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Abstract

A key challenge in porting enterprise software systems to the cloud is the migration of their database. Choosing a

cloud provider and service option (e.g., a database-as-a-service or a manually configured set of virtual machines)
typically requires the estimation of the cost and migration duration for each considered option. Many organisations
also require this information for budgeting and planning purposes. Existing cloud migration research focuses on the

software components, and therefore does not address this need. We introduce a two-stage approach which
accurately estimates the migration cost, migration duration and cloud running costs of relational databases. The first
stage of our approach obtains workload and structure models of the database to be migrated from database logs and

the database schema. The second stage performs a discrete-event simulation using these models to obtain the cost
and duration estimates. We implemented software tools that automate both stages of our approach. An extensive
evaluation compares the estimates from our approach against results from real-world cloud database migrations.

Keywords: Database modelling, Cloud migration, Enterprise systems, Model-driven engineering

Introduction
The benefits of hosting an enterprise system on the

cloud — instead of on-premise physical servers — are

well understood and documented [1]. Some organisations

have been using clouds for over a decade and are con-

sidering switching provider [2], while others are planning

an initial migration [3]. In either case, the most challeng-

ing component to migrate is often the database due to

the size and importance of the data it contains. How-

ever, the existing cloud migration work focuses on the

software components and gives minimal consideration

to data. For instance, the ARTIST [4] and REMICS [5]

cloud migration methodologies refer to the database but

do not support any database specific challenges. Similarly,

cloud deployment simulators like CDOSim [6] focus only

on compute resources. The limitations of these existing

cloud migration methodologies are described further in

“Related work” section.

Migrating large relational databases from physical

infrastructure into the cloud presents many significant

challenges, e.g., managing system downtime, choosing

suitable cloud instances, and choosing a cloud provider.

*Correspondence: mhe504@york.ac.uk
1Department of Computer Science, University of York, Deramore Lane, York, UK

The database could be deployed on a database-as-a-

service offered by one of several public cloud providers,

or installed and configured on a virtual machine(s). With

either option, selecting the appropriate cloud resources

requires knowledge of the database workload and size.

The infrastructure of the source database may impact the

migration duration; if it has limited available capacity or

bandwidth, then it will take longer to extract the data. An

organisation may wish to upgrade the existing database

hardware to speed up migration, or schedule downtime to

migrate the database while it is idle.

In this work, we assist with this decision-making

process via a tool-supported approach for evaluating

cloud database migration options. Our approach has

two stages—database workload and structure modelling,

and database migration simulation—and estimates migra-

tion duration, migration costs, and future cloud running

costs.We assume the source and target databases have an

identical: schema, type (e.g., relational or NoSQL), vendor

(e.g., Oracle or MySQL), and software version. Chang-

ing any of these parameters is a complex activity, which

organisations tend to perform separately (as discussed in

“Approach overview” section).

Given logs and a schema of a candidate database,

the database modelling stage generates: (i) a workload
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model conforming with the Structured Metrics Meta-

model (SMM) [7], and (ii) a structure model conform-

ing with the Knowledge Discovery Metamodel (KDM)

[8]. The second stage of the approach uses these mod-

els, alongside a cost model of the target cloud platform,

to perform a discrete-event simulation of the database

migration and deployment. To ease the adoption of the

new approach, we implemented two software tools that

automate the main tasks.

We carried out an extensive evaluation of the approach

using several open-source enterprise applications, and a

closed-source system from our industrial project part-

ner Science Warehouse [9]. In particular, our database

modelling method and tool were applied to 15 sys-

tems (including Apache OFBiz, and MediaWiki) to obtain

workload and structure models. In each case, the system

was installed on a server and configured with an Oracle

or MySQL database. The experimental results (detailed

later in the paper) show that our tool can extract models

from a broader range of systems and with lower over-

heads than the leading existing tool (Gra2MoL) [10].

Furthermore, we carried out a case study which showed

that our database modelling tool could be extended to

support a Microsoft SharePoint schema with less effort

than Gra2MoL. Furthermore, we performed a case study

that showed DBLModeller could be extended to sup-

port a Microsoft SharePoint schema with less effort than

Gra2MoL.

To evaluate the accuracy of the database migration sim-

ulation stage of our approach, we compared its predictions

to four real cloud database migrations. We migrated the

Science Warehouse Oracle database: (1) from AWS to

Microsoft Azure, and (2) from Microsoft Azure to AWS.

The first migration used Amazon’s EU Ireland region,

while the second used the EU Frankfurt region. Further-

more, we migrated an Oracle database containing syn-

thetic data for the Apache OFBiz ERP system between

the same regions. The relative error between these real

migrations and our predictions was between 4% and 22%.

As explained in the threats to validity section later in the

paper, fewer experiments were feasible for this stage of

our approach. Mirroring real-world migrations requires

databases containing tens to hundreds of gigabytes of data.

The costs and time associated with this are significant.

To the best of our knowledge, our work represents the

first tool-supported approach for the systematic, end-to-

end evaluation of cloud database migration options. The

main contributions of our paper are:

1. A new database modelling method for generating

workload and structure database models.

2. A new method for simulating cloud database

migration to estimate migration duration, migration

costs, and future cloud running costs.

3. Software tools that automate our database modelling

and cloud migration simulation methods.

4. An extensive evaluation of our approach and its

tool-supported methods.

