable state under
whichever meaningful definition of mode-entanglement
one should adopt. We shall later give solid ground to
this latter statement, but firstly we show that, while for
distinguishable particles the state (35) is the prototype
of an entangled pure state, it is nevertheless separable in
the sense specified below.

1. Particle entanglement

For distinguishable particles, bipartite observables are
termed local if they are tensor products O12 = O1 ⊗ O2

of single particle observables O1⊗I pertaining to particle
1 and I⊗O2 pertaining to particle 2, where I denotes the
identity operator, namely if they address each particle
independently. Consequently, in such a context, locality
is associated to the addressability of single particles and
referred to as particle-locality in the following. Then, a
bipartite pure state |ψ12〉 is separable if and only if the
expectation values 〈O12〉12 = 〈ψ12|O1 ⊗ O2|ψ12〉 of all
local observables factorize:

〈O12〉12 = 〈O1 ⊗ I〉12 〈I⊗O2〉12 . (36)

Indeed, if |ψ12〉 = |ψ1〉 ⊗ |ψ2〉 the above equality clearly
holds. On the other hand, if the equality holds, by using

the Schmidt decomposition of |ψ12〉 =
∑

i λi|φ
(1)
i 〉⊗|φ(2)i 〉

and choosing O1 = |φ(1)i 〉〈φ(1)i |, O2 = |φ(2)j 〉〈φ(2)j | one
finds that only one Schmidt coefficient can be different
from zero. Instead, for distinguishable particles, the state
|ψ+〉 in (35) violates the above equality for O1 = |ψ1〉〈ψ1|
and O2 = |ψ2〉〈ψ2| and is thus entangled.

If the two particles are identical, they cannot be ad-
dressed individually; one has thus to refer to observables
that specify properties attributable to single particles
without specifying to which one of them. It therefore
follows that, in the case of two identical particles, appro-
priate single particle observables cannot be of the form
O ⊗ I or I⊗O, but of the symmetrized form

O ⊗ I + I⊗O . (37)

Consider the single-particle property described by the
one-dimensional projector |ψ〉〈ψ|; for two indistinguish-
able particles the property ”one particle is in the state
|ψ〉”, must then be represented by the symmetric projec-
tion (Ghirardi et al., 2002, 2004)

Eψ = |ψ〉〈ψ| ⊗
(

I− |ψ〉〈ψ|
)

+
(

I− |ψ〉〈ψ|
)

⊗ |ψ〉〈ψ|
+ |ψ〉〈ψ| ⊗ |ψ〉〈ψ| . (38)

Similarly, the projector corresponding to the two qubits
possessing two different properties |ψ1,2〉〈ψ1,2| must be
P symm12 = |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2| + |ψ2〉〈ψ2| ⊗ |ψ1〉〈ψ1|. If
〈ψ1|ψ2〉 = 0, then P symm12 = Eψ1

Eψ2
. It then follows that,

despite the formal entanglement of |ψ+〉, the factorization
of mean-values as in (36) still holds; indeed,

〈ψ+| Eψ1 |ψ+〉 = 〈ψ+| Eψ2 |ψ+〉 = 〈ψ+|P sym12 |ψ+〉 = 1 .
(39)

Therefore, from the particle point of view, namely of at-
tributable properties, the formally entangled state |ψ+〉
is indeed separable.

2. Mode entanglement

Basing on the attribution of properties to identical par-
ticles, the previous discussion is developed in first quan-
tization terms, namely using symmetrized states and ob-
servables. From the point of view of second quantization,
separability and entanglement are instead to be related to
the algebraic structure of Bose and Fermi systems rather
than to the possibility of attributing individual proper-
ties: this is the point of view usually adopted in the anal-
ysis of many-body systems, for which the primary object
of investigation are the algebras of operators rather than
their representations on particular Hilbert spaces (Brat-
teli and Robinson, 1987; Emch, 1972; Haag, 1992; Stroc-
chi, 1985, 2008a,b, 2012; Thirring, 2002).

In order to appropriately formulate the notion of en-
tanglement and non-locality in systems made of identical
particles, the leading intuition is that there is no a pri-
ori given tensor product structure, reminiscent of particle
identification, either in the Hilbert space or in the alge-
bra of observables. Therefore, questions about entangle-
ment and separability are meaningful only with reference
to specific classes of observables. Within this broader
context, entanglement becomes a caption for non-local
quantum correlations between observables exhibited by
certain quantum states (the original discussion can be
found in (Summers and Werner, 1985, 1987a,b); further
developments can be found in (Clifton and Halvorson,
2001; Halvorson and Clifton, 2000; Keyl et al., 2006,
2003; Moriya, 2006; Verch and Werner, 2005).

Polynomials in creation and annihilation operators can
be used to generate bosonic and fermionic algebras A
containing all physically relevant many-body observables.
Quite in general, physical states are given by positive and
normalized linear functionals ω : A → C associating to
any operator A ∈ A its mean value ω(A), such that pos-
itive observables A ≥ 0 are mapped to positive numbers
ω(A) ≥ 0 and ω(I) = 1. Typical instances of states
are the standard expectations obtained by tracing with
respect to a given density matrix ρ, ω(A) = Tr(ρA); no-
tice, however, that in presence of infinitely many degrees
of freedom, not all physically meaningful states, like, for
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instance, the thermal ones, can be represented by density
matrices (Narnhofer, 2004).

Within such an algebraic approach, one can study the
entanglement between observables of A with respect to
a state ω by considering algebraic bipartitions (Benatti
et al., 2010a, 2014a), namely any couple of subalgebras
(A1,A2) of A, having only the identity in common, A1∩
A2 = I, such that the linear span of products of their
operators generate the entire algebra A and

1. [A1 , A2] = 0 for all A1 ∈ A1 and A2 ∈ A2 in the
bosonic case;

2. [Ae1 , A2] = 0 for all even elements Ae1 ∈ Ae
1 and

for all A2 ∈ A2, and, similarly, [A1 , A
e
2] = 0 for all

even elements Ae2 ∈ Ae
2 and for all A1 ∈ A1, in the

fermionic case,

where the even elements Ae1,2 ∈ A1,2, are those remain-
ing invariant under the transformation of creation and
annihilation operators ϑ(a†i ) = −a†i and similarly for ai.
They generate the so-called even subalgebras Ae

1,2 ⊂ A
which contain the only fermionic operators accessible to
experiments.

These desiderata embody the notion of algebraic in-
dependence and generalize the tensor product structure
typical of the particle picture. Within this more general
context, an operator O is called (A1,A2)-local if of the
form O = A1A2, A1 ∈ A1 and A2 ∈ A2. Furthermore,
a state ω is called (A1,A2)-separable if the expectation
values of all (A1,A2)-local operators can be decomposed
into convex combinations of expectations:

ω(A1A2) =
∑

i

λk ω
(1)
k (A1)ω

(2)
k (A2) , (40)

in terms of other states ω
(1)
i , ω

(2)
i with λk > 0,

∑

i λk = 1;
otherwise, ω is called (A1,A2)-entangled 2.

In the standard case of bipartite entanglement for pairs
of distinguishable particles (Horodecki et al., 2009), en-
tangled states are all density matrices ρ which cannot be
written in the form

ρ =
∑

k

λk ρ
(1)
k ⊗ ρ

(2)
k , λk ≥ 0 ,

∑

k

λk = 1 , (41)

with ρ
(1)
k and ρ

(2)
k density matrices of the two parties.

That the algebraic definition reduces to the standard one
becomes apparent in the case of two qubits by choosing
the algebraic bipartition A1 = A2 = M2, where M2 is
the algebra of 2×2 complex matrices and the expectation
value ω(A1A2) = Tr (ρA1 ⊗A2).

2 This generalized definition of separability can be easily extended
to the case of more than two partitions; for instance, in the case
of an n-partition, Eq.(40) would extend to ω(A1A2 · · ·An) =
∑

k
λk ω

(1)
k

(A1)ω
(2)
k

(A2) · · ·ω
(n)
k

(An).

Henceforth, we shall focus on many-body systems,
whose elementary constituents can be found in M differ-
ent states or modes described by a discrete set of anni-
hilation and creation operators {ai, a†i}i∈I ; this is a very
general framework, useful for the description of physi-
cal systems in quantum optics, in atomic and condensed
matter physics. A bipartition of the M-mode algebra A
associated with the system can then be easily obtained
by considering two disjoint sets {ai, a†i | i = 1, 2, . . . ,m}
and {aj , a†j | j = m+ 1,m+ 2, . . . ,M}, M being possibly
infinite. The two sets form subalgebras A1,2 that indeed
constitute an algebraic bipartition of A; in practice, it is
determined by the integer 0 < m <M.

As for distinguishable particles, the case of pure states
states is easier. Pure states in the algebraic context 3 cor-
respond to those expectations on A that cannot be writ-
ten as convex combinations of other expectations. For
them the separability condition (40) simplifies: one can
indeed prove (Benatti and Floreanini, 2016) that pure
states ω on A are separable with respect to a given bi-
partition (A1,A2) if and only if

ω(A1A2) = ω(A1)ω(A2) , (42)

for all local operators A1A2. In other terms, separable
pure states are just product states satisfying the factor-
ization property (36) that holds for pure states of bipar-
tite systems of distinguishable particles.

B. Mode entanglement and metrology: bosons

The differences between mode-entanglement and stan-
dard entanglement are best appreciated in the case of
N bosons that can occupy M different modes; this is a
very general situation encountered, for instance, in ul-
tracold gases consisting of bosonic atoms confined in a
multiple site optical lattices. These systems turn out
to be a unique laboratory for studying quantum effects
in many-body physics, e.g. in quantum phase transi-
tion and matter interference phenomena, and also for
applications in quantum information (e.g. see (Cronin
et al., 2009; Gerry and Knight, 2005; Giorgini et al., 2008;
Haroche and Raimond, 2006; Inguscio et al., 2006; Köhl
and Esslinger, 2006; Leggett, 2006; Pethick and Smith,
2004; Pitaevskii and Stringari, 2003; Yukalov, 2009), and
references therein).

The algebra A is in this case generated by creation and
annihilation operators a†i , ai, i = 1, 2, . . . ,M, obeying

the commutation relations, [ai, a
†
j ] = δij . The reference

state ω is given by the expectations with respect to the

3 In the algebraic descripiton, Hilbert spaces are a byproduct of
the algebraic structure and of the expectation functional (state)
defined on it (Bratteli and Robinson, 1987).
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vacuum state |0〉, ai|0〉 = 0 for all 1 ≤ i ≤ M, so that
the natural states whose entanglement properties need be
studied are vectors in the Fock Hilbert space H spanned
by the many-body Fock states

|n1, n2, . . . , nM〉 =

=
1√

n1!n2! · · ·nM!
(a†1)n1 (a†2)n2 · · · (a†M )nM |0〉 , (43)

or density matrices acting on it.

Given a bipartition (A1,A2) defined by two disjoint
groups of creation and annihilation operators, any ele-
ment A1 ∈ A1, commutes with any element A2 ∈ A2,
i.e. [A1, A2] = 0.

In this framework, a necessary and sufficient condition
for pure states |ψ〉 to be separable with respect to a given
bipartition (A1, A2) is that they be generated by acting
on the vacuum state with (A1, A2)-local operators (Be-
natti et al., 2012a),

|ψ〉 = P(a†1, . . . , a
†
m) · Q(a†m+1, . . . , a

†
M

) |0〉 , (44)

where P, Q are polynomials in the creation operators
relative to the first m modes, the last M − m modes,
respectively. Pure states that can not be cast in the above
form are thus (A1, A2)-entangled.

When the state of the bosonic many-body system is not
pure, it can be described by a density matrix ρ, in general
not diagonal with respect to the Fock basis (43); since
density matrices form a convex set whose extremal points
are projectors onto pure states, one deduces that generic
mixed states ρ can be (A1, A2)-separable if and only if
they are convex combinations of (A1, A2)-separable one-
dimensional projections.

An interesting application of these general considera-
tions is given by a system of N bosons that can be found
in just two modes, M = 2. In the Bose-Hubbard ap-
proximation, N ultracold bosonic atoms confined in a
double-well potential can be effectively described in this
way. The two creation operators a†1 and a†2 generate out
of the vacuum bosons in the two wells, so that the Fock
basis (43) can be conveniently relabeled in terms of the
integer k counting the number of bosons in the first well:

|k,N − k〉 =
(a†1)k(a†2)N−k
√

k!(N − k)!
|0〉 , 0 ≤ k ≤ N . (45)

Furthermore, a1, a
†
1, respectively a2, a

†
2, generate two

commuting subalgebras A1 and A2 that, together, in
turn generate the whole algebra A; it is the simplest bi-
partition of the system one can obtain by means of the
operators a1, a

†
1 and a2, a

†
2.

Then, the states |k,N − k〉 are separable: this agrees
with the fact that they are created by the local operators
(a†1)k(a†2)N−k. Indeed, for any polynomial operator P1 ∈
A1 and P2 ∈ A2, the expectation value of the product

P1P2 is such that (compare with (42))

〈k,N − k|P1P2|k,N − k〉

=
1

k!(N − k)!
〈0|ak1 P1 (a†1)k|0〉 〈0|aN−k

2 P2 (a†2)N−k|0〉

= 〈k|P1|k〉 〈N − k|P2|N − k〉 , (46)

where |k〉 and |N − k〉 are single-mode Fock states. Con-
sequently, mixed spearable states must be diagonal with
respect to the Fock basis (45), i.e. density matrices of
the form (Benatti et al., 2010a):

ρ =

N∑

k=0

pk |k,N − k〉〈k,N − k| , pk ≥ 0 ,

N∑

k=0

pk = 1 .

(47)
Unlike P1P2, most observables of physical interest are

non-local with respect to the bipartition (A1,A2), i.e.

they are not of the form O = A1A2, with A1 ∈ A1 and
A2 ∈ A2. Prominent among them are those used in phase
estimation protocols based on ultra-cold atoms trapped
in double-well interferometers. Consider the generators
of the rotations satisfying the su(2) algebraic relations
[Ji, Jj ] = iεijk Jk, i, j, k = x, y, z. Among their possible
representations in terms of two-mode creation and anni-
hilation operators, let us focus upon the following one

Jx =
1

2

(
a†1a2 + a1a

†
2

)
, (48)

Jy =
1

2i

(
a†1a2 − a1a

†
2

)
, (49)

Jz =
1

2

(
a†1a1 − a†2a2

)
. (50)

Notice that, although the operators in (48), as well as the
exponentials eiθJx and eiθJy , are non-local with respect
to the bipartition (A1,A2), θ ∈ [0, 2π], the exponential
of Jz turns out to be local:

eiθJz = eiθa
†
1a1/2 e−iθa

†
2a2/2 , (51)

with eiθa
†
1a1/2 ∈ A1 and e−iθa

†
2a2/2 ∈ A2. By a linear

transformation, one can always pass to new annihilation
operators

b1 =
a1 + a2√

2
, b2 =

a1 − a2√
2

, (52)

and corresponding creation operators b†1,2, and rewrite
the three operators in (48) as

Jx =
1

2

(
b†1b1 − b†2b2

)
, (53)

Jy =
1

2i

(
b1b

†
2 − b†1b2

)
, (54)

Jz =
1

2

(
b1b

†
2 + b†1b2

)
. (55)

To bi, b
†
i , i = 1, 2 one associates the bipartition (B1,B2)

of A consisting of the subalgebras generated by b1, b
†
1,
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respectively b2, b
†
2: with respect to it, the exponential of

Jx becomes:

eiθJx = eiθb
†
1b1/2 e−iθb

†
2b2/2 , (56)

with eiθb
†
1b1/2 ∈ B1 and e−iθb

†
2b2/2 ∈ B2. This explicitly

shows that an operator, local with respect to a given
bipartition, can become non-local if a different algebraic
bipartition is chosen.

These considerations are relevant for metrological ap-
plications (see for instance (Boixo et al., 2009; Bollinger
et al., 1996; Bouyer and Kasevich, 1997; Caves, 1981;
Dorner et al., 2009; Dowling, 1998, 2008; Dunningham
et al., 2002; Giovannetti et al., 2004, 2011; Higgins
et al., 2007; Holland et al., 2002; Holland and Burnett,
1993; Kacprowicz et al., 2010; Kitagawa and Ueda, 1993;
Korbicz et al., 2005; Pezzè and Smerzi, 2009; Sanders
and Milburn, 1995; Sørensen et al., 2001; Tóth et al.,
2009; Uys and Meystre, 2007; Wang and Sanders, 2003;
Wineland et al., 1994; Yurke, 1986; Yurke et al., 1986)).
In fact, ultracold atoms trapped in a double-well optical
potential realize a very accurate interferometric device:
state preparation and beam splitting can be precisely
achieved by tuning the interatomic interaction and by
acting on the height of the potential barrier. The com-
bination of standard Mach-Zehnder type interferometric
operations, i.e. state preparation, beam splitting, phase
shift and subsequent beam recombination, can be effec-
tively described as a suitable rotation of the initial state
ρin by a unitary transformation (Sanders and Milburn,
1995; Yurke et al., 1986):

ρin 7→ ρθ = Uθ ρin U
†
θ , Uθ = eiθ Jn . (57)

The phase change is induced precisely by the operators
in (48) through the combination:

Jn ≡ nx Jx + ny Jy + nz Jz , n2x + n2y + n2
z = 1 . (58)

In practice, the state transformation ρin 7→ ρθ inside the
interferometer can be effectively modeled as a pseudo-
spin rotation along the unit vector n = (nx, ny, nz),
whose choice depends on the specific realization of the
interferometric apparatus and of the adopted measure-
ment procedure.