These contributions significantly extend our preliminary

results on database model extraction [11] in several

ways. First, the new approach includes a database migra-

tion simulation stage (described in “Migration simulation

stage” section) that was missing from [11]. Second, we

provide an algorithm for our model transformation tech-

nique (in “Model refinement algorithm” section). Third,

we include a more detailed analysis of the SQL key-

word survey results from [11] (in “SQL support” section).

Fourth, we present new experimental results that evalu-

ate the complete end-to-end approach by migrating real

enterprise systems in the cloud (in “Migration” section).

Finally, we make the tools used by our approach and (to

enable replication) the experimental data and the results

from their evaluation freely available on GitHub [12, 13].

The rest of the paper is structured as follows. “Approach

overview” section provides an overview of our approach.

“Database modelling stage” section presents our database

workload and structuremodellingmethod and tool imple-

mentation. “Migration simulation stage” section describes

our simulation method, which uses the database work-

load and structure models to evaluate cloud migra-

tion options. “Evaluation” section presents our evalu-

ation of the approach. Finally, “Conclusion and future

work” section concludes the paper with a summary and

suggests future work directions.

Approach overview
The main stages of our approach are 1) database mod-

elling and 2) migration simulation. These are highlighted

Fig. 1 Two-stage evaluation of cloud database migration
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in Fig. 1 as light grey and dark grey respectively. Each

has three sequential tasks, which are supported by our

DBLModeller and MigSim tools.

The database modelling method we devised for stage 1

is technology-independent and enables organisations with

legacy enterprise systems to understand their database

workload and structure. It semi-automatically synthesises

a workload model (conforming to the Structured Metrics

Metamodel [7]) and a structure model (conforming to the

Knowledge Discovery Metamodel [8]). These enable the

identification of read-heavy tables, write-heavy tables, and

daily load patterns.

Both models are obtained using text-to-model transfor-

mations. The source of the structure model is a database

schema extracted from the database. While the source of

the workload model is existing or newly created database

workload data (e.g., query log files). The metamodels

they conform to are common in model-based software

modernisation approaches (e.g., [4–6]), which ensures the

interoperability of the models generated by our method

with future technologies.

The second stage of our approach simulates the migra-

tion of a database to a new cloud provider. This con-

sumes the structure and workload models from the

previous stage. First, a cloud cost model is obtained

for each cloud provider/platform considered as a poten-

tial migration target. To keep this task simple, we

developed a cloud cost metamodel that captures only

the cloud charges relevant for database migrations.

The types of cloud charges vary significantly between

providers, and our use of this simpler, domain-specific

metamodel instead of a generic metamodel like [14]

or [15] helps overcome the complexity due to this

heterogeneity.

The next task is choosing the databasemigration param-

eters. These include the capacity of the target cloud

database, server(s) specification, and whether a middle-

ware (e.g., [16]) or VPN is required. Finally, a simulation is

performed using our MigSim discrete-event simulator for

each set of parameters.

Relational databases are prevalent in the cloud migra-

tion literature, and they are therefore the focus of our

work. However, the approach (Fig. 1) does not have a strict

dependency on one database type. We require a cloud

cost model, a source of workload data, and a schema,

which could also be obtained from NoSQL databases

[17, 18]. The schema is used to interpret the work-

load model (i.e., the frequency data structures/tables are

accessed) and track migration progress in the simulation.

Using an inferred NoSQL schema will not affect the cost

estimates.

While our approach is generic, the DBLModeller and

MigSim tool implementations are specific to Oracle and

MySQL out-of-the-box. The exact versions and supported

constructs, and the extension mechanisms for other

databases are discussed later in the paper.

The approach and tools require both databases to be

identical apart from the data. Changing the database

version, schema (e.g., to modernise its design), or

database type (e.g., relational to NoSQL) are signifi-

cant independent challenges [19–21] and outside the

scope of our work. We expect many organisations to

perform separate projects for cloud database migra-

tion and data conversion. Our industrial partner for

this work, Science Warehouse, took this approach.

Conversion of the data and database structures will

require cloud or in-house compute resources. Deter-

mining the cost of this is a complex activity, which

we propose in “Conclusion and future work” section as

future work.

Databasemodelling stage
Systems being migrated to the cloud (and their databases)

will usually have been in continuous development for a

long time. This can result in unused tables or data, which

engineers are reluctant to clean-up for fear of unintended

consequences. This issue is compounded when there is

poor documentation or when knowledgeable engineers

leave the team. However, an accurate understanding of

the database must be obtained to choose cloud migra-

tion parameters and approaches. This information is also

required for other common activities, such as database

refactoring, archival of old data, and potential transition

to a NoSQL datastore.

A key challenge when developing a database modelling

method is heterogeneity, as the available tools and features

that the new method can exploit are different between

each database provider. For example, MySQL Enterprise

Monitor [22] can generate statistics on the workload

and MySQL Workbench [23] can model the structure.

Other databases have similar tools with varying function-

ality. As described next, our database modelling method

and DBLModeller tool adopt a platform-independent

approach that utilises a SQL schema dump and a SQL

query log (if necessary). As we show later in the evaluation

section, this approach overcomes many of the differences

between SQL dialects.

Our database modelling method has five steps, as

described below. The ‘Obtain Workload data’ task from

Fig. 1 has been decomposed into Workload Source Iden-

tification, Query Logging, and Workload Extraction.

1. Schema Extraction. A user obtains a SQL dump from

the target database using existing tools (e.g., [24] or

[25]). Scripts from version control systems should be

avoided as they may not be accurate.

2. Workload Source Identification. A user identifies any

existing sources of workload data, for example, from
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database monitoring tools. The goal is to produce a

sequence of measurements containing: data being

read or written, and the target (i.e., database table).

3. Query Logging. This task is only performed when

workload sources identified in Step 2 provide limited

information or are completely unavailable. Here an

interceptor/spying library, such as the multi-platform

P6Spy [26], should be used to record the queries.

This needs to be in place for long enough to capture

several usage cycles, i.e., minimum to maximum load

variations.

4. Workload Extraction. A user processes the gathered

data from Step 2 or Step 3 into a sequence of

workload measurements. The DBLModeller tool can

automate this step for P6Spy or Oracle query

logs [27].

5. Text-to-Model Transformation. The sequence of

workload measurements from Step 4 is automatically

transformed into a SMM-based workload model [7].

Furthermore, the schema from Step 1 is automatically

transformed into a KDM-based [28] structure model.

Deciding whether to perform Step 3 depends on the

quantity and quality of workload information identified in

Step 2. This information must provide a sequence of time-

boxed measurements for the amount of data inserted into,

and read from, various database entities. A database entity

can be a set of columns, a table, a set of tables, or a schema.

Step 5 uses grammar-to-model mapping to perform

the transformations required to obtain the KDM and

SMM models. We significantly extended the approach

from [29] with the ability to handle multiple SQL dialects

as input. This is possible because we require high-level

models and many of the differences between dialects are

at the implementation level. Furthermore, we have used

novel executable annotations rather a model-to-model

transformation to restructure the model. Typically a text-

to-model transformation (T2M) would be required to

produce an intermediate model, then a model-to-model

(M2M) transformation would be applied to get the desired

model. Our executable annotations avoid this, meaning

that only a single transformation is required. Furthermore,

we used the standardised KDM and SMM metamod-

els to provide interoperability with other leading tools

and approaches. KDM and SMM are already used exten-

sively in REMICS, ARTIST, and other cloud migration

projects [30, 31].

Based on our database modelling method, we imple-

mented the DBLModeller command line tool to automate

the ‘Workload Extraction’ and ‘T2M Transformation’

steps of the method. This transforms a SQL schema to a

KDM structure model and a SQL query log to an SMM

workload model. The query log must be in the P6Spy [26]

or Oracle [27] format; alternatively, a CSV file containing

workload measurements can also be used as input. The

SQL schema must be in the format produced by Oracle

Database Developer or MySQL Workbench. This allows

database models to be easily obtained for the second stage

of our approach.

KDM Compliance

The KDM is a large metamodel with twelve packages

distributed across four abstraction layers. Each package

allows some legacy system artefact to be modelled. The

KDM’s developers — the Open Management Group —

proposed compliance levels [28] for tools using the meta-

model, this reflects the fact that many tools (such as

DBLModeller) do not wish to implement all of the KDM.

Level 0 complaint tools support the: core, kdm, source,

code, and action packages. A level 1 tool adds support

for one or more of the: platform, data, event, UI, build,

structure, and conceptual packages. Finally, level 2 tools

support the entire metamodel.

Our database modelling method and DBLModeller tool

only support the KDM data package, and therefore do

not comply with any level. We made this decision because

our goal differed from that of the KDM’s developers, who

focused on the model-driven re-engineering of a software

system. If DBLModeller was to be used for this purpose,

we envisage that it would be an “add-on” to other model

extraction tools (e.g., [32]).

Model refinement algorithm

A key difference between DBLModeller’s ‘T2M Transfor-

mation’ step and Gra2MoL [10] is our use of executable

annotations to restructure (i.e., refine) the model. As

such, during the text-to-model transformation (shown

Fig. 2 Text-to-model transformations in DBLModeller
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in Fig. 2) annotations are introduced into the KDM

and SMM models. Afterwards, the models are searched

to find, execute, and remove the annotations. The

three types of annotations used by DBLModeller are

described below.

1) Move annotations. These annotations act on the line

on which they are placed, moving it to within another ele-

ment in the model. The target element is identified by its

name and type, which are included as parameters in the

annotation. With the standard Gra2MoL framework, the

element order in the model will match the input text.

2) Add annotations. These annotations create new

model elements in a specific model location, this can

either be the same location as the annotation or a differ-

ent one. This is used to handle ‘ALTER TABLE’ statements

and keys within ‘CREATE TABLE’ statements, as both

would be impossible with a single Gra2MoL T2M trans-

formation. For example, processing an ALTER TABLE

statement requires some existing model element to be

modified (e.g. add a primary/key foreign relationship).

This goes against the traditional function of a T2M trans-

formation which creates a model element when a state-

ment is found in the text.

3) Reference annotations. These annotations serialise

name-based references (e.g. SchemaName. TableName) to

model paths, e.g.

//@element.1//element.3//element.0

Although Gra2MoL has a mechanism for tasks like this,

an annotation is needed because model elements can be

created after the grammar-to-model mapping is complete.