As discussed in Section I, in the case of distinguishable
particles, for any separable state ρsep the quantum Fisher
information is bounded by Iθ[ρin, Jn] ≤ cN where c is a
constant independent of N that can be taken as the max-
imum quantum Fisher information of a single system in
all components of the mixed separable state (see eq.(8))
(Fujiwara and Hashizumé, 2002; Giovannetti et al., 2006;
Pezzè and Smerzi, 2009). Then, entangled initial states
of distinguishable particles are needed in order to obtain
sub-shot-noise accuracies. A corresponding statement
was proven in (Benatti and Braun, 2013) for a system
of N indistinguishable bosons: The quantum Fisher

information with respect to a parameter θ imprinted
onto a (A,B)-separable state via a (A,B)-local unitary
operator of the form U(θ) = exp(iθ(A(a, a†) + B(b, b†)),
where A (respectively B) are hermitian functions of a, a†

(respectively b, b†), strictly vanishes. Hence, in order to
be able to estimate θ at all (and even more so to beat
the standard quantum limit in terms of the total number
of bosons), the separability of the input state or the
locality of the unitary operator that imprints θ on the
state need to be broken. Fortunately, mode non-locality
is easily achieved e.g. in quantum optics with a simple
beam-splitter, without any particle interactions (see
below).

In the case of the double-well system introduced above,
the operator algebras defined by a†1, a1 and a†2, a2, are
the natural ones. With respect to them, a balanced Fock
number state as in (45) of the form ρN/2 = |N2 , N2 〉〈N2 , N2 |
is separable. By choosing the vector n in the plane or-
thogonal to the z direction one computes Iθ

[
ρN/2, Jn

]
=

N2

2
+N , thus approaching the Heisenberg limit.

As a concrete example (Benatti and Braun, 2013),
consider the action of a beam-splitter described by the
unitary UBS(α) = exp(αa†1a2 − α∗a1a

†
2) involving two

modes. If the complex transparency parameter α = iθ/2,
with θ real, then UBS(α) = exp(iθJx). In the case of N
distinguishable qubits, a state as the balanced Fock num-
ber state |N2 , N2 〉 has half qubits in the state |0〉 and half
in the state |1〉 such that σz|i〉 = (−)i|i〉, i = 0, 1. Then,

Ji =

N∑

j=1

σ
(j)
i

2
with i ∈ {x, y, z} have zero mean values,

while the purity of ρN/2 yields Iθ[ρN/2, Jx] = 4 〈J2
x〉 = N ,

since

J2
x =

N

4
+

1

4

N∑

j 6=k=1

σ(j)
x σ(k)

x . (59)

Instead, in the case of indistinguishable bosonic qubits,
the mean values of Ji for all i ∈ {x, y, z} in (48) vanish,

while using (48), Iθ[ρN , Jx] = 4 〈J2
x〉 =

N2

2
+N .

Unlike in the case of distinguishable particles, the
quantum Fisher information can thus attain a value
greater than N even with initial states like ρN/2 that are
separable with respect to the given bipartition. As men-
tioned before, the rotation operated by the beam-splitter
is not around the z axis and is thus non-local with re-
spect to the chosen bipartition. From the point of view
of mode-entanglement, it is thus not the entanglement of
the states fed into the beam-splitter that helps overcom-
ing the shot-noise-limit in the transparency parameter
θ estimation accuracy; rather, the non-local character of
the rotations operated by the apparatus on initially sepa-
rable states allows σ(θest) to be smaller than 1/

√
N , with

the possibility of eventually reaching the Heisenberg 1/N
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limit (Benatti and Braun, 2013; Benatti et al., 2011).
Notice that, if one does not take into account the identity
of particles, the beam-splitter action in (56) is particle-
local according to the discussion at the beginning of sec-
tion A.1; indeed,

eiθJx =

N⊗

j=1

eiθσ
(j)
x /2 . (60)

Thus, a prior massive entanglement of the input state

|0〉 ⊗ · · · |0〉 ⊗ |1〉 ⊗ · · · |1〉 (61)

with k spins up, σz|0〉 = |0〉, and N − k spins down,
σz|1〉 = −|1〉, is needed.

Instead, if particle identity is considered, then the op-
erator in (60), is not particle-local since it cannot be
written as a product of symmetrized single particle oper-
ators (see (37) for the case N = 2). Furthermore, in the
formalism of first quantization, a Fock number state as
in (45) is represented in the symmetrized form (Benatti
and Braun, 2013)

1

N
∑

π

|0π(1)〉⊗ · · · |0π(k)〉⊗ |1π(k+1)〉⊗ · · · |1π(N)〉 , (62)

where the sum is over all possible permutations π of the
N indices and N =

√

N !k!(N − k)!. Despite its formally
entangled structure, such a state is the symmetrization
of a tensor product state with the first k particles in the
state |0〉 and the second N − k particles in the state |1〉.
Generalizing the argument briefly sketched in section A.1
in the case of two identical particles, individual properties
can then be attributed to each of its constituents. There-
fore, the state in (62) carries no particle-entanglement,
particle non-locality being instead provided by the par-
ticle non-local operator in (60).

Of course, returning to the second quantization
formalism, by changing bipartition from (A1,A2) to
(B1,B2) via equations (52), the action of the beam-
splitter, as outlined in (56), is local. In this bipartition,
the non-locality necessary for enhancing the sensitiv-
ity completely resides in the state. Therefore, the
mode-description, leaves the freedom to locate the
resources necessary to accuracy-enhancing either in the
entanglement of the state or in the non-locality of the
operations performed on it.

In (Benatti and Braun, 2013), also the paradigmatic
case of phase estimation in a Mach-Zehnder interfer-
ometer was considered with similar results: in the
mode-bipartition corresponding to the two modes after
the first beam-splitter, the phase shift operation in
one arm is a local operator. Hence, at that stage the
state must be mode-entangled to allow estimating the
phase shift with an accuracy better than the shot-noise

limit. However, under certain conditions the first beam-
splitter can generate enough mode-entanglement from a
mode-separable state fed into the two input ports of the
interferometer to beat the standard quantum limit. For
more general settings, the question of what scaling of
the quantum Fisher information can be achieved with
the number of indistinguishable bosons is still open.
Non-locality is partially attributed to operations like
beamsplitting instead of entirely to states, even in cases
when ”fluffy-bunny” entanglement is turned into useful
entanglement as discussed in (Killoran et al., 2014).

For massive bosons one might think that the ten-
sor product of Fock states is a very natural state: As
the boson-number is conserved at the energies consid-
ered, one cannot make coherent superpositions of differ-
ent numbers of atoms. However, in typical experiments,
one needs to average over many runs, and the real diffi-
culty consists in controlling the atom number with single-
atom precision from run to run (Demkowicz-Dobrzański
et al., 2014). One has therefore effectively a mixed state
with a distribution of different atom numbers. So far
the best experimentally demonstrated approximations to
Fock states with massive bosons are number-squeezed
states with a few dB of squeezing (Esteve et al., 2008;
Gross et al., 2010b; Riedel et al., 2010b). One may hope
that novel measurement techniques such as the quantum
gas microscope (Bakr et al., 2009) may enable precise
knowledge of boson numbers in the future and thus the
preparation of Fock states with a large number of atoms
at least in a post-selected fashion.

Recently, the authors of (Oszmaniec et al., 2016) used
concentration of measure techniques to investigate the
usefulness of randomly sampled probe states for unitary
quantum metrology. They show that random pure states
drawn from the Hilbert space of distinguishable particles
typically do not lead to super-classical scaling of preci-
sion. However, random states from the symmetric sub-
space, i.e. bosonic states, typically achieve the Heisenberg
limit, even for very mixed isospectral states. Moreover,
the quantum-enhancement is typically robust against the
loss of particles, in contrast to e.g. GHZ-states. It re-
mains to be seen how entangled these states are in the
sense of mode-entanglement, but independently of the
outcome of such an assessment, these results are in line
with the finding that the naturally symmetrized pure
states of bosons are a useful resource for quantum metrol-
ogy. The fact that certain bosonic states can lead to the
Heisenberg limit while mode entanglement does not play
any significant role has also been recently emphasized in
(Friis et al., 2015; Šafránek and Fuentes, 2016).

There are also metrological advantages achievable with
bosons that are beyond the context of “standard quan-
tum limit” versus “Heisenberg limit” scaling: In (Duiv-
envoorden et al., 2017) it was shown that by using a grid-
state (Gottesman et al., 2001) of a single bosonic mode,
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one can determine both amplitude and phase of a Fourier-
component of a small driving field that adds at most π/2
photons, or equivalently, both quadrature components
of the displacement operator of the state. Slightly bi-
ased estimators were found whose sum of mean-square
deviations from the true values scales as 1/

√
n with the

average number of photons n in the probe-state. A “com-
pass state” was proposed in (Zurek, 2001) that achieves
similar sensitivity for small displacements up to order
1/
√
n. These results should be contrasted with the lower

bound for any single-mode Gaussian state as a probe
state that is of order one, independent of n, and regard-
less the amount of squeezing. With two-mode Gaussian
states one can beat this constant lower bound, but then
the two modes must be necessarily entangled (Genoni
et al., 2013). It is possible that the result in (Duiven-
voorden et al., 2017) may still be improved upon with
other states, as in (Duivenvoorden et al., 2017) also a
lower bound for all single-mode probe states was found
that scales as 1/(2n+1). This is the same lower bound as
for arbitrary (in particular: entangled) two-mode Gaus-
sian states (Genoni et al., 2013).

C. Mode entanglement and metrology: fermions

As in the case of bosonic systems, we shall consider
generic fermionic many-body systems made of N elemen-
tary constituents that can occupy M different states or
modes, N < M. The creation a†i and annihilation ai
operators for mode i obey now the anticommutation re-
lations {ai , a†j} = δij and generate the fermion algebra
A, i.e. the norm closure of all polynomials in these opera-
tors. As already specified before, a bipartition (A1, A2)
of this algebra is the splitting of the collection of cre-
ation and annihilation operators into two disjoint sets.
The Hilbert space H of the system is again generated
out of the vacuum state |0〉 by the action of the creation
operators; it is spanned by the many-body Fock states,

|n1, n2, . . . , nM〉 = (a†1)n1 (a†2)n2 · · · (a†
M

)nM |0〉 , (63)

where the integers n1, n2, . . . , nM are the occupation
numbers of the different modes, with

∑

i ni = N ; they
can now take only the two values 0 or 1.

As already clear from the definition of fermionic alge-
braic bipartitions, because of the anti-commutation re-
lations, in dealing with fermions, one must distinguish
between even and odd operators. While the even com-
ponent Ae of A consists of elements Ae ∈ A such that
ϑ(Ae) = Ae, the odd component Ao of A consists of
those elements Ao ∈ A such that ϑ(Ao) = −Ao. Even el-
ements of A commute with all other elements, while odd
elements commute only with even ones.

The anticommuting character of the fermion algebra
A puts stringent constraints on the form of the fermion
states that can be represented as product of other states,

like the ones appearing in the decomposition (40) that
defines separable states. Specifically, as a consequence
of the result in (Araki and Moriya, 2003), any product

ω
(1)
k (A1)ω

(2)
k (A2) vanishes whenever A1 and A2 both be-

long to the odd components of their respective subalge-
bras. Then, given a mode bipartition (A1,A2) of the
fermionic algebra A, i.e. a decomposition of A in the
subalgebra A1 generated by the first m modes and the
subalgebra A2, generated by the remaining M−m ones, it
follows that the decomposition (40) is meaningful only for
local operators A1A2 for which [A1, A2] = 0, so that the
definition of separability it encodes is completely equiv-
alent to the one adopted for bosonic systems.

As a further consequence of the result in (Araki and
Moriya, 2003), one derives that if a state ω is non vanish-
ing on a local operator Ao1A

o
2, with the two components

Ao1 ∈ Ao
1, Ao2 ∈ Ao

2 both belonging to the odd part of
the two subalgebras, then ω is entangled with respect to
the bipartition (A1,A2). Indeed, if ω(Ao1A

o
2) 6= 0, then

ω cannot be written as in (40), and therefore cannot be
separable.

Using these results, as for the bosonic case, one shows
that (Benatti et al., 2014a), given a bipartition of the
fermionic algebra A determined by the integer m, a pure
state |ψ〉 results separable if and only if it can be written
in the form (44). Examples of pure separable states of N
fermions are the Fock states in (63); indeed, they can be
recast in the form

|k1, . . . , km; pm+1, . . . , pM〉 (64)

=
[

(â†1)k1 · · · (â†m)km
]

×
[

(â†m+1)pm+1 · · · (â†
M

)pM
]

|0〉 ,

where the P and Q appearing in (44) are now monomials
in the creation operators of the two partitions.

Concerning the metrological use of fermionic systems,
the situation may appear more problematic than with
bosons, for each mode can accommodate at most one
fermion; therefore, the scaling with N of the sensitivity
in the estimation of physical parameters may worsen. In-
deed, while a two-mode bosonic apparatus, as a double-
well interferometer, filled with N particles is sufficient to
reach sub shot-noise sensitivities, with fermions, a multi-
mode interferometer is needed in order to reach compa-
rable sensitivities (for the use of multi-mode interferome-
ters see, for instance (Cooper et al., 2009; D’Ariano et al.,
1998; D’Ariano and Paris, 1997; Söderholm et al., 2003;
Vourdas and Dunningham, 2005), and (Cooper et al.,
2012) in the fermionic case). As an example, consider a
system of N fermions in M modes, with M even, and
let us fix the balanced bipartition (M/2,M/2), in which
each of the two parts contain m = M/2 modes, taking
for simplicity N ≤ m. As generator of the unitary trans-
formation ρ → ρθ inside the measuring apparatus let us
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take the following operator:

J =
1

2

m∑

k=1

ωk

(

a†kam+k + a†m+kak

)

, (65)

where ωk is a given spectral function, e.g. ωk ≃ kp,
with p positive. The apparatus implementing the above
state transformation is clearly non-local with respect to
the chosen bipartition: eiθJ can not be written as the
product A1A2 of two components made of operators A1

and A2 belonging only to the first, second partition, re-
spectively. It represents a generalized, multimode beam
splitter, and the whole measuring device behaves as a
multimode interferometer.

Let us feed the interferometer with a pure initial state,
ρ = |ψ〉〈ψ|,

|ψ〉 = | 1, . . . , 1
︸ ︷︷ ︸

N

, 0, . . . , 0
︸ ︷︷ ︸

m−N

; 0, . . . , 0
︸ ︷︷ ︸

m

〉 = a†1a
†
2 · · · a†N |0〉 ,

(66)
where the fermions occupy the first N modes of the first
partition; |ψ〉 is a Fock state and therefore it is separable,
as already discussed. The quantum Fisher information
can be easily computed (Benatti et al., 2014a)

Iθ
[
ρ,J

]
=

N∑

k=1

ω2
k . (67)

Unless ωk is k-independent, Iθ
[
ρ,J

]
is larger than N and

therefore the interferometric apparatus can beat the shot-
noise limit in θ-estimation, even starting with a separable
state. Actually, for ωk ≃ kp, one gets: Iθ

[
ρ,J

]
≃ N2p+1,

reaching sub-Heisenberg sensitivities with a linear device.
Note that this result and the ability to go beyond the
Heisenberg limit is not a “geometrical” phenomenon at-
tributable to a phase accumulation even on empty modes
(D’Ariano and Paris, 1997); rather, it is a genuine quan-
tum effect, that scales as a function of the number of
fermions, the resource available in the measure.

Again, as in the bosonic case, it is not the entanglement
of the initial state that helps overcoming the shot-noise-
limit in the phase estimation; rather, it is the non-local
character of the rotations operated by the apparatus on
an initially separable state that allows one beating the
shot-noise limit.

IV. MORE GENERAL HAMILTONIANS

A. Non-linear Hamiltonians

Most discussions of quantum-enhanced measurements
consider, implicitly or explicitly, evolution under a
Hamiltonian that is linear in a collective variable of the
system. For illustration, consider Ramsey spectroscopy
on a collection of N atoms with ground and excited states

|g〉, |e〉, respectively. If these have energies ±~ω/2, then
the Hamiltonian giving rise to the Ramsey oscillation is

H = ~ωSz ≡ ~ω
N∑

i=1

s(i)z (68)

where sz ≡ 1
2 (|e〉〈e| − |g〉〈g|) is a pseudo spin-1/2 op-

erator describing the transition and the superscript (i)

indicates the i-th atom. This Hamiltonian is mani-
festly linear in Sz, and can be trivially decomposed into

micro-Hamiltonians H =
∑

i h
(i) ≡ ∑

i ~ωs
(i)
z that de-

scribe the uncoupled precession of each atom in the en-
semble. For a single Ramsey sequence of duration T ,
so that the unknown parameter is θ = ωT , the Stan-
dard Quantum Limit and Heisenberg-limit sensitivities
are as described in Section I, Var(θest)SQL = N−1 and
Var(θest)HL = N−2. The assumption of uncoupled parti-
cles is often physically reasonable, for example when de-
scribing photons in a linear interferometer or low-density
atomic gases for which collisional interactions can be
neglected. In other systems, including Bose-Einstein
condensates (Gross et al., 2010a; Riedel et al., 2010a),
laser interferometers at high power (Aasi et al., 2013;
The LIGO Scientific Collaboration, 2011), high-density
atomic magnetometers (Dang et al., 2010; Kominis et al.,
2003; Shah et al., 2010; Vasilakis et al., 2011) and high-
density atomic clocks (Deutsch et al., 2010), the assump-
tion of uncoupled particles is unwarranted. This moti-
vates the study of nonlinear Hamiltonians.