The DBLModeller model refinement is formalised by

function REFINEMODEL from Algorithm 1. Given an

annotatedModel, this function first invokes GETANNO-

TATIONS to obtain a list of Move annotations that is

passed to EXECUTEMOVES (line 2). This ensures that

all Move annotations, which will change the location

of the other annotations, are executed before obtaining

the Add and Reference annotations and passing them to

EXECUTENONMOVES (line 3).

Migration simulation stage
The second stage of our approach uses discrete-event sim-

ulation to estimate the database migration cost, migration

duration, and future cloud running costs. Our simula-

tion method, called MigSim, focuses exclusively on the

database and considers: (1) its size and workload, (2)

growth trends, and (3) compute instance/virtual machine

performance.

Accurate estimates of the database migration costs

enable organisations to plan, budget and investigate trade-

offs. From a planning perspective, the organisation will

typically want to know how much time a migration

requires, as this may rule out an Internet-based migra-

tion. One common trade-off an organisation might want

to investigate is duration versus cost. Additional band-

width or increased database performance could speed-up

the data transfer into the new database. Similarly, they

can look at the cost benefits of ‘cleaning-up’ the database

before migration, i.e., identifying and removing unneeded

tables or archiving old data. Our simulation method can

be equally applied to migrations between clouds, or from

on-premise databases to the cloud.

We employ simulation to estimate these migration val-

ues because of the large number of variables associated

with cloud database migrations, and the complexity of

their relationships. These variables include the source

database workload, workload growth, database size, cloud

instance performance, and cloud usage charges. In par-

ticular, the database workload and cloud instance perfor-

mance are stochastic variables [33–35] which meant we

ruled-out a model transformation/query to obtain results

directly from the models.

From the numerous discrete-event simulators available,

we decided to extend the CloudSim Framework [36]. This

framework has existing functionality for simulating data

migration between software applications running on dif-

ferent hosts. Furthermore, it has been used extensively

to simulate other aspects of cloud systems (e.g., [6, 37]).

The key extension we made to CloudSim was to associate

costs with resource consumption. These costs are defined

in a cloud cost model for the target cloud platform, which

is also input into the simulation. The migration duration

is dependant on the infrastructure capacity/performance;

this performance data is provided to the simulation as a

set of parameters. These contributions are highlighted in

Fig. 3. Several useful components of CloudSim are reused,

notably: (1) the underlying simulation engine, it’s (2)

time-shared resource allocation algorithms, (3) network-

ing functionality, and (4) the VM, Host, and Datacenter

classes.

Cloud cost metamodel

We developed a metamodel to define the structure and

content of our cloud cost model. The wide ranges of ser-

vices typically offered by cloud providers and the regional

variations in pricing are complex; this makes a model-

based approach for including cost data in the simulation

desirable.

Our metamodel — implemented in the Eclipse Mod-

elling Framework— has been designed to support charges

from major public clouds which may be incurred dur-

ing database migration. Each instance of our metamodel
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Fig. 3 UML2 class diagram showing the new major new components in MigSim, as well as those adapted from CloudSim

corresponds to a single cloud provider and covers a set of

cloud services (e.g., Amazon RDS and EC2). Finally, each

cloud service is associated with multiple cloud charges, as

shown in Fig. 4.

We have chosen to exclude negotiable and market-

based cloud charges from the scope of our metamodel.

The majority of organisations are unlikely to deploy,

and thus to pay for a relational database deployment in

this way. For example, Amazon’s EC2 spot instances are

automatically terminated when the current market price

exceeds an organisation’s bid price. They are intended for

transient workloads or those which can be accelerated

when compute instances are cheaply available. Further-

more, negotiated/private pricing arrangements are typ-

ically the domain of extremely large-scale systems (i.e.,

hundreds of millions of users worldwide). These are out-

side the scope of MigSim due to their scarcity and unique

characteristics.

Fig. 4 A snippet of the cloud cost metamodel showing its key components
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Four types of charge are relevant to database migration

and therefore captured by our cloud cost metamodel: ser-

vice, compute, storage, and transfer. A ‘ServiceCharge’

represents non-infrastructure charges, e.g, an AWS

Support Plan, static IP addresses, or VPN connections.

This consists of a fee and a duration which can be

specified in minutes, hours, days, months, or years. A

‘ComputeCharge’ models the cost of a cloud Virtual

Machine running for a given time (e.g., Amazon EC2),

while a ‘StorageCharge’ corresponds to the cost of per-

sistent data storage (e.g., Amazon S3). A ‘TransferCharge’

represents the cost for data sent or received across a

network. Charges may be tiered so that a per-unit dis-

count is applied for heavy usage or to allow regional price

differences.

As part of our MigSim implementation, we manually

created instances of our metamodel for AmazonWeb Ser-

vices and Microsoft Azure. These models contained real

values taken from the providers’ websites and enabled us

to simulate the migration of multiple databases between

the two platforms.

Several existing metamodels also capture cloud costs,

such as those proposed by Leymann et al. [15] and

Maximilien et al. [14]. However, these metamodels

are not specific to the cloud migration of databases

and model elements unnecessary for our use case

are present in each metamodel. Rather than using an

existing metamodel ‘out-of-the-box’, we could have tai-

lored/modified it to suit our use case. After investi-

gation this was ruled out because: (1) the effort for

approach users would be greater, and (2) the tailored

metamodel would be less intuitive. As our approach

requires users to populate a cloud cost model from data

on a provider’s website, we considered ease-of-use to be

essential.