The unusual features of nonlinear Hamiltonians are
well illustrated in the following example (Boixo et al.,
2008b). First, define the collective operator S0 ≡
∑

i s
(i)
0 ≡ ∑

i 1
(i), where 1 indicates the identity oper-

ator. S0 is clearly the total number of particles. Now
consider the nonlinear Hamiltonian

H = ~ΩS0Sz = ~Ω
N∑

i=1

N∑

j=1

s
(i)
0 s(j)z . (69)

This is linear in the unknown Ω, but of second order
in the collective variables S. At the microscopic level,
the Hamiltonian describes a pair-wise interaction, with

energy ~Ωs
(i)
0 s

(j)
z , between each pair of particles (i, j).

For a system with a fixed number N of particles, the
consequence for the dynamics of the system is very sim-
ple: the operator S0 can be replaced by its eigenvalue N ,
leading to an effective Hamiltonian

HN = ~NΩSz. (70)

Estimation of the product NΩT = NΘ now gives the
same uncertainties that we saw earlier in the estima-
tion of θ. That is, Var(NΘest)SQL = N−1 so that
Var(Θest)SQL = N−3. Similarly, Var(Θest)HL = N−4.
More generally, a nonlinear Hamiltonian containing k-
order products of collective variables will contain Nk mi-
croscopic interaction terms that contribute to the Hamil-
tonian and thus to the rate of change of an observable
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such as Sz under time evolution. In contrast, the variance
of such a macroscopic observable, e.g. Var(Sz), scales as
N1 (Standard Quantum Limit) or N0 (Heisenberg-limit).
This allows signal-to-noise ratios scaling as N2k−1 (Stan-
dard Quantum Limit) and as N2k (Heisenberg-limit)
(Boixo et al., 2007). These noise terms depend only on
the size of the system and nature of the initial state but
not on the Hamiltonian (Boixo et al., 2007).

That nonlinearities lead to improved scaling of the sen-
sitivity appears to have been independently discovered
by A. Luis and J. Beltrán (Beltrán and Luis, 2005; Luis,
2004, 2007) and by S. Boixo and co-workers (Boixo et al.,
2008a,b, 2007; Datta and Shaji, 2012). A related pro-
posal using interactions to give a scaling σ(θest) ∝ 2−N

is described in (Roy and Braunstein, 2008).

Prior to the appearance of these results, the term
“Heisenberg limit,” which was introduced into the lit-
erature by (Holland and Burnett, 1993) in the context
of interferometric phase estimation with the definition
σ(φest) = 1/N , had been used, often indiscriminately, to
describe 1) the sensitivity σ(φest) = 1/N , 2) the scaling
σ(φest) ∝ 1/N , 3) the best possible sensitivity with N
particles, and 4) the best possible scaling with N parti-
cles (Giovannetti et al., 2004, 2006, 2011). Clearly these
multiple definitions are not all compatible in a scenario
with a nonlinear Hamiltonian. Taking as a definition “er-
ror . . . bounded by the inverse of the physical resources,”
and implicitly considering scaling, (Zwierz et al., 2010)
(see also (Zwierz et al., 2011) ) showed that an appropri-
ate definition for “physical resource” is the query com-
plexity of the system viewed as a quantum network.

For the simplest optical nonlinearity, θ ∝ N2 and
quadrature detection, it has been shown that quadrature
squeezed states are near-optimal (Maldonado-Mundo
and Luis, 2009). Considering the same nonlinearity and
limiting to classical inputs, i.e. coherent states and mix-
tures thereof, it is argued in (Rivas and Luis, 2010) that
non-linear strategies can out-perform linear ones by con-
centrating the available particles in a small number of
high-intensity probes. (Tilma et al., 2010) analyzed a
variety of entangled coherent states for nonlinear inter-
ferometry of varying orders, and found that in most cases
entanglement degraded the sensitivity for high-order non-
linearities. (Berrada, 2013) considered the use of two-
mode squeezed states as inputs to a non-linear interfer-
ometer, including the effects of loss, and showed a robust
advantage for such states.

As already mentioned in Section I.C, the above results
concern local measures implying some prior knowledge of
the parameter being estimated. The situation for global
measures without prior information is considered in (Hall
and Wiseman, 2012).

B. Proposed experimental realizations

A number of physical systems have been proposed for
nonlinear quantum-enhanced measurements: Propaga-
tion through nonlinear optical materials (Beltrán and
Luis, 2005; Luis, 2004, 2007), collisional interactions in
Bose-Einstein condensates (Boixo et al., 2009), Duff-
ing nonlinearity in nanomechanical resonators (Woolley
et al., 2008), and nonlinear Faraday rotation probing of
an atomic ensemble (Napolitano and Mitchell, 2010).

1. Nonlinear optics

The first proposals concerned nonlinear optics (Beltrán
and Luis, 2005; Luis, 2004, 2007), in which a nonlinear
optical susceptibility is directly responsible for a phase-
shift θ ∝ Nk, where k is the order of the nonlinear contri-
bution to the refractive index. In the simplest example,
(Beltrán and Luis, 2005) showed that an input coherent
state |α〉, experiencing a Kerr-type nonlinearity described
by the unitary exp[iΘ(a†a)2], and detected in quadrature
X = 1√

2
(a+ a†), gives an outcome distribution

P (X = x|Θ) = |〈x|eiΘ(a†a)2 |α〉|2. (71)

If we consider the case of small Θ, imaginary α =
i
√

〈N〉, and the estimator Θest = X̄/|∂X̄/∂θ|, where

X̄ ≡ ∑M
i=1Xi is the mean of the observed quadratures,

we find the standard deviation

σ(Θest) =
σ(X)√

M |d〈X〉/dΘ|
=

σ(X)√
M |〈[X, (a†a)2]〉|

(72)

=
1

4M1/2N−3/2
. (73)

Here we have used σ(X) = 1/
√

2 for the quantum me-
chanical uncertainty of X in the initial state, and which
up to corrections of order Θ2 holds also for the evolved
state when Θ is small. For large N , this strategy sat-
urates the quantum Cramér-Rao bound; the quantum
Fisher information is straightforwardly calculated to be
IΘ = 4N + 24N2 + 16N3.

2. Ultra-cold atoms

Coherent interaction-based processes are well devel-
oped in Bose-Einstein condensates and have been used
extensively for squeezing generation. For example, a con-
fined two-species Bose-Einstein condensate experiences
collisional energy shifts described by an effective Hamil-
tonian

Heff ∝ a11n1(n1 − 1) + 2a12n1n2 + a22n2(n2 − 1)(74)

= (a11 − 2a12 + a22)S2
z + 2(a11 − a22)SzS0

+terms in Sz, S0 (75)
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where Sz ≡ 1
2 (n1 − n2) and S0 ≡ 1

2 (n1 + n2) are pseudo-
spin operators, n1 and n2 are the number of atoms of
species 1 and 2, respectively, and aij are the collisional
scattering lengths. In 87Rb, and with |1〉 ≡ |F = 1,m =
−1〉, |2〉 ≡ |F = 2,m = 1〉, the scattering lengths (near
zero magnetic field) have the ratio a11 : a12 : a22 = 1.03 :
1 : 0.97. A proven method to generate spin squeezing in
this system is to increase a12 using a Feshbach resonance
to give the single-axis twisting Hamiltonian Heff ∝ S2

z

(Muessel et al., 2014), plus terms proportional to Sz and
S0, which induce a global rotation and a global phase
shift, respectively.

It was observed in (Boixo et al., 2008a) that the zero-
field scattering lengths naturally give a11−2a12+a22 ≈ 0,
making small the coefficient of S2

z and leaving the S0Sz
term as the dominant nonlinear contribution. Detailed
analyses of the Bose-Einstein condensate physics beyond
the simplified single-mode treatment here are given in
(Boixo et al., 2009, 2008b; Tacla and Caves, 2013). The
strategy gives N−3/2 scaling for estimation of the relative
scattering length a11 − a22. (Mahmud et al., 2014) de-
scribe a strategy of dynamical decoupling to suppress the
second-order terms in the Hamiltonian and thus make
dominant three-body interactions, giving a sensitivity
scaling of N−5/2 for measurements of three-body colli-
sion strengths.

3. Nano-mechanical oscillators

(Woolley et al., 2008) propose a nonlinear interferome-
ter using two modes of a nano-mechanical oscillator, with
amplitudes xa and xb, experiencing the nonlinear Hamil-
tonian

Heff = H
(a)
SHO +H

(b)
SHO +

1

4
χamω

2x4a +
1

4
χbmω

2x4b + C(t)

(76)
where HSHO indicates the simple harmonic oscillator
Hamiltonian, χ is the Duffing nonlinearity coefficient,
ω is the low-amplitude resonance frequency, and C is
an externally-controlled coupling between modes a and b
that produces a beam-splitter interaction. With an inter-
ferometric sequence resembling a Mach-Zehnder interfer-
ometer, the Duffing nonlinearity can be estimated with
uncertainty scaling as N−3/2, where N is the number of
excitations.

4. Nonlinear Faraday rotation

Whereas Luis and co-workers considered phenomeno-
logical models of optical nonlinearities, (Napolitano and
Mitchell, 2010) describes an ab-initio calculation of the
optical nonlinearity produced on a particular atomic
transition, using degenerate perturbation theory and a
collective quantum variable description. This gives an ef-

fective Hamiltonian for the interaction of polarized light,
described by the Stokes operators S, with the collective
orientation and alignment spin variables J of an atomic
ensemble:

Heff = H
(2)
eff +H

(4)
eff +O(S3) (77)

H
(2)
eff = α(1)SzJz + α(2) (SxJx + SyJy) (78)

H
(4)
eff = β

(0)
J Sz

2J0 + β
(0)
N Sz

2NA + β(1)S0SzJz

+β(2)S0(SxJx + SyJy). (79)

where the α and β coefficients are linear and non-linear
polarizabilities that depend on the detuning of the
probe photons from the atomic resonance. By proper
choice of detuning and initial atomic polarization J, the
term β(1)S0SzJz can be made dominant, making the
Hamiltonian formally equivalent to that of Eq. (69).
Note that β(1)Jz, proportional to the atomic polarization
Jz, plays the role of the unknown interaction energy
~Ω. The photons are thus made to interact, mediated
by and proportional to the atomic polarization Jz.
For a different detuning, the term α(1)SzJz becomes
dominant, allowing a linear measurement of the same
quantity Jz with the same atomic system.

The experimental realization using a cold, optically-
trapped 87Rb atomic ensemble is described in (Napoli-
tano et al., 2011). The experiment observed the predicted
scaling of Var(Jz) ∝ N−3 over a range of photon numbers
from N = 5× 105 to 5× 107. For larger photon numbers
the scaling worsened, i.e. Var(Jz(N)) had a logarithmic
derivative > −3. Due to this limited range of the N−3

scaling, and the difference in pre-factors β(1) versus α(1),
the nonlinear estimation never surpassed the sensitivity
Var(Jz) of the linear measurement for the same number
of photons. Nonetheless, due to a shorter measurement
time τ , the nonlinear measurement did surpass the lin-
ear measurement in spectral noise density Var(Jz)τ , a
common figure of merit for time- or frequency-resolved
measurements.

C. Observations and commentary

Several differences between linear and nonlinear strate-
gies, perhaps surprising, deserve comment.

First, it should be obvious that there is no conflict
with the Heisenberg uncertainty principle. θ and Θ are
parameters, not observables, and as such are not sub-
ject to operator-based uncertainty relations, neither the
Heisenberg uncertainty principle nor generalizations such
as the Robertson uncertainty relation (Robertson, 1929).
Moreover, the advantageous scaling in δΘ is the result of
a rapidly-growing signal, rather than a rapidly decreasing
statistical noise. A nonlinear Hamiltonian immediately
leads to a strong change in the scaling of the signal: even
the simplest k = 2 nonlinearity gives signal growing as
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ω ∝ N2 and thus Standard Quantum Limit uncertainty
(δΘ)SQL ∝ N−3/2, which scales faster with N than does
(δθ)HL ∝ N−1.

Second, the estimated phases θ and Θ necessarily re-
flect different physical quantities. ~ω describes a single-
particle energy such as that due to an external field,
whereas ~Ω describes a pair-wise interaction energy. As
such, the uncertainties δθ and δΘ are not directly com-
parable. Any comparison of the efficacy of the measure-
ments must introduce another element, a connection be-
tween a third physical quantity, θ, and Θ. This we have
seen in Section IV.B.4, where the unknown Jz appears
in both the linear and nonlinear Hamiltonians. In what
follows, we describe an optimized linear/nonlinear com-
parison.

D. Nonlinear measurement under number-optimized

conditions

A more extensive study of nonlinear spin measure-
ments, using the same system as (Napolitano et al., 2011)
is reported in (Sewell et al., 2014). This work compared
two estimation strategies, one linear and one non-linear,
for measuring the collective variable Jy, which describes a
component of the spin alignment tensor used in a style of
optical magnetometry known as alignment-to-orientation
conversion (Budker et al., 2000; Pustelny et al., 2008;
Sewell et al., 2012). The linear estimation used the term
α(2)SyJy, which appears in Eq. (78) and produces a ro-
tation from linearly polarized light toward elliptically-
polarized light. The nonlinear estimation in contrast
used Eq. (78) in second order: in the first step, due to the
α(2)SxJx term and the input Sx optical polarization, an
initial Jy atomic polarization is rotated toward Jz by an
angle φ ∝ 〈Sx〉, and thus ∝ N , where N is the number of
photons. In the second step, the term α(1)SzJz produces
a Faraday rotation, i.e. from Sx toward Sy, by an angle
proportional to the Jz polarization produced in the first
step. The resulting Sy polarization is Sy ∝ JyN

2, while
the statistical noise is σ(Sy) ∝ N1/2, giving sensitivity
scaling σ(Jy) ∝ N−3/2. Importantly, the two estimation
strategies use the same Sx-polarized input, and thus have
identical statistical noise and cause identical damage in
the form of spontaneous scattering, which adds noise to
the atomic polarization.

The experimentally-observed nonlinear sensitivity was
compared against the calculated ideal sensitivity of the
linear measurement. Owing to its faster scaling, and
more favorable pre-factors than in (Napolitano et al.,
2011), the nonlinear measurement’s sensitivity surpassed
that of the ideal linear measurement at about 2 × 107

photons. A comparison was also made when each mea-
surement was independently optimized for numberN and
detuning, which affects both the pre-factors α and the
scattering. The ability to produce measurement-induced

spin-squeezing was taken as the figure of merit, and
the fully-optimized nonlinear measurement gave more
squeezing than the fully-optimized linear measurement.
This shows that for some quantities of practical inter-
est, a nonlinear measurement can out-perform the best
possible linear measurement. Similar conclusions have
been drawn for the case of number-optimized saturable
spectroscopy (Mitchell, 2017).

E. Signal amplification with nonlinear Hamiltonians

The single-axis twisting Hamiltonian Htwist = χS2
z , in

addition to producing spin squeezed states, has been pro-
posed as a nonlinear amplifier to facilitate state readout
in atom interferometry (Davis et al., 2016). Starting from
an x-polarized coherent spin state |x〉, and defining the
unitary U ≡ exp[−iHtwistτ/~], the Wigner distribution
of the squeezed state U |x〉 is thin in the z direction, and
is thus sensitive to rotations Ry(φ) about the y-axis, so
that states of the form Ry(φ)U |x〉 have large quantum
Fisher information with respect to φ. Exploitation of this
in-principle sensitivity is challenging, however, because
it requires low-noise readout, detecting Sz at the single-
atom level if the Heisenberg limit is to be approached.
In contrast, a sequence that applies Htwist, waits for ro-
tation about the y-axis and then applies −Htwist for an
equal time generates the state U †Ry(φ)U |x〉. Because U†

is unitary, the quantum Fisher information is unchanged,
but the perturbation implied by Ry(φ) now manifests it-
self at the scale of the original coherent spin state, which
is to say it is amplified from the Heisenberg-limit scale up
to the Standard Quantum Limit scale, greatly facilitat-
ing detection. Implementations include a cold-atom cav-
ity QED system (Hosten et al., 2016) and Bose-Einstein
condensates (Linnemann et al., 2016). While this strat-
egy clearly uses entanglement, it is nonetheless striking
that un-doing the entanglement-generation step provides
an important benefit.