Design

The migration environment within MigSim contains five

key components as shown in Fig. 3: in-house database,

middleware, gateway, cloud database, and the ‘MigSim’

simulation controller. The controller uses the structure

and workload models to add data transfer tasks (called

‘NetworkClouldets’) to the other components. These tasks

represent data migration and future database load. The

data is extracted from the in-house database by the mid-

dleware, then sent through the gateway (e.g., a VPN) to

the new cloud database. This transfer takes place over a

simulated TCP/IP network to represent a migration over

the Internet.

MigSim has four inputs: a workload model, struc-

ture model, cost model, and parameter set. Within the

parameter set a user specifies: the cloud resources for

each database or application (whose cost is defined

in the model) and their performance. Optionally,

they can override the workload model and spec-

ify the expected future growth percentage and any

additional hours the migration infrastructure must

be running (e.g., during non-working hours). The

results provided when the simulation finishes are:

future running costs, migration cost, and migration

duration.

A ‘middleware’ and ‘gateway’ are included in MigSim

as they are common migration components [16, 38, 39]

and impact upon the cost and/or migration duration.

For example, a Middleware component will introduce a

bottleneck if its performance is worse than that of the

databases. Either component can in-effect be excluded

from the simulation by setting its cost to zero and

configuring its performance to be higher than that of

the other components. This supports migrations without

middleware (e.g., if database replication functionality is

performing the migration) or those where a VPN is not

required.

MigSim has been implemented by using and extend-

ing the CloudSim framework. Each database or migration

application from Fig. 3 inherits CloudSim’s AppCloudlet

object, which can be used to represent an application

running in the cloud. Each AppCloudlet is assigned

to a Virtual Machine, running on a separate physi-

cal Host, in a CloudSim Datacenter. This allows us to

use CloudSim’s functionality of simulating data transfer,

although we extended this to associate costs with resource

consumption.

The Workload Model specifies historical growth trends

and usage patterns. This data must be extrapolated to

predict the future database traffic if these trends con-

tinue. The storage space consumed by the database in

the future is dependent on the amount of new data

inserted. Furthermore, the provisioned database through-

put required depends on future database traffic. We

have used linear regression, specifically the ordinary

least squares (OLS) method [40], to estimate the num-

ber of future read and write queries received by the

database.

The OLS method produces a regression equation for

the existing data, which minimises the sum of the squared

errors (i.e., the error between each data point in the model

and the equation). By default, the number of estimated

future workload measurements is equal to the number

of data points in the model. For example, a workload

model covering the previous six months with one mea-

surement per month will be used to produce estimates

for the next six months. The state of the InHouseDB

migration component (from Fig. 3) is the same as it was

at the last measurement in the workload model. The

NetDatacenterBroker component generates load for the

InHouseDB, which matches workload values estimated

with the regression equation. As the simulation runs, the
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MiddlewareApp component migrates the data from the

InHouseDB to the CloudDB using slack capacity.

As an alternative to extrapolation from the model, a

user can specify an expected growth rate by setting a

simulation parameter. For example, if the system will

soon be launched to customers from a new country,

then the growth rate can be increased accordingly. This

allows business knowledge and plans to be included in the

simulation.

The capacity of the source database, middleware, and

target database, is defined in IOPS and input into the

simulation. IOPS (or Input/output operations per second)

is a performance measurement of storage devices like

SSDs and cloud storage services. The throughput of a

relational database depends on the performance of the

persistent storage, CPU, and available RAM. However,

in MigSim we have chosen to focus on the persistent

storage IOPS and assume that other database server com-

ponents are not a bottleneck. Typically in large enterprise-

scale cloud databases, the storage costs are greater than

those associated with CPU or RAM. The required peak

IOPS for an existing database can be measured using the

approach in [41].

Once the simulation is complete, the costs are calcu-

lated from the migration duration and the utilised cloud

resources. MigSim only calculates the costs associated

with the new infrastructure, i.e., the migration middle-

ware, the VPN gateway on the new cloud platform, and

the new database. The migration will increase the load

on the existing database and utilise its Internet band-

width, although the cost of this is heavily dependant on the

organisation so it is not considered within our simulation

method.

Additional compute time is included in final predicted

costs for set-up, configuration, tear-down. As part of

these activities the infrastructure may need to be kept

running during non-working hours (e.g., overnight, week-

ends, or holidays). The Additional compute time param-

eter is manually specified by a user at the start of the

simulation. It should be set according to the experience

of the team; if they have previously worked with the

system and cloud platform less time may be required.

These activities are a necessary part of any migration

and can significantly increase the total migration cost for

small databases.

Evaluation
This section presents the extensive experiments we car-

ried out to evaluate three aspects of our approach.

First, we evaluate the extraction of database models in

“Modelling” section. Next, we present and assess the

accuracy of the database migration cost and duration

predictions produced by the approach, and its estima-

tion of cloud database running costs in “Migration” and

“Running costs” sections, respectively. We conclude with

a discussion of the threats to the validity of our findings in

“Threats to validity” section.

Modelling

Our database model extraction method aims to support

the widely-used [42] Oracle and MySQL dialects of SQL,

and to be easily extensible to new SQL constructs or ver-

sions. In this section, we evaluate how effectively our

method achieves these aims. Additionally, we evaluate

the performance, completeness and correctness of the

database models produced by our DBLModeller tool.