F. Other modifications of the Hamiltonian

The assumption of a Hamiltonian H =
∑N
k=1 hk con-

sidered for the derivation of eq.(1), where Λ and λ are the
largest and smallest eigenvalues of hk, respectively, not
only implies distinguishable subsystems, it is also restric-
tive in two other important regards: a.) The existence
of such bounds on the spectrum of hk may not be war-
ranted, and b.) interactions between the subsystems are
excluded. In this section we explore the consequences of
lifting these restrictions.
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1. Lifting spectral limitations

A large portion of the work on quantum-enhanced
measurements stems from quantum optics, where
the basic dynamical objects are modes of the
e.m. field, corresponding to simple harmonic oscil-
lators, hk = ~ωk(nk + 1/2). A phase shift in mode k
can be implemented by U = exp(inkθ). Clearly, for
the relevant Hamiltonian hk = nk acting as generator
of the phase shift, Λ = ∞ and λ = 0. Hence, eq.(1)
would imply a minimal uncertainty Var(θest) = 0. Of
course, one may argue that in reality one can never use
states of infinite energy, such that there is effectively
a maximum energy. However, it need not be that the
maximum energy sustainable by the system must be
distributed over N modes. Indeed, what is typically
counted in quantum optics in terms of resources is not
the number of modes N , but the total number of photons
n, directly linked to the total energy. It turns out, that
the total number of modes (or subsystems, in general) is
completely irrelevant for achieving optimal sensitivity,
even if the parameter is coded in several modes or
subsystems, e.g. with a general unitary transformation
of the form U = exp(iθ

∑N
k=1 hk), if one can stock the

same amount of energy in a single system as in the total
system. Note that this is often the case in quantum
optics, where different modes can be spatially confined or
parametrically influenced by the same optical elements
such as mirrors, beam-splitters, and phase shifters whose
material properties ultimately determine the maximum
amount of energy that can be used.

To see the liberating effect of unbound spectra, recall
that for any initial pure state |ψ〉 propagated by a Hamil-
tonian of the form H = θG with a hermitian generator
G for a time T the quantum Fisher information is given
by (Braunstein and Caves, 1994; Braunstein et al., 1996)

Iθ = 4Var(G)T 2 ≡ 4(〈G2〉 − 〈G〉2)T 2 . (80)

Let G =
∑

i ei|i〉|〈i| be the spectral decomposition of

G, and |ψ〉 =
∑L
i=1 ci|i〉, where we assume that |1〉

(|L〉) are the states of lowest (largest) energy avail-

able. Then Var(G) =
∑L
i=1 pie

2
i − (

∑L
i=1 piei)

2 with

pi = |ci|2 and
∑L
i=1 pi = 1. The Popoviciu inequality

(Popoviciu, 1935) states Var(G) ≤ (eL − e1)2/4. It is
saturated for p1 = pL = 1/2, pi = 0 else. The state
|ψ〉 = (|1〉 + eiϕ|L〉)/

√
2 with an arbitrary phase ϕ

saturates the inequality and thus maximizes Iθ. If eL
or e1 is degenerate, only the total probability for the
degenerate energy levels is fixed to 1/2, and arbitrary
linear combinations in the degenerate subspace are
allowed. But the value of Var(G) remains unchanged
under such redistributions, and we may still choose just
two non-vanishing probabilities p1 = pL = 1/2. The
derivation did not make use of a multi-mode structure of

the energy eigenstates. Hence, exactly the same minimal
uncertainty of θest can be obtained by superposing the
ground state of a single mode with a Fock state of
given maximum allowed energy as with an arbitrarily
entangled multi-mode state containing components of
up to the same maximum energy.
For a specific example, consider phase estimation in a
Mach-Zehnder interferometer. It has N = 2 modes, and
a phase shift just in one of them, i.e. the relevant Hamil-
tonian is H = θn1. Adding energy conservation of the
two modes at the beam-splitters (i.e. the fact that the
accessible states are two-mode Fock states of the form
|n − n2, n2〉, where n2 with 0 ≤ n2 ≤ n is the number
of photons in the second mode), one immediately finds
that the optimal two mode state is (|n, 0〉 + |0, n〉)/

√
2,

i.e. the highly entangled N00N state (Boto et al., 2000).
However, we can achieve exactly the same variance
of G and hence sensitivity with the single-mode state
(|n〉+|0〉)/

√
2⊗ρ2, i.e. a product state where we keep the

second mode in any state ρ2. In both cases the maximum
energy of the first mode is n~ω (assuming ω1 = ω2 = ω),
and the average energy in the interferometer n~ω/2
(neglecting the vacuum energy ~ω/2). Hence, also
from the perspective of maximum energy deposit in the
optical components, there is no advantage in using two
entangled modes. If the Mach-Zehnder interferometer
is realized abstractly via Ramsey-pulses on N two-level
systems (states |0〉, |1〉) for the beam-splitters, and

a phase shift exp(iθJz), Jz =
∑N
i=1 σ

(i)
z /2, the state

that maximizes Var(Jz) is the (maximally entangled)
GHZ state (|0 . . . 0〉 + |1 . . . 1〉)/

√
2. But exactly the

same uncertainty can be obtained with a single spin-j
(j = N/2) in the state (|j, j〉 + |j,−j〉)/

√
2 (in the usual

|j,m〉 notation, where j is the total angular momentum
and m its z-component). Clearly, allowing as large a
spectrum for a single system as for the combined systems
makes entanglement entirely unnecessary here.

These considerations teach us that the relevant
quantity to be maximized is the quantum uncertainty
of the generator G. This can be understood in terms of
generalized Heisenberg uncertainty relations, in which
the generator G plays the quantity complementary to
θ, as was found early on (Braunstein et al., 1996). In
a multi-component system maximizing Var(G) may
be achieved with highly entangled states, but if the
spectral range of a single system admits the same
Var(G), there is no need for entanglement. If unbound
spectra are permitted, one can in fact do much better
than the Heisenberg-limit: In (Berry et al., 2015) the

single-mode state
√
3
2

∑∞
n=0 2−n|2n〉 was pointed out

that has diverging Var(n) with, at the same time finite
n̄. It therefore allows, at least in principle and in an
ideal setting, arbitrarily precise phase measurements
while using finite energy.
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In (Braun, 2011, 2012) a state of the form (|0〉 +
|2n〉)/

√
2 was found to be optimal for mass measurements

with a nano-mechanical oscillator given a maximum al-
lowed number of excitation quanta 2n and times much
larger than the oscillation period (for shorter times there
are contributions also from the dependence on frequency
of the energy eigenfunctions). The same state of a single
mode of the e.m. field is optimal for measuring the speed
of light (Braun et al., 2017). In both cases the quantum
uncertainties scale as 1/n (quantum Fisher information
proportional to n2), and obviously no entanglement is
needed. Of course, a state of the form (|0〉 + |2n〉)/

√
2

(called “half a N00N” state in (Braun, 2011)) is still
highly non-classical (see also (De Pasquale et al., 2015)).
In fact, already a single Fock state |n〉 is highly non-
classical, as is witnessed by its highly oscillatory Wigner
function (Schleich, 2001) with substantial negative parts.
The superposition (|0〉+ |2n〉)/

√
2 leads in addition to 2n

lobes in azimuthal direction that explain the sensitivity
of phase measurements ∝ n−1. Alternatively, one can use
superpositions of coherent states (Bimbard et al., 2010;
Braginsky et al., 1995; Lund et al., 2004; Neergaard-
Nielsen et al., 2006; Suzuki et al., 2006; Wakui et al.,
2007; Yukawa et al., 2013), i.e. ”Schrödinger-cat” type
states of the form (|α〉+ |−α〉)/

√
2. They have been cre-

ated in quantum optics with values of α = 0.79 in (Our-
joumtsev et al., 2006). In (Lund et al., 2004) a “breeding
method” based on weak squeezing, beam mixing with
an auxiliary coherent field, and photon detecting with
threshold detectors was proposed to achieve values up to
α ≤ 2.5, but the success probability has been found to
be too low for a realistic iterated protocol. An alterna-
tive based on homodyning was proposed in (Etesse et al.,
2014; Laghaout et al., 2013) and implemented in (Etesse
et al., 2015), leading to α ≃ 1.63. The current record in
the optical domain for “large” α appears to be α ≃

√
3,

achieved from two-mode squeezed vacuum and n-photon
detection on one of the modes (Huang et al., 2015). In
the microwave regime, superpositions of coherent states
with α =

√
7 have been generated, as well as superposi-

tion of coherent states with smaller phase differences with
up to 111 photons (Vlastakis et al., 2013). In (Monroe
et al., 1996) superpositions of coherent states of the vi-
brational motion of a 9Be+ ion in a one-dimensional trap
with α ≃ 3 were reported. Almost arbitrary superposi-
tions with a small number of photons can be generated
by using couplings of a mode with two-level systems that
can be tuned in and out of resonance, and a plethora of
methods for generating superpositions of coherent states
were proposed, but reviewing the entire literature of non-
classical states in general and even all the proposals for
generating superpositions of coherent states is beyond the
scope of the present review (see e.g. (Deléglise et al., 2008;
Gottesman et al., 2001; Hofheinz et al., 2009) and the
Nobel lectures of Serge Haroche and David J. Wineland

(Haroche, 2013; Wineland, 2013) for historical accounts
of the development of these fields and many more refer-
ences, as well as the literature citing (Montina and Arec-
chi, 1998) where superpositions of coherent states in a
Mach-Zehnder interferometer were studied with respect
to the limitations arising from imperfect photodetectors).

The use of superpositions of coherent states for metrol-
ogy was examined in (Gilchrist et al., 2004; Ralph,
2002) and it was found that the Heisenberg limit can
be reached. In (Montina and Arecchi, 1998) . superposi-
tions of coherent states in atom interferometers may even
exhibit quantum-enhanced sensitivity to parameters that
have have no classical analog. For example, in (Riedel,
2015) it was shown that monitoring the decoherence rate
of an superposition of atomic coherent states may un-
cover clues about so-far undetected particles that couple
softly (i.e. via weak momentum transfer, but not weakly)
to the atoms. This is reminiscent of previous ideas of
using decoherence as a sensitive probe (Braun and Mar-
tin, 2011). The decoherence rate can be detected with
sensitivity that is limited only by the spatial size of the
superposition, and the situation is quite similar to the
estimation of boson loss discussed in II.E.

2. Decoherence-enhanced measurements

Decoherence is arguably the most fundamental is-
sue that plagues quantum enhancements of all kinds,
and quantum enhanced measurements are no exception.
However, decoherence has interesting physical properties
which imply that it can also be useful for precision mea-
surements. This goes beyond the benefits of decoherence
and open system dynamics found as early as the late
1990s and the early 2000s, when it was realized that en-
tanglement can be created through decay processes or
more generally through coupling to common environ-
ments (Benatti et al., 2009, 2010b, 2003, 2008; Braun,
2002, 2005; Plenio et al., 1999), and, paradoxically, that
decoherence of quantum computations can be reduced by
rather strong dissipation that confines the computation
to a decoherence-free subspace through a Zeno-type effect
due to the rapid decay of states outside the decoherence-
free subspace (Beige et al., 2000a,b). Recently such ideas
have found renewed interest, and meanwhile techniques
have been proposed to create steady state entanglement
in driven open quantum systems, such as cold Rydberg
gases in the Rydberg-blockade regime (Lee et al., 2015).
It remains to be seen whether such stabilized entangled
states are useful for precision measurements.

Here, on the contrary, we focus on the dynamics cre-
ated by decoherence processes themselves. Decoherence
arises from an interaction with an environment described
by a non-trivial interaction Hamiltonian Hint =

∑

i SiBi
with a similar structure as the non-linear Hamiltonians
considered above, where in Hint, however, one distin-
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guishes operators Si pertaining to the system and others
(Bi) pertaining to the environment. The environment is
typically considered as heat bath with a large number of
degrees of freedom that may not be entirely accessible
(Benatti and Floreanini, 2005; Breuer and Petruccione,
2002; Weiss, 1999). In addition, system and heat bath
have their own Hamiltonian, such that the total Hamil-
tonian reads H = HS + HB + Hint. From simple model
systems it is known that decoherence tends to become
extremely fast for quantum superpositions of states that
differ macroscopically in terms of the eigenvalues of one
of the Si. For example it was shown that superposing
two Gaussian wave packets of a free particle in one di-
menson that is coupled through its position to a heat
bath of harmonic oscillators leads to decoherence times
that scale as powers of ~ that depend on how the wave
packets are localized in phase space: The shortest de-
coherence time, scaling as ~/|q1 − q2| results from wave
packets distinguished only by positions q1, q2, the longest
one ∼ ~

1/2/
√

|p1 − p2| from wave packets that differ only
in their mean momenta p1, p2, and an intermediate one
scaling as ~2/3/|(q1−q2)(p1−p2)|1/3. For systems of finite
Hilbert-space dimensions such as angular momenta, one
can often identify an effective ~ that scales like the inverse
Hilbert-space dimension which suggests that monitoring
the decoherence process can lead to highly sensitive mea-
surements, possibly surpassing the 1/

√
N scaling of the

Standard Quantum Limit.

That this intuition is correct was shown in (Braun
and Martin, 2011), where a method war proposed for
measuring the length of a cavity by monitoring the deco-
herence process of N atoms inside the cavity. The atoms
are initially prepared in a highly excited dark state,
in which destructive interference prevents them from
transferring their energy to a mode of the cavity with
which they are resonant. For example, if one has two

atoms coupling via an interaction (g1σ
(1)
− +g2σ

(2)
− )†+h.c.

to a mode of the cavity with annihilation operator a,
a state ∝ (1/g1)|10〉 − (1/g2)|01〉 of the atoms (where
|0〉 and |1〉 are the ground and excited states of the
atoms) is a dark state, also known as decoherence-free
state: the amplitudes of photon transfer from the two
atoms to the cavity cancel. However, the couplings gi
depend on the position of the atoms relative to the
cavity due to the envelope of the e.m. field. If the
cavity changes its length L with the atoms at fixed
positions, the gi change, such that the original state
becomes slightly bright. This manifests itself through
the transfer of atomic excitations to the mode of the
cavity, from where photons can escape and be detected
outside. In (Braun and Martin, 2011) it was shown that
through this procedure the minimal uncertainty with
which L can be estimated (according to the quantum
Cramér-Rao bound) scales as 1/N even when using
an initial product state of N/2 pairs of atoms. This
scaling applies both for a perfect cavity, and in the bad

cavity limit in which superradiance arises. Thus, at least
in principle, Heisenberg-limited scaling can arise here
without the need for an entangled state, and in spite
of the inherently decoherent nature of superradiance.
However, the prefactor matters also here: Superradiance
leads to a rapid decay of all states that are not dark,
such that the available signal and with it the prefactor
of the 1/N scaling law deteriorate rapidly with time.

Given the delocalized nature of the cavity mode in this
example, it is possible in principle to make the number
of atoms that interact with the mode arbitrarily large,
in contrast to the non-linear schemes above, for which
the interactions have to decrease if the total energy is to
remain an extensive quantity. But if the volume is kept
fixed the atoms will start to interact so that the simple
independent atom model of superradiance breaks down.
For even larger N one has to increase the size of the cav-
ity in order to accommodate all atoms. When the largest
possible density is reached, the volume will have to grow
∝ N , which implies coupling constants of the atoms to
the cavity that decay as 1/

√
N and leads back to Stan-

dard Quantum Limit scaling. In addition, the number of
atoms has to be macroscopic in order to compete with the
best classical sensitivities reached with interferometers
such as LIGO: Assuming that the prefactor in the 1/N -
scaling is of order one, one needs ∼ 1021 atoms for a min-
imal uncertainty of 10−21. A cubic optical lattice with
one atom every µm, the lattice would have to span 10m
in x, y, z-direction in order to accommodate that many
atoms. When using a diamond with regularly arranged
NV-centers every 10 nm (such dense samples have been
fabricated (Acosta et al., 2009)), one would still require
a cubic diamond of edge length 10cm. These examples
show that competing with the best classical techniques is
very challenging even if one can achieve Heisenberg-limit
scaling, as in classical protocols it is relatively easy to
scale up the number of photons, compensating thus for a
less favorable scaling with N .

3. Coherent averaging

There is nothing inherently quantum about the
1/
√
N scaling of the Standard Quantum Limit. Rather,

this behavior is a simple consequence of the central
limit theorem applied to N independently acquired
measurement results that are averaged as part of a
classical noise-reduction procedure. The idea of coherent
averaging is to replace the averaging by a coherent
procedure, in which the N probes all interact with a
central quantum system (a “quantum bus”). In the end
one measures the quantum bus or the entire system.

A simple example shows how this can lead to
Heisenberg-limit sensitivity without needing any
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entanglement: Consider N spins-1/2 interacting
with a central spin-1/2 with the Ising-interaction

Hint =
∑N
i=1 giσ

(0)
z ⊗σ(i)

z , where the index zero indicates
the central spin. The interaction commutes with the free

Hamiltonian of all spins Hs = ~
∑N
i=0 ωiσ

(i)
z , and we can

solve the time-evolution exactly, starting from the initial
product state |ψ(0)〉 = 1√

2
(|0〉0 + |1〉0) ⊗Ni=1 |0〉i.