SQL support

Fully supporting every SQL dialect is impractical due to

the number that exist and the size of the language. There-

fore, our DBLModeller tool supports a subset of two SQL

dialects: Oracle and MySQL. Whilst it is straightforward

to identify which dialects to support (many organisations

report on the estimated market share [42]), it is harder to

select statements and keywords to support within these.

We obtained MySQL and/or Oracle schemas for the

15 real-world databases shown in Table 1. Every schema

was obtained by deploying an instance of the system then

using MySQL Workbench or Oracle SQL Developer to

extract a SQL schema dump. This gave a sample size of 15

schemas which were analysed to identify the MySQL or

Oracle SQL keywords being used.

Figures 5 and 6 show the DBLModeller support for the

25 most used keywords in our database schema sets for

MySQL and Oracle, respectively. None of the keywords

Table 1 Database schemas used for keyword analysis

System Type Domain

Science Warehouse Oracle E-Commerce

University of Murcia
Record System

Oracle Record System

Apache OFBiz Oracle & MySQL Business Management
& E-commerce

MediaWiki Oracle & MySQL Collaboration

Confluence Oracle & MySQL Collaboration

Joomla Oracle Website Management

Magneto Oracle E-commerce

SonarQube Oracle Software Engineering

Mantis Oracle Software Engineering

WordPress Oracle Website Management

Moodle Oracle Education

OrangeHRM Oracle Record System

SuiteCRM Oracle Business Managment

RefBase Oracle Education

OpenMRS Oracle Record System
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Fig. 5Most frequent SQL keywords for the MySQL

Fig. 6Most frequent SQL keywords for Oracle

which appear in theMySQL top 25 are unsupported, while

only two keywords in the Oracle top 25 are unsupported:

NVARCHAR2 and USING. NVARCHAR2 is only used

by Confluence (albeit extensively), however this means

the data type for NVARCHAR2 columns will be null.

If necessary, support for NVARCHAR2 could be added

by modifying one line of the SQL grammar (to map it

to the KDM:String data type). The lack of support for

USING is not an issue because it specifies whether an

index is enabled or disabled in the Confluence schema,

and this detail is lost when abstracting to a KDM model.

Our analysis used the published keyword lists for each

dialect [43, 44].

Tailoring SQL support to the language constructs

used in schemas is a time-effective approach for devel-

oping a structure model extraction tool. Alternatively,

we could have supported all Data Definition Language

(DDL) statements (as defined in the Oracle and MySQL

documentation). DDL statements are those that allow the

creation, deletion, and alternation of schema objects. A

complete SQL dialect also includes Data Manipulation,

Transaction, and System Control Statements. However,

our keyword analysis showed that only 41% of DDL key-

words were used in our sample of database schemas. This

supports our claim that development effort can be saved

through selective keyword support with minimal impact

on system support.

Extensibility

It is inevitable that DBLModeller — or any similar model

extraction method — will need to be extended. Our deci-

sion to implement common SQL keywords means some

organisations will have to add to our implementation even

when modelling Oracle or MySQL databases. Some sys-

tems will use less well-know SQL-based databases, and

new versions of popular databases will be released.

We evaluated the extensibility of DBLModeller by

comparing it against Gra2MoL [10, 45], the leading

SQL-to-KDM extraction tool. For this purpose, we

carried out a case study where we extended both tool-

supported methods to accommodate a Microsoft Share-

Point schema.

The schema was obtained from a Microsoft Share-

Point 2013 instance installed on a Microsoft SQL Server

database. This installation was created specifically for the

case study. The schema rather than the data was needed,

so our results are unaffected by the system being unused.

SharePoint uses 16 schemas, and the largest of these was

selected; this schema contains 7 KLOC consisting of 136

tables, 5442 columns, and 61 indexes. Our goal when

choosing a system for this case study was to have a large

schema unsupported by both tools in equal measure.

The changes needed to DBLModeller to support the

schema were determined by attempting to extract a
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Table 2 Lines of code to support the SharePoint schema

G2M new grammar DBLModeller extension

New Updated New Updated

Lexer 70 0 25 6

Parser 11 0 6 14

T2M 25 85 24 1

M2M 10 5 0 0

Total 116 90 55 21

model, then noting any errors produced. These were

then fixed incrementally and the number of modified

lines of code were counted. However, with Gra2MoL a

new ANTLR grammar had to be developed to parse the

schema dump. This makes it possible to compare the work

required to extend a grammar against the work required

to develop a new grammar.

Table 2 presents the results and shows that the exten-

sion of DBLModeller required fewer code changes. The

use of our annotated T2M transformation meant that

no M2M rule changes were needed. The use of a multi-

dialect grammar meant it was unnecessary to write a

new grammar for the Microsoft SQL dialect. Instead, we

modified various rules in our existing grammar. However,

when comparing the development time/effort in extend-

ing the two tools it is important to consider whether a

new LOC represents the same effort in each. As identical

technologies are used in the Gra2Mol PLSQL example and

DBLModdler (ANTLR for the Lexer/Parser, and the G2M

DSL for the T2M rules), the results should be comparable.

We conclude that the changes made in DBLModeller have

had a positive effect on extensibility. Furthermore, the

similarities between SQL dialects meant that extending

the DBLModeller was a straightforward task.