At time t, the state has evolved to |ψ(t)〉 =
1√
2
(ei(ω0/2−Nḡ)t|0〉0 + e−i(ω0/2−Nḡ)t|1〉0) ⊗Ni=1 |0〉i,

up to an unimportant global phase factor. In par-
ticular, the state remains a product state at all

times. If we measure σ
(0)
x of the central spin, we find

〈σ(0)
x (t)〉 = cos((ω0−2Nḡ)t), i.e. the oscillation frequency

increases for large N proportional to N . As the quantum
fluctuations of the central spin are independent of N ,
this implies a standard deviation in the estimation of the
average coupling ḡ that scales as 1/N , which can be con-
firmed by calculating the quantum Fisher information.
Clearly, this is not an effect of entanglement, but simply
of a phase accumulation. In this respect the approach
is reminiscent to the sequential phase accumulation
protocols, in which the precision of a phase shift ϕ
measurement is enhanced by sending the light several
times through the same phase shifter (Higgins et al.,
2007). However, there the losses increase exponentially
with the number of passes, and the sequential nature
of the interaction leads to a bandwidth penalty that
is absent for the simultaneous interaction described by
Hint. In (Birchall et al., 2017) the exponential loss
of photons with the number of passes was taken into
account, and quantum Fisher information per scattered
photon optimized. It was found that when both probe
and reference beam are subject to photon loss, the
reduction of σ(ϕest) by a non-classical state compared to
an optimal classical multi-pass strategy is only at most
∼19.5%, and an optimal number of passes independent
of the initial photon number was found, resulting in a
loss of about 80% of all input photons. For a single-mode
lossy phase the possible sensitivity gain is even smaller.
Multi-pass microscopy was proposed in (Juffmann
et al., 2016a) and it was experimentally demonstrated
that at a constant number of photon sample inter-
actions retardance and transmission measurements
with a sensitivity beyond the single-pass shot-noise
limit could be achieved. Similar ideas are being de-
veloped for electron-microscopy (Juffmann et al., 2016b).

The fact that an interaction with N probes and a
central quantum bus can lead to Heisenberg-limit scaling
of the sensitivity was first found in (Braun and Martin,
2011), where a more general model was studied. It will
be noted that the total Hamiltonian has exactly the
same structure as for a decoherence model, with the N
probes playing the role of the original system, and the
bus the role of an environment. However, in contrast to

the standard scenario in decoherence, it is assumed here
that at least part of the “environment” is accessible. The
above example shows that the “environment” can be as
simple as a single spin-1/2. One can also extend the
model to include additional decoherence processes. In
(Braun and Martin, 2011) a phase-flip channel with rate
Γ on all spins was considered. It was found that phase
flips on any of the N probes has no effect, whereas phase
flip of the central spin introduces a prefactor that decays

exponentially as exp(−2Γt) with time in 〈σ(0)
x (t)〉. Since

the prefactor is independent of N the power-law scaling
of the sensitivity with N is unchanged, but it is clear
that the prefactor matters and leads to a sensitivity that
deteriorates exponentially with time.

The fact that the parameter estimated in the above
example is the interaction strength between the bus and
the N probes prevents a comparison with other schemes
that do not use interactions. In (Fräısse and Braun,
2015) a more comprehensive study of two different spin-
systems was undertaken where also parameters describ-
ing the probes themselves and the bus were examined.
Regimes of strong and weak interaction were analyzed,
and different initial states considered. The two models,
called ZZZZ and ZZXX models, are respectively given by
the Hamiltonians

H1 =
ω0

2
σ(0)
z +

ω1

2

N∑

i=1

σ(i)
z +

g

2

N∑

i=1

σ(0)
z σ(i)

z ,

H2 =
ω0

2
σ(0)
z +

ω1

2

N∑

i=1

σ(i)
z +

g

2

N∑

i=1

σ(0)
x σ(i)

x , (81)

where ~ = 1. The ZZZZ model is an exactly solvable de-
phasing model, the ZZXX can be analyzed numerically
and with perturbation theory. The analysis is simplified
when starting with a product state that is symmetric un-
der exchange of the probes, in which case the probes can
be considered as a single spin with total spin quantum
number j = N/2. It was found that for ω1, Heisenberg-
limit scaling can be achieved in the ZZXX model when
measuring the entire system, but not when only mea-
suring the quantum bus, and not for the ZZZZ model.
Heisenberg-limit scaling for the uncertainty of ω0 is not
possible in either model. For the interaction strength g,
Heisenberg-limit scaling is found for a large set of initial
states and range of interaction strengths when measur-
ing the entire system, but only for a small set of initial
states in the vicinity of the state considered in the simple
example above, when measuring only the quantum bus.
Interestingly, in the ZZZZ model Heisenberg-limit scal-
ing of the sensitivity for measuring g also arises with the
probes in a thermal state at any finite temperature, as
long as the quantum bus can be brought into an initially
pure state. This is reminiscent of the “power of one-
qubit” (Knill and Laflamme, 1998): With a set of qubits
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of which only a single one is initially in a pure state,
a quantum enhancement is already possible in quantum
computation, providing evidence for an important role of
quantum discord (Datta et al., 2005; Lanyon et al., 2008)
(see Sec. II.C). As detailed in Sec.II.C, the DQC1-scheme
can provide better-than-Standard Quantum Limit sensi-
tivity as soon as the ancillas have a finite purity. The
control qubit plays the role of the quantum bus, and the
dipole-dipole interaction between the Rydberg atoms im-
plements the XX-interaction considered in (Fräısse and
Braun, 2015).

An important limitation of such schemes was proven
in (Boixo et al., 2007; Fräısse and Braun, 2016), where
it was shown very generally that with a Hamiltonian
extension to an ancilla system the sensitivity of a phase
shift measurement cannot be improved beyond the best
sensitivity achievable with the original system itself.
Coherent averaging is nevertheless interesting, as it
allows one to achieve without injecting entanglement
better-than-Standard Quantum Limit sensitivity for
which the non-interacting phase shift measurement
would need a highly entangled state. In (Fräısse and
Braun, 2017) it was shown that for general parameter
dependent Hamiltonians H(θ) the largest sensitivity is
achieved if the eigenvectors of (d/dθ)H(θ) to the largest
and smallest eigenvalue are also eigenvectors of H(θ).
If these eigenvalues are non-degenerate, the condition
is also necessary. For a phase shift-Hamiltonian the
condition is obviously satisfied. This insight opens the
way to Hamiltonian engineering techniques by adding
parameter-independent parts to the Hamiltonian that
remove or overwhelm parts that spoil the commuta-
tivity of (d/dθ)H(θ) and H(θ) in the subspace of the
largest and smallest eigenvalues of (d/dθ)H(θ). These
techniques were called “Hamiltonian subtraction” and
“signal flooding”, respectively, and proposed to improve
magnetometry with NV-centers.

Another opportunity for Hamiltonian engineering
arises if the eigenvalues of H(θ) do not depend on
the parameter. It was shown in (Pang and Brun,
2014, 2016) that in such a case the quantum Fisher
information becomes periodic in time. This is partic-
ularly pernicious for quantum-enhanced measurement
schemes that allow long measurement times, as under
the condition of quantum coherence the quantum
Fisher information typically increases quadratically with
time if the eigenvalues of H(θ) depend on θ. Adding
another parameter-independent Hamiltonian might lead
to parameter-dependent eigenvalues and hence unlock
unbound increase of the quantum Fisher information
with time.

The existence of Heisenberg-limit scaling of sensitiv-
ities for product states, suggests that “coherent aver-
aging” might even be possible classically. This ques-

tion was investigated in (Braun and Popescu, 2014) in
a purely classical model of harmonic oscillators, in which
N “probe” oscillators interact with a central oscillator.
It was found that indeed for weak interaction strengths
a regime of Heisenberg-limit scaling of the sensitivity ex-
ists, even though the scaling crosses over to Standard
Quantum Limit scaling for sufficiently large N . Nev-
ertheless, it was proposed that this could be useful for
measuring very weak interactions, and notably improve
measurements of the gravitational constant.

4. Quantum feedback schemes

In the context of having probes interact with ad-
ditional (ancilla) systems, quantum feedback schemes
should be mentioned. This is a whole field by itself (see
e.g. (D’Alessandro, 2007; Serafini, 2012; Wiseman and
Milburn, 2009) for reviews). Quantum feedback general-
izes classical feedback loops to the quantum world: one
tries to stabilize, or more generally dynamically control,
a desired state of or an operation on a quantum system
by obtaining information about its actual state or opera-
tion, and feeding back corrective actions into the controls
of the system that bring it back to that desired state or
operation if any deviation occurs. As a consequence, the
field can be broadly classified according to two different
categories: Firstly, the object to be controlled maybe a
quantum state or an entire operation. And secondly, the
type of information fed back can be classical or quan-
tum. With classical information is meant information
that is obtained from a measurement, and which is then
typically processed on a classical computer and used to
re-adjust the classical control knobs of the experiment.
Such schemes are called “measurement-based feedback”.
In contrast to this, “coherent feedback” schemes directly
use quantum systems that are then manipulated unitarily
and fed back to the system.

Measurement-based feedback schemes in metrology
are also known as “adaptive measurements” (see also
Sec.V.D for adaptive measurements in the context of
phase transitions). An adaptive scheme was proposed
as early as 1988 by Nagaoka for mending the problem
that the optimal POVM obtained in standard quantum
parameter estimation depends on the a priori unknown
parameter (Nagaoka, 1988). One starts with a random
estimate, uses its value to determine the corresponding
optimal POVM, measures the POVM, updates the es-
timate, uses that new value to determine a new optimal
POVM, and so on. The scheme was shown to be strongly
consistent (meaning unbiased for the number of iterations
going to infinity), and asymptotically efficient (i.e. satu-
rates the quantum Cramér-Rao bound in that limit) by
Fujiwara (Fujiwara, 2006). It was experimentally imple-
mented in (Okamoto et al., 2012) as an adaptive quantum
state estimation scheme for measuring polarization of a
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light beam, but is in principle a general purpose estima-
tion scheme applicable to any quantum statistical model
using identical copies of an unknown quantum state.

In the context of quantum optics, an adaptive homo-
dyne scheme was proposed by Wiseman for measuring
the phase of an optical mode, in which the reference
phase of the local oscillator Φ(t) is adjusted in real-time
to Φ(t) ≃ π/2 +ϕ(t), where ϕ(t) is the latest estimate of
the phase carried by a continuous-wave, phase-squeezed
light signal (Wiseman, 1995). This reference phase
corresponds to the highest sensitivity in a homodyne
scheme. Keeping the local oscillator phase through
feedback close to this optimal operating point can beat
non-adpative heterodyning in single shot phase decod-
ing, as experimentally demonstrated in (Armen et al.,
2002). In (Pope et al., 2004) it was shown that adaptive
measurements have a finite factor advantage even in
the limit of arbitrarily weak coherent states. Phase
estimation using feedback was also studied in (Berry
and Wiseman, 2000, 2002, 2006; Higgins et al., 2007). In
(Berry and Wiseman, 2002) it was investigated how well
a stochastically varying, white noise-correlated phase
can be estimated. The theoretical analysis showed that
the variance of the phase estimation could be reduced
by a factor

√
2 by a simple adaptive scheme compared

to a non-adaptive heterodyne scheme, resulting in a
value of n−1/2/

√
2, where n is the number of photons

per coherence time. With a squeezed beam and a more
accurate feedback, the scaling can be improved to n−2/3.
The latter result was also found for a narrow-band
squeezed beam (Berry and Wiseman, 2006, 2013). In
(Yonezawa et al., 2012) 15 ± 4% reduction of mean
square error of the phase below the coherent-state limit
was reported with this scheme in optical-phase tracking,
i.e. in a case without any a priori information about
the value of the signal phase. The broad support of the
signal phase implies that there is an optimal amount of
squeezing, and the sensitivity enhancement is directly
given by the squeezing. The scheme can therefore be
seen as a generalization of Caves’ idea of reducing the
uncertainty with which a (fixed) phase shift in one arm
of an interferometer can be measured (Caves, 1981).
Instead of having a fixed phase reference by the beam in
the other arm of the interferometer, the feedback allows
one to continuously adjust the phase of the reference in
the homodyning scheme to the optimal operating point.
(Clark et al., 2016) proposed a feedback scheme based
on measured temporal correlations (g(2) correlation
function) for estimating the phase of a coherent state
inside a cavity and find that the uncertainty scales better
than the Standard Quantum Limit, namely as n−0.65,
where n is the mean photon number of the coherent
state. In (Wheatley et al., 2010) an “adaptive quantum
smoothing method” was used experimentally for esti-
mating a stochastically fluctuating phase on a coherent
beam. “Smoothing” refers to the fact that estimates

are obtained not only from data measured up to the
time when one wants to estimate the phase, but also on
later data. This implies, of course, that these smoothed
estimates can only be calculated after a sufficient delay
or at the end of the experiment, whereas feedback
itself at time t can only use data from times t′ ≤ t (or
even t′ < t when considering finite propagation times).
Theory predicts a reduction of the mean square error by
a factor 2

√
2 compared to the Standard Quantum Limit

(achievable by non-adaptive filtering, i.e. without feed-
back and using only previous data at any time), and an
experimental reduction of about 2.24±0.14 was achieved.

Quantum error correction for quantum-enhanced mea-
surements, recently introduced in (Dür et al., 2014;
Kessler et al., 2014), can also be seen in the context of
quantum feedback schemes (Ahn et al., 2002). Quan-
tum error correction is one of the most important ingre-
dients of quantum computing (Gottesman, 1996; Shor,
1995; Steane, 1996). The general idea, both for quan-
tum computing and quantum-enhanced measurements,
is that one would like to apply recovery operations R
to a state that after encoding the desired information
through an operation M has been corrupted by a noise
process E , such that R ◦ E ◦ M(ρ) ∝ Mρ. In (Kessler
et al., 2014) it was shown that this can be achieved for
the sensing of a single qubit subject to dephasing noise
if it is coupled to a pure ancilla bit. Syndrome measure-
ments (i.e. measurements of collective observables which
do not destroy the relevant phase information, a concept
developed in quantum error correction) of both qubits at
a rate faster than the dephasing rate allow one to de-
tect whether a phase flip has occurred and to correct it,
extending in this way the coherence time available for
Ramsey interferometry to much longer times and thus
better maximum sensitivities. When using N qubits in
parallel, an ancilla is not necessary. The method then
operates directly on an initially entangled state, such as
the GHZ-state, and measures error-syndromes on pairs
of spins. Thus, the idea is here not so much to avoid en-
tanglement but rather to stabilize through rapid multi-
spin error-syndrome measurements the correct imprint-
ing of the information on the quantum state against un-
wanted decoherence processes. For phase estimation on
N qubits evolving in parallel under individual and iden-
tical Pauli rank-one noisy channels, fast control schemes
based on quantum error correction allow one to restore
the Heisenberg-limit by completely eliminating the noise,
at the cost of slowing down the unitary evolution by a
constant factor, unless the noise is dephasing noise that
couples to the same Pauli-operator as the Hamiltonian
generating the phase shift (Sekatski et al., 2017).

More generally, one can prove that sequential metro-
logical schemes involving an initial probe entangled with
an ancilla, with the probe undergoing N passes of a
transformation encoding the parameter of interest, inter-
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spersed by arbitrary feedback control operations acting
on probe and ancilla, and followed by a joint measure-
ment on the two particles at the output, can outper-
form any parallel metrological scheme relying on an ini-
tial N -particle entangled state (Demkowicz-Dobrzański
and Maccone, 2014; Huang et al., 2016; Sekatski et al.,
2017; Yuan, 2016; Yuan and Fung, 2015). In particular,
in (Yuan, 2016) it was shown that a sequential feedback
scheme allows one to realize a joint quantum-enhanced
measurement of all the three components of a magnetic
field on a single-qubit probe. As remarked in Sec. II.A,
the use of sequential schemes assisted by suitable control
reduces the input demand from multipartite to bipartite
entanglement, resulting in a notable technological advan-
tage.

V. THERMODYNAMICAL AND NON-EQUILIBRIUM

STEADY STATES

In this section, we discuss precision parameter estima-
tions when probes are thermal states or non-equilibrium
steady states of dissipative dynamics. These states have
the advantage to be stationary, and describe mesoscopic
systems. From measurements on these probes, intensive
parameters, like temperature, chemical potential, or cou-
plings of Hamiltonians or of dissipators, are infered with
a sensitivity given by the inverse of the quantum Fisher
Information. Thermal probes are crucial for both funda-
mental issues and technological applications (Benedict,
1984; Childs, 2001; Giazotto et al., 2006). Estimations
with dissipative dynamics (Alipour et al., 2014; Bellomo
et al., 2009, 2010a,b; Zhang and Sarovar, 2015) are also
instances of process tomography (Baldwin et al., 2014;
Bendersky and Paz, 2013; Merkel et al., 2013; Mohseni
et al., 2008) with partial prior knowledge. The identifi-
cation of the quantum Fisher Information with the Bures
metric clarifies the role of criticality as a resource for es-
timation sensitivity. With extensive, i.e. linear in the
system size, interactions and away from critical behav-
iors, the Bures distance between the probe state and its
infinitesimal perturbation is at most extensive. Criti-
cal behaviors, e.g. separation between different states of
matter or long-range correlations, are thus characterised
by superextensive Bures metric and the quantum Fisher
Information. We thus focus on superextensivity of the
quantum Fisher Information as a signature of enhance-
ments in precision measurements on thermodynamical
and non-equilibrium steady states. We lay emphasis on
highly sensitive probes that do not need to be entangled,
and in certain cases not even quantum.

A. Thermodynamical states and thermal phase transitions

Thermodynamic states at equilibrium are derived by
the maximization of the information-theoretic Shannon’s
entropy (Jaynes, 1957a,b), equivalent to the maximiza-
tion of the number of microscopic configurations com-
patible with physical constraints. Given the probability
distribution {pj}j of a set of configurations {j}j , the con-
straints are the normalization

∑

j pj = 1 and the aver-

ages of certain quantities 〈F (k)〉 =
∑

j pjf
(k)
j , f

(k)
j being

the values of the quantity F (k) corresponding to the j-th
configuration. The solution of the maximization is the
well-known Boltzmann-Gibbs distribution

pj =
e−

∑
k θkf

(k)
j

Z
, Z =

∑

j

e−
∑

k θkf
(k)
j , (82)

where Z is the partition function, and θk is the Lagrange
multiplier corresponding to the quantity F (k) fixed on
average.

This formalism is equally adequate for both classical
and quantum thermodynamic systems. In the quantum
case all the quantities F (k) are commuting operators, the
configurations are labeled by the set of eigenvalues of
these operators and possibly additional quantum num-
bers in the case of degeneracy, and the thermal state is
the density matrix ρ diagonal in the common eigenbasis
of the F (k) with eigenvalues pj :

ρ =
∑

j

pj |j〉〈j|, F (k)|j〉 = f
(k)
j |j〉. (83)

Lagrange multipliers are the thermodynamic parame-
ters to be estimated. Since the density matrix in (83)
depends on them only through its eigenvalues pj , the
quantum Fisher matrix I = [Iθk,θk′ ]k,k′ coincides with
the classical Fisher matrix of the probability distribution
{pj}j . A straightforward computation shows

Iθk,θk′ =
∂2 lnZ

∂θk∂θk′
= Cov

(

F (k), F (k′)
)

. (84)

See also (Jiang, 2014) for the computation of the quan-
tum Fisher Information with density matrices in expo-
nential form. The diagonal element Iθk,θk is the largest
inverse sensitivity for a single estimation of the param-
eter θk, while the Fisher matrix I bounds the inverse
covariance matrix of the multiparameter estimation, see
eq.(17). The Cramér-Rao bound hence reads

[
Cov(θk,est, θk′,est)

] [
Cov

(
F (k), F (k′)

)]
≥ 1

M
, (85)

which is the uncertainty relation for conjugate variables
in statistical mechanics, see e.g. (Davis and Gutiérrez,
2012; Gilmore, 1985).



35

The computation of the Fisher matrix (84), together
with the Cramér-Rao bound (85), tells us that the best
sensitivity of Lagrange multipliers {θk}k is inversely pro-
portional to squared thermal fluctuations, and thus sus-
ceptibilities, see e.g. (Reichl, 1998). For connections
among metric of thermal states, Fisher information, and
susceptibilities see (Brody and Rivier, 1995; Brody and
Ritz, 2003; Crooks, 2007; Davis and Gutiérrez, 2012;
Diósi et al., 1984; Dolan, 1998; Janke et al., 2003, 2002;
Janyszek, 1986b, 1990; Janyszek and Mruga la, 1989;
Mruga la, 1984; Nulton and Salamon, 1985; Prokopenko
et al., 2011; Ruppeiner, 1979, 1981, 1991, 1995; Salamon
et al., 1984; Weinhold, 1974) for classical systems and
(Paunković and Vieira, 2008; Janyszek, 1986a; Janyszek
and Mruga la, 1990; Marzolino and Braun, 2013, 2015;
Quan and Cucchietti, 2009; You et al., 2007; Zanardi
et al., 2007a, 2008) for quantum systems.

Due to the pairwise commutativity of the F (k), the
estimations of the parameters {θk}k are reduced to pa-
rameter estimations with the classical probability dis-
tribution {pj}j . Thus, the maximum likelihood esti-
mator is asymptotically unbiased and optimal, in the
sense of achieving the Cramér-Rao bound, in the limit of
infinitely many measurements (Helstrom, 1976; Holevo,
1982). This estimator consists in measuring each F (k)

with outcomes {f (k)j }j=1,...,M , and in maximizing the av-

erage logarithmic likelihood ℓ = 1
M ln

∏

j pj with respect
to the parameters {θk}k.

Among the most common statistical ensembles for
equilibrium systems, there are the canonical ensemble
and the grandcanonical ensemble. The canonical ensem-
ble describes systems that only exchange energy with
their surrounding: the only quantity F1 = H fixed on
average is the Hamiltonian, the Lagrange multiplier is
θ1 = β = 1

kBT
where kB is the Boltzmann constant and

T is the absolute temperature, and the Fisher informa-

tion is proportional to the heat capacity CV =
(
∂〈H〉
∂T

)

V
,

Iβ,β = Var(H) = kBT
2CV . (86)

The grandcanonical ensemble describes systems that ex-
change energy and particles with the surrounding: the
quantities fixed on average are the Hamiltonian F1 = H
and the particle number F2 = N , with Lagrange mul-
tipliers being the inverse temperature θ1 = β = 1

kBT
and θ2 = −βµ where µ is the chemical potential. The
Fisher information of temperature and chemical poten-
tial are linked to thermal fluctuations, i.e. heat capac-

ity CV =
(
∂〈H〉
∂T

)

V
and isothermal compressibility κT =

− 1
V

(
∂V
∂P

)

T
respectively, where V is the volume and P is

the pressure (Marzolino and Braun, 2013, 2015):

Iβ,β =Var(µN −H) =
∂ µ〈N〉
∂β

+ kBT
2CV (87)

Iµ,µ =β2 Var(N) =
〈N〉2
βV

κT . (88)

Another parameter that can be estimated within this
framework is the magnetic field. For certain classical
magnetic or spin systems, the interaction with a mag-
netic field B is B ·M , with M being the total magne-
tization. This interaction term can represent a contri-
bution to the Hamiltonian as well as additional “fixed-
on-average quantities” B with Lagrange multipliers βM .
The magnetic field is also linked to magnetic susceptibil-

ity χ = ∂〈M〉
∂B (where we consider for simplicity only a

single component of B and M , M ≡Mz, ≡ Bz):

IB,B = β2 Var(M) = βχ, (89)

This picture of the magnetic field as a Lagrange multi-
plier is valid also for coupling constants whenever the
Hamiltonian is H =

∑

j λjHj , where βλj is the La-
grange multiplier of Hj . For general quantum systems,
the non-commutativity of magnetization or other Hamil-
tonian contributions Hj with the rest of the Hamiltonian
gives rise to quantum phase transitions that occur also
at zero temperature without thermal fluctuations. The
above considerations also apply to the so-called general-

ized Gibbs ensembles, i.e. with arbitrary fixed-on-average
quantities F (k), for which estimations of parameters θk
are under experimental (Langen et al., 2015) and theo-
retical (Foini et al., 2017) study.

Thermal susceptibilities are typically extensive except
in the presence of phase transitions. Thus, their con-
nection with Fisher information suggests that thermal
states at critical points (Baxter, 1982; Brody and Rivier,
1995; Brody and Ritz, 2003; Diósi et al., 1984; Dolan,
1998; Janke et al., 2003, 2002; Janyszek, 1990; Janyszek
and Mruga la, 1989; Prokopenko et al., 2011; Reichl, 1998;
Ruppeiner, 1991, 1995) with divergent susceptibilities are
probes for enhanced measurements. Thermal suscepti-
bility divergences occur also in classical systems, proving
precision measurements without entanglement.

1. Role of quantum statistics

We now discuss the estimation of Lagrange multipliers
of quantum gases in the grandcanonical ensemble and the
role of quantum statistics therein (Marzolino and Braun,
2013, 2015). Consider ideal gases in a homogeneous or
harmonic trap. Iβ,β is always extensive in the average
particle number 〈N〉. The corresponding relative error
found in (Marzolino and Braun, 2013, 2015) for temper-
ature estimation is still one order of magnitude smaller
than the standard deviations obtained experimentally via
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density measurements of Bosons (Leanhardt et al., 2003)
and Fermions (Müller et al., 2010; Sanner et al., 2010).

Estimations of chemical potentials are more sensitive
to quantum statistics than estimations of temperature,
because the chemical potential is the conjugate Lagrange
multiplier of the particle number which in turn reveals
clear signatures of quantum statistics, such as bunching
and antibunching. Effects of quantum statistics are more
evident in quantum degenerate gases, i.e. at low temper-
atures.

In Fermion gases, Iµ,µ is extensive but diverges at
zero temperature. A change in the chemical potential
corresponds to the addition or the subtraction of par-
ticles, thus achieving a state orthogonal to the previ-
ous one. This sudden state change makes the chem-
ical potential estimation very sensitive. A generaliza-
tion of the Cramér-Rao bound, called Hammerseley-
Chapman-Robbins-Kshirsagar bound that is suitable for
non-differentiable statistical models (Tsuda and Mat-
sumoto, 2005) must be applied. This may lead to
superextensive Iµ,µ, depending on the degree of rota-
tional symmetry breaking or confinement anisotropy and
dimension (see appendix B in (Marzolino and Braun,
2013)).

Bose gases undergo a phase transition to a Bose-
Einstein condensate in three dimensions for homogeneous
confinement, and in three or two dimensions in a har-
monic trap. Approaching from above the critical tem-
perature, or zero temperature with large density when
there is no phase transition, Iµ,µ is superextensive: for
homogeneous and harmonic trap respectively

Iµ,µ .







O
(

β2〈N〉 4
3

)

in three dimensions

O
(

β2 〈N〉2
log〈N〉

)

in two dimensions

O
(
β2〈N〉2

)
in one dimension

, (90)

Iµ,µ .
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(
β2〈N〉
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in three dimensions

O
(
β2〈N〉 log〈N〉
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in two dimensions

O
(

β2 〈N〉2
log〈N〉

)

in one dimension

. (91)

Below the critical temperature, the Bose-Einstein con-
densate phase depends on the anisotropy of the external
potential. If the gas is much less confined along certain
directions, the Bose-Einstein condensate is an effective
low dimensional gas with excitations restricted to direc-
tions along the less confined dimensions. A hierarchy
of condensations to subsequent lower-dimensional gases
is possible. These Bose-Einstein condensates have been
studied both at finite size and in the thermodynamic
limit focusing on mathematical structures and general
properties (Beau and Zagrebnov, 2010; van den Berg,
1983; van den Berg and Lewis, 1982; van den Berg et al.,
1986a,b; Casimir, 1968; van Druten and Ketterle, 1982;
Girardeau, 1960, 1965; Ketterle and van Druten, 1982;

Krueger, 1968; Mullin, 1997; Mullin and Sakhel, 2012;
Rehr, 1970; Zobay and Garraway, 2004), in connection
with liquid helium in thin films (Douglass et al., 1964;
Goble and Trainor, 1965, 1966, 1967; Khorana and Dou-
glass, 1965; Mills, 1964; Osborne, 1949), magnetic flux of
superconducting rings (Sonin, 1969), and gravito-optical
traps (Wallis, 1996). Experimental realizations of ef-
fective low dimensional Bose-Einstein condensates with
trapped atoms have been reported in (van Amerongen,
2008; van Amerongen et al., 2008; Armijo et al., 2011;
Bouchoule et al., 2011; Esteve et al., 2006; Görlitz et al.,
2001; Greiner et al., 2001). Iµ,µ in these Bose-Einstein
condensate phases is superextensive and interpolates be-
tween the scaling above the critical temperature and
Iµ,µ = O

(
β2〈N〉2

)
for a standard Bose-Einstein conden-

sate only consisting of the ground state. The advantage
of Bose-Einstein condensate probes for precision estima-
tions is that Iµ,µ is superextensive in the entire Bose-
Einstein condensate phase and not only at critical points
as for susceptibilities of other thermal phase transition.

In a mean field model with interactions treated pertur-
batively, if the ideal system exhibits a superlinear scaling
of the Fisher information, the interaction strength λ has
to go to zero for N → ∞ for the perturbation theory to
remain valid. In this limit, the superlinear scaling disap-
pears for any non-zero value of λ, but at finite N there
are values of λ which do not destroy the sub-shot-noise.

Moreover, superextensive quantum Fisher Information
in one dimension at fixed volume Lx and small contact
interaction coupling c

Lx
results

Iµ,µ ≃β
2λ2T 〈N〉3
2πL2

x

+ β2〈N〉 − β2λ4T 〈N〉4
8π2L4

x

(

1 − e
− 4π

λ2
T

ρ2
〈N〉
)

+ c

(

3β3λ6T 〈N〉7
16π3L7

x

(

1 − e
− 4π

λ2
T

ρ2
〈N〉
)

− β3λ4T 〈N〉6
4π2L4

x

(

2 + e
− 4π

λ2
T

ρ2
〈N〉
))

, (92)

where λT is the thermal wavelength, in agreement with
experimental measurements on atom chips using 87Rb
atoms (Armijo et al., 2011). Superextensive grandcanon-
ical fluctuations of particle number, and thus superexten-
sive Iµ,µ, have been observed in a photon Bose-Einstein
condensate, see e.g. (Schmitt et al., 2014), which can be
realized at room temperature (Klaers, 2014).

2. Interferometric thermometry

We now discuss a protocol for precision thermometry
proposed in (Stace, 2010), using a Mach-Zehnder interfer-
ometer coupled to an ideal gas consisting of N two-level
atoms in the canonical ensemble. The gas Hamiltonian
is H0 =

∑N
j=1 ǫ |ǫ〉j〈ǫ|, where |ǫ〉j is the j-th particle ex-

cited state with single-particle energy ǫ, while the single-
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particle lowest energy is zero. We skip the label j at the
bra-vector in the projector for brevity.

The interferometer is injected with K two-level atoms
that interact with the gas in one arm of the in-
terferometer with the interaction Hamiltonian HI =
α
∑K
j=1

∑N
l=1 |ǫ〉j〈ǫ|⊗|ǫ〉l〈ǫ|, where the index j labels the

atoms in the interferometer and l refers to the atoms in
the gas. In order for the interaction not to sensitively per-
turb the gas, the interferometer should be much smaller
than the gas, thus K ≪ N . Each atom in the inter-
ferometers acquires a relative phase φ = αmτ between
the arms, where τ is the interaction time and m is the
number of excited atoms in the gas whose expectation
〈m〉 = N/(1 + eβǫ) depends on the temperature.

The inverse temperature can be estimated from the
interferometric phase measurement with the sensitivity

σ(β) =
δφ

∣
∣
∣ατ

d〈m〉
dβ

∣
∣
∣

=

(
1 + eβǫ

)2

ǫ eβǫN
· δφ
ατ

, (93)

resulting from error propagation, where δφ is the best
sensitivity of the phase estimation according to the quan-
tum Cramér-Rao bound. The scaling with the number K
of probes comes from δφ. For distinguishable atoms, sep-
arable states imply shot-noise δφ = 1/K1/2, while sub-
shot-noise can be achieved with separable states of identi-
cal atoms as discussed in section III, leading to δβ ∝ 1/K
for ideal non-interacting bosons, or δβ ∝ 1/Kp+1/2 for
ideal fermions with a dispersion relation of the probe
atoms as discussed after (67). Note also that the scaling
of the sensitivity (93) with respect to the particle number
N in the gas looks like a Heisenberg scaling irrespectively
of the probe state, and it is not possible to achieve this
scaling by direct measurement of the gas (i.e. without
any probe) because the Fisher information is extensive
except at critical points. What is conventionally consid-
ered is however the scaling with the number of probes,
in this case K, which can be controlled.

Optimal thermometry with a single quantum probe
(and hence by definition without entanglement) was dis-
cussed in (Correa et al., 2015). It was found that the
quantum Cramér-Rao bound for T of a thermalizing
probe reproduces the well-known relation of temperature
fluctuations to specific heat CV (T ), (T/Var(Test))

2 ≤
CV (T ) (with Boltzmann constant kB = 1, see also
(Jahnke et al., 2011)). The level structure of the probe
was then optimized to obtain maximum heat capacity
and it was found that the probe should have only two
different energy levels, with the highest one maximally
degenerate and a non-trivial dependence of the optimal
energy gap on temperature (see also (Reeb and Wolf,
2015)). The sensitivity of the probe increases with the
number of levels, but the role of the quantumness of the
initial state of the probe on the sensitivity of thermome-
try is not fully understood yet. Interferometric thermom-

etry with a single probe was realized experimentally in
an NMR setup in (Raitz et al., 2015) and the role of
quantum coherence emphasized. Experimental simula-
tions in quantum optical setups and investigations of the
role of quantum coherence were reported in (Mancino
et al., 2016; Tham et al., 2016). The theoretical study
in (Jevtic et al., 2015) examined thermometry with two
qubits. Numerical evidence suggested that while initial
quantum coherences can improve the sensitivity, the op-
timal initial state is not maximally entangled.

B. Thermodynamical states and quantum phase transitions

Quantum phase transitions are sudden changes of the
ground state for varying Hamiltonian parameters. If the
Hamiltonian H(θ) =

∑

j≥0Ej(θ)|Ej(θ)〉〈Ej(θ)|, with
Ej ≤ Ej+1, has a unique pure ground state |E0(θ)〉, the
Fisher matrix (Campos Venuti and Zanardi, 2007; Gu
and Lin, 2009; You et al., 2007; Zanardi et al., 2007c) is

Iθk,θk′ = 4 Re
∑

j>0

〈E0|∂θkH|Ej〉〈Ej |∂θk′H|E0〉
(Ej − E0)

2 (94)

which follows from the differentiation of the eigenvalue
equation H|Ej〉 = Ej |Ej〉 or from the standard time-
independent perturbation theory with respect to small
variations dθ. The quantum Fisher Information is also
expressed in terms of the imaginary time correlation func-
tion or dynamical response function (Campos Venuti and
Zanardi, 2007; Gu and Lin, 2009; You and He, 2015; You
et al., 2007), and has been used to count avoided cross-
ings (Wimberger, 2016).