Completeness, correctness, and performance

Model completeness, model correctness, and model

extraction performance have been evaluated together

due to their interdependence (e.g., extracting a complete

model will require more time than an incomplete model).

DBLModeller was compared to Gra2MoL’s PLSQL2KDM

example [45] as this had the highest level of SQL support

at the time of writing. We extracted KDM models from

the database schemas of four systems: Apache OFBiz,

MediaWiki, Science Warehouse, and a student record sys-

tem [10]. With OFBiz and MediaWiki we obtained Oracle

and MySQL versions of the schema by installing them on

both databases. Additionally, SMMmodels were extracted

from Wikipedia (using six months’ worth of data from

[46, 47]) and from Science Warehouse’s system.

Model completeness was assessed by comparing the

number of model elements and input elements, while

for correctness the properties of the model elements and

input elements were compared. We developed a small

model checking tool to automate this analysis. DBLMod-

eller was able to extract models from the six schemas suc-

cessfully, and from the output of our tool we concluded:

that the input text and the output model had the same

number of elements; that all table, column, and sequence

names were correct; and that relationships between tables

were correct. Furthermore, we confirmed that the models

conformed to KDMand SMMusing the EclipseModelling

Framework.

The performance of DBLModeller was assessed by

extracting a KDM model for each schema and measuring

the time taken. This process was repeated 20 times per

schema. We expected that the removal of the M2M trans-

formation from the model extraction process will have

significant performance gains. A virtual machine on the

Digital Ocean cloud platform with 4GB of RAM and two

Ivy Bridge based Intel Xeon cores was used to perform the

experiment.

The performance results are presented in Table 3, which

shows that DBLModeller can extract a KDMmodel in less

time than Gra2MoL for every schema from our experi-

ments. As Gra2MoL supports fewer SQL statements than

DBLModeller, in order to obtain results it was necessary

to modify the schemas by removing unsupported content

until they could be processed by Gra2MoL. Simple calcu-

lations based on the results from Table 3 show that the

DBLModeller model extraction times per KLOC were up

to 86% smaller for Oracle schemas and up to 84% smaller

for MySQL schemas. Finally, we note that the DBLMod-

eller model extraction times do not exceed 3 minutes:

extracting the model for the largest of our schemas took

only 174s. This is fairly insignificant in the context of a

cloud database migration, which is a positive aspect of our

approach.

Table 3 Model extraction times using DBLModeller and Gra2MoL

Schema Size (KLOC) Tool Mean (Secs.) Std. Dev. sec/ KLOC

Oracle
OFBiz

31.5 DBLM 174 2.35 6

10.3 G2M 237 3.4 24

Oracle
MediaWiki

2 DBLM 7 0.23 4

0.8 G2M 14 0.68 18

Oracle
Sci-ware

1 DBLM 5 0.19 5

0.4 G2M 14 0.62 35

Oracle
UoM

0.3 DBLM 5 0.21 17

0.3 G2M 10 0.62 33

MySQL
OFBiz

21.7 DBLM 104 2.13 5

9.5 G2M 230 9.73 24

MySQL
MediaWiki

1 DBLM 5 0.24 5

0.4 G2M 13 0.53 33
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Migration

Prediction ofmigration cost and duration

The key goal of our approach is to accurately estimate

cloud database migration cost and duration. This would

enable different migration options and parameters to

be evaluated, therefore supporting decision-making. We

measured the achievement of this goal by comparing our

predictions against (1) real cloud database migrations and

(2) cost calculators from the cloud providers [48, 49]. The

database migrations used a closed-source system from

our industrial partner Science Warehouse [9] and the

open-source ERP System Apache OFBiz [50].

Both databases (Science Warehouse and OFBiz) were

migrated twice: from the existing cloud platform to a

new cloud platform, then back again. This provided two

data points per system for our evaluation. While we used

public clouds as the source and target infrastructure, our

approach can also be applied to in-house to cloud migra-

tions. The Amazon Database Migration Service was used

as middleware to perform both migrations. Addition-

ally, the Science Warehouse migration required a VPN

between the two clouds to secure the data during transfer.

The Science Warehouse system is an enterprise pro-

curement system for making purchases in business-to-

business scenarios. At the centre of this is a product

catalogue which is populated by ‘supplier’ organisations,

from which ‘buyer’ organisations can make purchases.

The vast majority of users are in the United Kingdom and

Ireland, resulting in peak loads during business hours in

these countries.

Apache OFBiz (Open For Business) is an ERP sys-

tem which contains applications for: e-commerce/online

shopping, fulfilment of orders, marketing, and warehouse

management. Unlike with Science Warehouse we did not

have a real instance to use; therefore we populated the

system with 200GB of synthetic data to represent the

use-case of large online retailer. This was random data

which matched the purpose of the column, e.g., 16-digit

numbers following the Mastercard and Visa format were

inserted into a credit card number column. All database

tables were populated.

The Science Warehouse database was migrated while

idle and the OFBiz database was migrated with synthetic

load applied. This reflects how some of our approach users

can perform the migration with the system shutdown.

However, many larger systems would be critical to the

organisation and this would be impossible. The load rep-

resented a user base within a single country, with two

daily peaks at approximately 1100 and 1500. A daily total

of 1.3 million queries were made; 90% between 0600 and

2000. Two Amazon EC2 instances were used to send these

queries to the database server.