Equation (94) tells us that the Fisher matrix can di-
verge only for divergent Hamiltonian derivatives or for
gapless systems E1−E0 → 0 in the thermodynamic limit.
Thus, the divergence or the superextensivity of the quan-
tum Fisher Information reveals a quantum phase transi-
tion but the converse does not hold: see (Gu, 2010) for a
review. Finite size scaling of the quantum Fisher Infor-
mation (Campos Venuti and Zanardi, 2007; Gu and Lin,
2009; Zanardi et al., 2008) can be derived using finite size
scaling at criticality (Brankov et al., 2000; Continentino,
2001).

Superextensive quantum Fisher Information was ob-
served at low order symmetry breaking quantum phase
transitions, topological quantum phase transitions, and
gapless phases, but this criterion may fail at high order
symmetry breaking quantum phase transitions (Tzeng
et al., 2008) and Berezinskii-Kosterlitz-Thouless (BKT)
quantum phase transitions (Chen et al., 2008; Sun et al.,
2015). We now review quantum critical systems at zero
temperature exhibiting superextensive quantum Fisher
Information of Hamiltonian parameters without entan-
glement. We adapt and unify the notation of existing lit-
erature, by writing down a general parameterized Hamil-
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tonian whose different special cases are studied in the
literature.

1. Quasi-free Fermion models

We start with non-interacting many-body Hamiltoni-
ans, i.e.

H(θ) =
∑

j

ωj(θ)a†j(θ)aj(θ), (95)

where a†j (aj) creates (annihilates) a Fermion in the j-th

eigenmode. The dependence of the eigenmodes a†j , aj on
the parameters corresponds in second quantization to the
dependence of the Hamiltonian eigenvectors on θ, as re-
quired for the ground state to be sensitive to variations of
θ. The eigenstates of (95), and thus thermal probes in-
cluding the ground state, are not entangled in the eigen-
modes. Therefore, measurements on the ground state
provide parameter estimation without entanglement and
with enhanced precision at phase transitions, as shown
by the following examples.

Under Bogoliubov transformations the Hamiltonian
(95) can be mapped into many models studied in litera-
ture. Bogoliubov transformations preserve neither mode
entanglement nor operation locality, as discussed in Sec-
tion III. The relativity of entanglement with respect to
the basis of modes provides complementary pictures of
the Hamiltonian and of estimation protocols of its param-
eters but does not change the physics: either the probe
state is entangled in one basis, or it is not in another and
the enhanced estimation precision is achieved by non-
local measurements as a consequence of long-range cor-
relations at criticality. This situation is reminiscent of
the case of interferometry with identical particles, dis-
cussed in Section III, for which rotations of modes re-
distributes quantum resources between initial entangle-
ment and non-local interferometers. Moreover, Bogoli-
bov transformations and corresponding rotated modes
are experimentally addressed in several physical systems
(Davis et al., 2006; Hu et al., 2014; Inguscio and Fallani,
2013; Moritz et al., 2003; Robillard et al., 2008; Sattler,
2011; Segovia et al., 1999; Vogels et al., 2002; Yan et al.,
2016), showing that quasi-particles represent legitimate
and experimentally relevant subsystems.

Hamiltonians equivalent to (95) under Bogoliubov
transformations are quasi-free Fermion models (Cozzini
et al., 2007), i.e. quadratic Hamiltonians in the creation

c†j and annihilation cj operators of L Fermionic modes:

Hquasi-free =

L∑

j,l=1

(

c†jAj,lcl +
1

2

(

c†jBj,lc
†
l + h.c.

))

,

(96)

where L is a measure of the system volume. Translation-
ally invariant Hamiltonians (96) with periodic boundary

conditions and tunneling in the modes {cj , c†j}j of range
r have

Aj,l = (J − µ)δj,l − Jθ(r − |j − l|) − Jθ(|j − l| − L+ r),

Bj,l = Jγ sign(j − l)
(
θ(r − |j − l|) − θ(|j − l| − L+ r)

)
,

(97)

where J > 0, sign(0) = 0, and θ(·) is the unit step func-
tion with θ(0) = 1. Here J corresponds to a tunneling en-
ergy between different sites, and Jγ to an effective inter-
action; µ multiplies the total particle number and hence
corresponds to a chemical potential. This Hamiltonian
can be analytically diagonalized (Cozzini et al., 2007).
For large L and a fully connected system, r =

⌊
L
2

⌋
with

periodic boundary conditions, the Fisher matrix with re-
spect to (µ, γ) is

Iµ,µ = γ2S, Iγ,γ = (µ− J)2S, Iµ,γ = −(µ− J)γS,
(98)

with

S ≃







L

2

∣
∣
∣
∣

J

(µ− J)γ

∣
∣
∣
∣

1
(
|µ− J | + |Jγ|

)2 if (µ 6= J, γ 6= 0)

L2

3J2γ4
if (µ = J, γ 6= 0)

L2J2

(µ− J)4
if (µ 6= J, γ = 0)

(99)
The lines (µ = J, γ 6= 0) and (µ 6= J, γ = 0) reveal
second-order quantum phase transitions, as well as su-
perextensivity of the Fisher matrix in the volume L. At
the critical line γ = 0, the ground state is unentangled
not only in the eigenmodes but also in the original modes
{cj , c†j}j .

The fully connected translationally invariant Hamilto-
nian with open boundary conditions reads

Aj,l = (µ− J)δj,l + J, Bj,l = Jγ sign(l − j), (100)

with second-order quantum phase transitions at lines
µ = J and γ = 0, and superextensive Fisher matrix
as for periodic boundary conditions with different pref-
actors (Cozzini et al., 2007; Zanardi et al., 2007b). For
instance, at (µ > J, γ = 0)

Iµ,µ = 0, Iγ,γ =
L2J2

3(µ− J)2
, Iµ,γ = 0. (101)

Another interesting case is the Hamiltonian with near-
est neighbor tunneling in the modes {cj , c†j}j , periodic
boundary conditions, and J > 0:
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Aj,l = (J − µ) δj,l − J θ(1 − |j − l|),
Bj,l = Jγ sign(l − j) θ(1 − |j − l|), (102)

Such Hamiltonian (Zanardi et al., 2008) is also equal to

Hquasi-spin =

⌊L
2 ⌋∑

n=1

(
− ǫnσ

z
n + ∆nσ

y
n

)
, (103)

with ǫn = −J cos
(
2πn
L

)
− µ

2 , ∆n = −Jγ sin
(
2πn
L

)
, and

{σy,zn }n are Pauli matrices on n orthogonal❈2 subspaces.
Eq. (103) provides an alternative representation of the
Hamiltonian in terms of non-interacting quasi-spins, and
its eigenstates are separable with respect to both the
eigenmodes and the quasi-spins. The same quantum
Fisher Information scaling holds in both representations
as theoretical independent models.

The quantum Fisher Information is linear in L away
from the critical points, but superextensive at criticality
in the leading order for large L (Zanardi and Paunković,
2006; Zanardi et al., 2008):

IJ,J
(
|µ| = 2J, γ

)
= O

(
L2

J2γ2

)

, (104)

Iγ,γ
(
|µ| ≤ 2J, γ = 0

)
= O

(
L2
)
. (105)

The origin of the superextensivity of IJ,J stems from the
fact that the symmetric logarithmic derivative, and thus
the optimal estimation of J , is close to a single particle
operator in the Fermion representation away from the
critical point, but is a genuine multi-particle operator
close to the critical point. In the canonical ensemble, at
∣
∣µ
2 − J

∣
∣ . 1

β , the quantum Fisher Information has a di-

vergence around zero temperature, IJ,J = O
(
Lβ
|Jγ|
)
. The

superextensivity of IJ,J , together with the divergence of
the derivative of the geometric phase, is also a universal
feature depending only on the slope for the closing of the
energy gap between one and zero Fermion occupations of
certain eigenmodes (Cheng et al., 2017).

Superextensive quantum Fisher Information is ob-
served also for tight-binding electrons on the triangular
lattice with magnetic flux φ

2 within each triangle, hop-
ping constants ta (tb) at edge along the x (y) direction
and tc at the third edge (Gong and Tong, 2008). Assum-
ing zero momentum in the y direction (Ino and Kohmoto,
2006), the Hamiltonian can be transformed into (96),
with Bj,l = 0 and

Aj,l = − 2tb cos (2πφj) δl,j −
(

ta + tce
−2πiφ(j− 1

2 )
)

δl,j−1

−
(

ta + tce
2πiφ(j+ 1

2 )
)

δl,j+1, (106)

with j and l labeling the sites in the x direction. Con-
sider L = Fm, the m-th Fibonacci number, and φ =
Fm−1

Fm
−−−−→
m→∞

√
5−1
2 , the inverse of the golden ratio in

the thermodynamic limit. At the critical line tc = ta,
numerical computations result in Itc/ta = O

(
L4.9371

)
if

m = 3L + 1, otherwise Itc/ta = O
(
L2.0

)
. Itb/ta has the

same size dependence at the critical line 2tb = ta. A more
complicated quasi-free Fermion Hamiltonian describes a
superconductor with a magnetic impurity (Paunković
et al., 2008). A sudden increase of the Bures distance
between two reduced ground states of few modes around
the impurity at very close exchange interaction with the
impurity was numerically observed, but it is unclear
whether the quantum Fisher Information with respect
to exchange interaction is superextensive.

2. Hubbard models

Another class of Fermionic systems is described by L-
mode Hubbard Hamiltonians

HHM = −
∑

j=1,...,L
σ=↑,↓

tσ

(

c†j,σcj+1,σ + h.c.
)

+ U

L∑

j=1

nj,↑nj,↓ − µ
∑

j,σ

nj,σ, (107)

with nj,σ = c†j,σcj,σ, tσ the hopping constants, U the
interaction strength, and µ the external potential. When
t↑ = t↓, the system undergoes a Berezinskii-Kosterlitz-
Thouless (BKT) quantum phase transition at U = 0 and
half filling n = 1

L

∑

j,σ〈nj,σ〉 = 1. IU is extensive, but

IU/L diverges as 1/n for n→ 0 and U = 0, and as 1/U4

around the BKT critical point only if the system size is
much larger than the correlation length (Campos Venuti
et al., 2008). At zero interaction (107) is a free Fermion
Hamiltonian, and thus the ground state is not entangled
in the eigenmodes.

In the large U limit and at n = 2
3 , a quantum phase

transition occurs with control parameter t↓/t↑. The
quantum Fisher Information It↓/t↑ at critical points is su-

perextensive O
(
Lα
)
, where the exponent was numerically

computed α ≃ 5.3 (Gu et al., 2008). In the large U limit,
the eigenstates of the Hamiltonian are perturbations of
those of the interaction term, that are Fock states, thus
with vanishingly small entanglement with respect to the
modes {cj,σ, c†j,σ}j,σ.

3. Spin-1/2 systems

We now discuss systems of N spins-1/2, which provide
alternative representations of quasi-free models. Con-
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sider the following complete Hamiltonian, to be spe-
cialised later on,

Hspin = − J

N−1∑

j=1

(1 + γ

2
σxj σ

x
j+1 +

1 − γ

2
σyj σ

y
j+1

+ ∆σzjσ
z
j+1

)

+ d

N−1∑

j=1

(
σj ∧ σj+1

)z −
N∑

j=1

(
h− gj

)
σzj , (108)

with anisotropies γ and ∆, Dzyaloshinskii-Moriya cou-
pling d, magnetic field with uniform value h and gradient
g, and σj =

(
σxj , σ

y
j , σ

z
j

)
.

For the moment, we focus on the XY model with trans-
verse field, i.e. ∆ = d = g = 0, with J > 0 and periodic
boundary conditions. This Hamiltonian can be trans-
formed into (96) with (102), µ = 2h, and L = N using
the Jordan-Wigner transformation, see e.g. (Giamarchi,
2003). Thus, the XY Hamiltonian provides an alterna-
tive physical setting to implement precision metrology
without entanglement in the Fermionic eigenmodes.

At zero temperature, Ih,h =
(
J2

h2

)
IJ,J , since the ground

state depends on h and J only via the ratio h
J . The Fisher

matrix is extensive with divergent prefactors around crit-
ical regions (Cheng et al., 2017; Zanardi et al., 2007c),
and is superextensive at criticality as in (104,105).

In the Ising model, i.e. γ = 1, corrections to the quan-
tum Fisher Information around the critical points |h| = J
(Chen et al., 2008; You and He, 2015; Zhou and Barjak-
tarevič, 2008; Zhou et al., 2008) and at small temperature
(Invernizzi et al., 2008; Zanardi et al., 2007a) are also
linear in N with divergent prefactors. Ih,h was also ex-
plicitly computed in (Damski, 2013; Damski and Rams,
2014; You and He, 2015). A good estimator of the param-
eter J is the value inferred by measurements of the total
magnetization, at least at small system size (Invernizzi
et al., 2008).

The divergence of Ih,h/N was numerically observed
also in the XX model, i.e. γ = 0, approaching the crit-
ical field |h| = J , with the reduced state of spin blocks
(Sacramento et al., 2011). This implies precision estima-
tions of the magnetic field looking only at a part of the
system.

Divergent Ih,h/N at critical field |h| = J was numer-
ically computed also when an alternating magnetic field
∑N
j=1(−)j+1δσzj is added to the XY Hamiltonian (You

and He, 2015). The corresponding quasi-free Fermion

Hamiltonian has the additional term
∑N
j=1(−)j+1δc†jcj .

The XY and the Ising models are also interesting be-
cause the superextensivity of the Fisher matrix I =
[Iθ,θ′ ]θ,θ′=h,γ is robust against disorder, i.e. with Hamilto-
nian parameters being Gaussian random variables (Gar-
nerone et al., 2009b). In the presence of disorder, quan-
tum phase transitions are broadened to Griffiths phases
(Fisher, 1992, 1995; Griffiths, 1969; Sachdev, 1999).

Thus, the exponent of N in average Ih,h and Iγ,γ is
slightly reduced but the superextensivity is broadened
in the parameter range. Superextensivity of Ih,h at the
critical Ising point |h| = J becomes a broad peak, and
the superextensive Iγ,γ at the γ = 0 critical line is split
into two symmetric broad peaks around γ = 0, where
at γ = 0 a local minimum with extensive Iγ,γ arises.
Furthermore, the scaling of Ih,h of the XY model at the
critical point |h| = J is preserved when a periodic time-
oscillating transverse magnetic field is considered, and
the state is the Floquet time-evolution of the ground
state at t = 0 up to times that scale linearly with the
system size for small time-dependent driving (Lorenzo
et al., 2017). These robustness features are suitable for
practical implementations of precision measurements.

Another interesting system is the XXZ model, i.e. γ =
0 and J < 0, whose low-energy spectrum for |∆| < 1

2 is
equivalent to a quasi-free Boson Hamiltonian known as
Luttinger liquid, see e.g. (Giamarchi, 2003). Thus, su-
perextensive ground state quantum Fisher Information
implies precision measurements without entanglement in
the Boson eigenmodes. Given the Luttinger liquid pa-
rameter K = π

2 arccos(− 2∆√
1+2d/J

)
, superextensive quantum

Fisher Information Id is observed with periodic boundary
conditions at d = h = g = 0,

Id =







O
(
N lnN
J2

)
if ∆ = 1+

√
5

8

O
(
N6−8K

J2

)

if 1+
√
5

8 < ∆ < 1
2

O
(

N
J lnN

)2
if ∆ = 1

2

, (109)

while, with open boundary conditions, Id = O
(

J2KN2

(J2+4d2)2

)

at h = g = 0 and Ig = O
(
KN4

J2u2

)
, with u = π

√
1−4∆2

2 arccos(2∆) ,

at d = h = g = 0 (Greschner et al., 2013). Here, the
quantum Fisher Information is superextensive mainly
because the system is gapless, while the quantum phase
transition only affects subleading in N , even though
superextensive, orders of the quantum Fisher Informa-
tion. Id is also equal to the quantum Fisher Information
Iφ with respect to a twist phase φ of spin operators
σ+
j σ

−
j+1 → σ+

j σ
−
j+1e

iφ (Thesberg and Sørensen, 2011).
Via the Jordan-Wigner transformation, the ∆ = γ = 0
case in (108) is equivalent to a quasi-free Fermion
Hamiltonian with matrix elements given by (102) with
γ = µ = 0 and with the Dzyaloshinskii-Moriya and
the gradient field terms − id

2

∑N
j=1 c

†
jcj+1 + h.c. and

∑N
j=1 gjc

†
jcj , respectively. Id and Ig have the same

scaling in a generalization of the latter model with
spin-1/2 Fermions (Greschner et al., 2013), providing
a further example of precision measurements without
Fermion entanglement.

Another model, mapped to a quasi-free Fermionic
Hamiltonian and exhibiting superextensive quantum
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Fisher Information, is the quantum compass chain with
periodic boundary conditions (Motamedifar et al., 2013)

HQCC =

N
2∑

j=1

(
∑

α=x,y

Jασ
α
2j−1σ

α
2j + Jzσ

z
2jσ

z
2j+1

)

−h
N∑

j=1

σyj .

(110)
Quantum phase transitions occur at critical fields h1,2 =
√

Jx(Jy ± Jz)/2 when these values are real. Numerical
computations show that Ih = O

(
Nα
)

is superextensive
with

α ≃







1.80 ± 0.02 for Jx
Jz
> 0,

Jy
Jz
> 1 and h = h1

1.98 ± 0.02 for Jx
Jz
> 0,

Jy
Jz
> 1 and h = h2

1.94 ± 0.02 for Jx
Jz
< 0,

Jy
Jz
< 1 and h = h2

2.02 ± 0.02 for Jx
Jz
> 0,

Jy
Jz
< 1 and h = h1

.

(111)

4. Topological quantum phase transitions

The quantum Fisher Information is superextensive also
in topological quantum phase transition which have non-
local order parameters (Zeng et al., 2015). Mosaic mod-
els defined on two-dimensional lattices with trivalent ver-
tices, i.e. each vertex is the border among three polygons,
and with three-body interaction were numerically stud-
ied. The N -particle Hamiltonian is

Hmosaic = −
∑

α=x,y,z
(j,l)∈S(α)

Jαj,l σ
α
j σ

α
l −K

∑

j,l,k

σxj σ
y
l σ

z
k, (112)

where S(α) is the set of edges in the α ∈ {x, y, z}
direction. Hmosaic can be mapped onto a free Majo-
rana Fermion Hamiltonian, thus without entanglement
in Fermion eigenmodes. When the edge numbers of
the three polygons are (4, 8, 8), Jx,yj,l = J , Jzj,l = Jz,
and K = 0, the quantum Fisher Information is IJz =
O
(
N1.07615±0.00005

)
at the critical point Jz =

√
2 J > 0

(Garnerone et al., 2009a). When the edge numbers are
(3, 12, 12), Jx,y,zj,l = J for edges within triangular ele-

mentary subcells (Yao and Kivelson, 2007), Jx,y,zj,l = J ′

for other links, and K = 0, the quantum Fisher Infor-
mation is IJ ′ = O

(
N1.078±0.005

)
at the critical point

J ′ =
√

3 J > 0 (Garnerone et al., 2009a). Hmosaic on the
honeycomb lattice with Jαj,l = Jα has topological quan-
tum phase transition at the boundaries |Jx| = |Jy|+ |Jz|,
|Jy| = |Jz|+ |Jx|, and |Jz| = |Jx|+ |Jy| with superexten-
sive quantum Fisher Information, e.g. IJx = O(N lnN)
for Jy = Jz = Jx

2 and K = 0 (Zhao and Zhou, 2009), and

IJz = O
(
N1.08675±0.00005

)
for Jz = J

2 , Jx = Jy = J−Jz
2

and K = 1
15 (Garnerone et al., 2009a).

Topological quantum phase transition are particularly
relevant because of superextensive quantum Fisher Infor-
mation in gapless phases and not only at critical points.

In the honeycomb lattice with K = 0, Jx + Jy + Jz = J
and Jx = Jy, the quantum Fisher Information is IJz =
O
(
N1.2535±0.00005

)
at the critical point Jz = J

2 (Yang
et al., 2008), and IJz = O(N lnN) in the gapless phase
Jz <

J
2 (Gu and Lin, 2009). Superextensivity in the gap-

less phase is due to the algebraic decay of the correlation
function of the z-edge, in contrast to exponential decay in
the gapped phase Jz >

J
2 leading to extensive quantum

Fisher Information.

C. Non-equilibrium steady states

Consider now parameter estimation with probes in
non-equilibrium steady states of spin-1/2 chains with
boundary noise (Marzolino and Prosen, 2016a; Prosen,
2015; Zunkovic and Prosen, 2010) described by the
Markovian master equation (Benatti and Floreanini,
2005; Breuer and Petruccione, 2002)

∂ρt
∂t

= − i[HXYZ, ρt]

+ λ
∑

α=1,2
=1,N

(

Lα,jρtL†
α,j −

1

2

{

L†
α,jLα,j , ρt

})

,

(113)

with XYZ Hamiltonian, i.e. (108) with d = g = 0, and
Lindblad operators L1(2),j =

√

(1 ± µ)/2σ±
j .

Superextensive quantum Fisher Information of the
non-equilibrium steady states ρ∞ is observed at non-
equilibrium phase transition and in phases with long-
range correlations. In the XY model, ∆ = 0, superex-
tensive quantum Fisher Information was computed at
the critical lines h = 0 (Ih,h = O(N6)) and γ = 0
with |h| < J |1 − γ2| (Iγ,γ = O(N2)), at the critical
points |h| = J |1 − γ2| ([Iθ,θ′ ]θ,θ′=h,γ = O(N6)), and in
the phase with long-range correlations |h| < J |1 − γ2|
([Iθ,θ′ ]θ,θ′=h,γ = O(N3)) (Banchi et al., 2014).

In the XXZ model γ = 0, the quantum Fisher In-
formation I∆ is superextensive in the limit of small
λ
J and for |∆| ≤ 1

2 at irrational arccos∆
π (Marzolino

and Prosen, 2014, 2016b, 2017). If arccos∆
π is rational

I∆ = λ2µ2

J2 (ξ̃N2 + ξN) where ξ and ξ̃ are constants in

N and for λ
J < 1√

N
, thus the quantum Fisher Informa-

tion is not superextensive. Nevertheless, after inserting
the value of ∆ in arccos∆

π and reducing the fraction to

lowest term arccos∆
π = q

p with coprime integers q, p, one
realizes that the coefficient ξ is unbounded when the de-
nominator p grows. Therefore, I∆, as a function of ∆,
exhibits a fractal-like structure with a different size scal-
ing at irrational arccos∆

π . Moreover, the limit of arccos∆
π

approaching irrational numbers from rationals and the
thermodynamic limit do not commute. If the thermody-

namic limit is first performed then I∆ = O
(
λ2µ2

J2 N∼5
)
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with λ
J < 1√

N
. If the thermodynamic limit is post-

poned after the limit to irrational arccos∆
π then the quan-

tum Fisher Information is still fitted by a superexten-
sive power law with exponent depending on the value

of ∆, e.g. I∆ = O
(
λ2µ2

J2 N2.32788±0.0009
)

with λ
J < 1√

N

and arccos∆
π being the golden ratio. When ∆ = 1

2 ,

I∆ = O
(
λ2µ2

J2 N4
)

with λ
J <

1
N in both cases.

In addition, the quantum Fisher Information of the
reduced state of a single spin at position k scales su-
perextensively also for arbitrary dissipation strength λ
but only at the critical points |∆| = 1, and with a power
law depending on the position k of the spin (Marzolino
and Prosen, 2017): e.g. at λ = 1, I∆ = O(N∼2) for k = 1,
k = ⌊N2 ⌋, or k = N , and I∆ = O(N∼4) for k = ⌊N4 ⌋ or

k = ⌊ 3N
4 ⌋). This proves that the anisotropy at |∆| = 1

can be precisely estimated measuring single spin magneti-
sations along the z axis, or measuring the magnetisations
∑

j∈P〈σzj 〉 for any non-centrosymmetric portion P of the

chain, or
∑

j∈P f
(
〈σzj 〉

)
with even functions f(·) for any

set P, even centrosymmetric ones.

For either small λ or small µ the steady states ρ∞ of the
above models are perturbations of the completely mixed
state and thus not entangled, see e.g. (Bengtsson and
Życzkowski, 2006). In the XX model γ = ∆ = 0, there is
no nearest neighbor spin entanglement for a wide range
of parameters (Žnidarič, 2012). Non-equilibrium steady
state probes are favorable because the quantum Fisher
Information is superextensive in a whole phase and not
only at exceptional parameters. Moreover, the distin-
guishability of non-equilibrium steady states via Fisher
information, thus detectability of non-equilibrium criti-
cality and metrological performances, are enhanced com-
pared to thermal equilibrium systems: e.g. the BKT
quantum phase transition at ∆ = 1

2 in the ground state
of the XXZ model does not correspond to superexten-
sive quantum Fisher Information (Chen et al., 2008; Sun
et al., 2015).

D. Adaptive measurements

Since critical points without critical phases are isolated
values, they should be known in advance in order to set
the system at criticality and benefit of superextensive
quantum Fisher Information. A partial solution is an
adaptive approach (Mehboudi et al., 2016) that we gen-
eralize to phase transitions under reasonable conditions.
The idea is to perform several estimates changing the
thermal state or the non-equilibrium steady state, in par-
ticular the critical point, at each step according to previ-
ous estimates, in order to approach the phase transition
ensuring enhanced sensitivity of the control parameter
estimation.

Consider any phase transition with control parameter

θ to be estimated, and assume the quantum Fisher Infor-
mation Iθ−θc = ξN

|θ−θc|α close to a critical point θc with

α > 0 and a prefactor ξ. We use the notation Iθ−θc
to make clear that the quantum Fisher Information de-
pends on the difference θ − θc, rather than on θ alone.
Sub-shot-noise sensitivity is shown only at θ = θc. As-
sume also that θ is initially known within a fixed interval
θ ∈ [θmin, θmax] enclosing the value θc which can be con-
trolled by other system parameters. First, set the critical

point to θ
(1)
c = θmax, ensuring that θ < θ

(1)
c , i.e. one is

on a well-defined side of the phase transition. Find a

first estimate θ
(1)
est for the parameter θ, with an uncer-

tainty that saturates the quantum Cramér-Rao bound.
Use therefore a number of measurements M that ensures
a small error compared to the original confidence inter-

val, σ
(
θ
(1)
est

)
=

(

1
MI

θ−θ
(1)
c

)1/2

≪ (θmax − θmin), where

once more σ
(
θ
(1)
est

)
= Var

(
θ
(1)
est

)1/2
is the standard devia-

tion of the estimate. Then, update the critical parameter

to θ
(2)
c = θ

(1)
est + σ

(
θ
(1)
est

)
. Since σ

(
θ
(1)
est

)
≪ (θmax − θmin),

the new critical point θ
(2)
c is now much closer to the true

value of θ than θ
(1)
c , assuming that the obtained estimate

θ
(1)
est (which is random and only on average agrees for an

unbiased estimator with θ) is indeed within an interval

of order σ(θ
(1)
est ) of the true θ. Hence, in the next round,

the quantum Fisher Information should be substantially
larger. Perform then again sufficiently many times a
POVM that allows saturating the quantum Cramér-Rao

bound for a new estimate θ
(2)
est , σ

2
(
θ
(2)
est

)
= 1

MI
θ−θ

(2)
c

≃
( (σ(θ

(1)
est )

α

ξMN

)
∝ (MN)−

2+α
2 . After k iterations, the sensitiv-

ity of the estimate θ(k) saturating the quantum Cramér-
Rao bound is

σ2
(
θ
(k)
est

)
=

1

MI
θ−θ(k)

c

∝ (MN)−
∑k−1

j=0
αj

2j = (MN)
1−(α/2)k

α/2−1 ,

(114)
achieving sub-shot-noise for α < 2 with the limiting scal-

ing σ2
(
θest
)
∝ (MN)

2
α−2 for k → ∞.

Within the above adaptive scheme, control of Hamil-
tonian parameters, estimations at each step, and re-
materialization or re-stabilization of states at each step
are assumed to be efficiently implementable. This adap-
tive measurement was proposed to estimate the critical
magnetic field h = J of the XX model at small non-
zero temperature when the quantum phase transition is
smoothened to a phase crossover (Mehboudi et al., 2016),

achieving the limiting scaling σ2
(
θest
)
∝ (MN)−

4
3 . The

optimal estimate is derived from measurements of the
magnetization along the z direction

∑

j σ
z
j , since the

magnetic field commutes with the spin interaction restor-
ing the classical picture of Lagrange multipliers and
quantities fixed on average. The same estimate and that
derived from measurements of the variance of

∑

j σ
x
j are
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nearly optimal for the XY model. It is remarkable that,
when the adaptive measurement is applied to the model
(97) approaching the critical lines in (99) from the non-
critical region, the critical scalings are consistently recov-
ered.

VI. OUTLOOK

Most work on quantum-enhanced measurements has
investigated the benefits of using quantum entanglement
(see (Giovannetti et al., 2011; Paris, 2009; Pezzè and
Smerzi, 2014; Pezzè et al., 2016; Tóth and Apellaniz,
2014) for recent reviews). Indeed, under certain restric-
tive assumptions (see Introduction), entanglement can
be shown to be necessary if one wants to improve over
classical sensitivity. However, going beyond these re-
strictive assumptions opens up a host of new possibilities
of which we have explored a large number in this review.
Given the difficulty of producing and maintaining
entangled states of a large number of subsystems, some
of these may open up new roads to better sensitivities
than classically possible with a comparable number of
resources in actual experiments.

We conclude this review by challenging yet another
common mind-set in the field (which we could not quite
escape in this review either), namely the hunt for faster
scaling of the sensitivity, in particular the quest for a
scaling faster than 1/

√
N with the number of subsystems

N , and the goal of reaching “Heisenberg-limited” scaling
1/N : It should be clear (see also Sec.IV.C and the lin-
ear/nonlinear comparison in (Napolitano et al., 2011))
that scaling of the sensitivity is not per se a desideratum.
Any given instrument or measurement is judged by its
sensitivity, not the scaling thereof. When the sensitivity
is σ(θest) = αNd, it is sometimes argued that the
pre-factor α is irrelevant, because a more rapid scaling
necessarily leads to better sensitivity for sufficiently large
N . While mathematically impeccable, this argument
assumes that the scaling persists to sufficiently large N
where the possibly small prefactor can be compensated
— an assumption that may not be valid in practice.
Typically, at some point the model breaks down, and
systematic errors arise that scale with a positive power
of N and at some point become comparable to the
stochastic error quantified by the quantum Cramér-Rao
bound. And finally, some large-N catastrophe destroys
the instrument and its measurement capability. Such
concerns are of course very relevant for real-life experi-
ments, for which material properties have to be taken
into account. But they may also determine fundamental
bounds to achievable precision for various physical
quantities that are ultimately linked to the fabric of
space-time at extremely small length- and time-scales.
Such ideas were advanced early on notably by Wigner,

who estimated the ultimate achievable precision of
atomic clocks: increasing the energy of the used clock
states more and more for improving its precision leads
ultimately to the formation of a black hole and hence
renders reading off the clock impossible (Wigner, 1957).
Similar limitations of this kind exist for measurements
of lengths (Amelino-Camelia, 1999; Ng and Dam, 2000),
and have been recently explored in more detail for the
speed of light in vacuum (Braun et al., 2017).

While current technology is still far from probing
such extreme conditions, we nevertheless arrive to the
conclusion that the importance of scaling is to give the
functional form for an extrapolation of the sensitivity,
a prediction of how well one could measure if one had
a given large N . The validity of this extrapolation will
be limited by the range over which the scaling persists,
an additional datum not described by the scaling nor
by the prefactor. Moreover, there is the possibility
of an optimum N , beyond which the sensitivity wors-
ens (Nichols et al., 2016). In such a case, the interesting
questions are “is the optimum Nopt achievable given
available resources” and “what is the actual sensitivity
at this optimum?” At such an optimum the local
scaling is flat, i.e. the smallest possible uncertainty of
an unbiased estimate of the parameter is independent
of N . Ironically, our discussion of advantageous scaling
leads us to the conclusion that the best scaling may be
no scaling at all.

The relevance of the actually achievable smallest un-
certainty rather than its scaling with the number of re-
sources makes it particularly important that alternatives
to the use of massive entanglement be investigated, as
so far the number of subsystems that could be entangled
experimentally has remained relatively small. We hope
that the present review will stimulate further research in
this direction.
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Demkowicz-Dobrzański, R., M. Jarzyna, and J. Ko lodiński
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Fräısse, J. M. E. (2017), “Ph.d. thesis, university tübingen
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(2012), Phys. Rev. A 85, 022321.

Inguscio, M., and L. Fallani (2013), Atomic Physics: Preci-

sion Measurements and Ultracold Matter (Oxford Univer-
sity Press).

Inguscio, M., W. Ketterle, and C. Salomon, Eds. (2006),
Ultra-cold Fermi Gases (IOS Press, Amsterdam).

Ino, K., and M. Kohmoto (2006), Phys. Rev. B 73, 205111.
Invernizzi, C., M. Korbman, L. Campos Venuti, and M. G. A.

Paris (2008), Phys. Rev. A 78, 042106.
Invernizzi, C., M. G. A. Paris, and S. Pirandola (2011), Phys.

Rev. A 84, 022334.
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A. Aćın, and M. Lewenstein (2016), Phys. Rev. X 6,
041044.

Ourjoumtsev, A., R. Tualle-Brouri, J. Laurat, and P. Grang-
ier (2006), Science 312 (5770), 83.

Pang, S., and T. A. Brun (2014), Phys. Rev. A 90, 022117.
Pang, S., and T. A. Brun (2016), Phys. Rev. A 93, 059901.
Paraoanu, G., and H. Scutaru (2000), Physical Review A

61 (2), 022306.
Paris, M. G. A. (2009), Int. J. Quant. Inf. 7, 125.
Paskauskas, R., and L. You (2001), Phys. Rev. A 64, 042310.
Peres, A. (1993), Quantum Theory: Concepts and Methods

(Kluwer Academic Publishers, Dordrecht).
Pethick, C., and H. Smith (2004), Bose-Einstein Condensa-

tion in Dilute Gases (Cambridge University Press, Cam-
bridge).

Pezzè, L., and A. Smerzi (2009), Phys. Rev. Lett. 102,
100401.
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Tóth, G., and I. Apellaniz (2014), J. Phys. A: Math. Theor.

47 (42), 424006.
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