Our four migrations are modest in terms of size and

cost. Many organisations migrating enterprise system

databases will be moving data between database clus-

ters rather than single servers, making the cost more

significant. A common reason for database migration

is scalability, where database load is reaching capacity.

Limited capacity would therefore be available to migrate

the database while it is being used. Inducing such large

databases and loads was not feasible in this evaluation

due to the high costs. However, we expect the accuracy

of the experimental results to be similar for larger sys-

tems (such as those migrated in [2, 51], which have similar

characteristics).

The Amazon Simple Monthly Calculator [48] and the

Microsoft Azure pricing calculator [49] are used for each

migration to provide a cost baseline, as shown in Table 4.

These are often the first tools an organisation will use

when planning a cloud migration. However, compared

to our approach they have significant limitations. Most

notably they require a user to accurately identify the

cloud resource they require. As workload information not

directly considered by these tools, there is no indication

when the selected cloud resources represent over or under

provisioning. Furthermore, the Amazon Cost Calculator

does not include the Amazon Database Migration Service

and can only predict costs for one month.

The lack of support for determining the inputs to

the cost calculators can cause an organisation to make

coarse-grained estimates based on the size of the exist-

ing database servers. We based the calculated costs

in Table 4 on running the migration infrastructure

for one week. This represents a typical estimate for

systems of this size without knowing detailed work-

load information [52]. For the calculations, the Science

Warehouse database is migrated to a ‘db.m4.2xlarge’

AWS instance and a ‘D4v2’ Azure instance. The OFBiz

database is migrated to a ‘db.m4.4xlarge’ and ‘D5v2’

respectively.

Table 4 Predicted migration costs

System Migration Size Mean migration duration (Std Dev.) Total cost Cost calculator baseline

Science Warehouse
AWS → Azure 38GB 417 Min (7 Min.) $32.96 $264.68

AWS ← Azure 18GB 144 Min. (2 Min.) $26.41 $408.59

Apache OFBiz
AWS ← Azure 200GB 1147 Min. (12 Min.) $12.10 $821.71

AWS → Azure 163GB 901 Min. (8 Min.) $9.68 $508.93
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Table 5 Actual migration costs

System Migration Size Migration duration Total Cost

Science Warehouse
AWS → Azure 38GB 402 Min. $40.12

AWS ← Azure 18GB 147 Min. $30.75

Apache OFBiz
AWS ← Azure 200GB 1176 Min. $13.30

AWS → Azure 163GB 888 Min. $6.96

The predicted migration cost and duration obtained

with our modelling and simulation approach are shown in

Table 4 alongside the cost calculator baseline. Each simu-

lation was performed 20 times on a laptop PC with a Intel

i5-6200 (dual core, 2.3GHz) and 8GB of RAM. For com-

parison, the costs for the real migrations we performed

are shown in Table 5. These values were obtained using

data from Amazon CloudWatch and the Microsoft Azure

Active Log, which are services that record the creation and

deletion times of each cloud resource.

The Science Warehouse outbound migration took 0.3

hours less than our prediction and its “return” migra-

tion took 0.15 hours less; a relative error of of 4% and

22%, respectively. In contrast, the outbound OFBiz migra-

tion took 1.6 hours longer then predicted and the return

migration took 0.8 hours longer; these figures correspond

to a small relative error of 8% and 5%, respectively.

The simulation Execution times ranged from 8 minutes

for the 18GB simulation (best case) to 144 minutes for the

200GB simulation (worst case).When computing the cost,

MigSim rounds the migration duration up to the near-

est full hour, in line with the cost model of many cloud

providers. Therefore, the cost did not vary between runs,

although small differences may arise for larger datasets.

The ‘Total Cost’ columns in Tables 4 and 5 includeAddi-

tional Time. As discussed previously in “Design” section,

migrating a database often requires the underlining infras-

tructure to be running for longer than the data transfer.

Common tasks include: set-up, VPN configuration, tear-

down, and non-working hours where it is not possible to

the delete the cloud infrastructure. MigSim allows such

tasks to be accounted for when predictingmigration costs.

We manually estimated additional time for each migra-

tion and input this as a migration parameter (1 hour for

Apache OFBiz and 16 hours for Science Warehouse due

to security requirements).

A side-effect of database migration is that the target

database will consume less storage space and perform bet-

ter than the source database (despite identical data). This

is due to different amounts of data being inserted and

removed during routine usage of the source database, cre-

ating fragmented free space [53]. Furthermore, all schema

objects are (tables, indexes, etc.) are essentially rebuilt in

the target database. We have included the size column to

show the storage space consumed by the database before

it was migrated. This value was provided as input to our

simulation via each system’s workload model.

For eachmigration (simulated and actual) the databases’

SSD/HDD was matched to its workload, as would

be expected for any existing system. However, every

SSD/HDD type in AWS or Azure has its own price and

performance characteristics which impacts our results.

On AWS the Science Warehouse database used magnetic

storage which cost of $0.0002 per GB-Hour and a pub-

lished performance of 100 IOPS. On Azure a ‘P6 Premium

Managed Disk’ was used (240 IOPS, $0.001). Each cloud

provider has a different way of abstracting from the phys-

ical SSD/HDD in the their datacentre and the virtualised

storage devices they sell to users. As a result, it challenging

to have mirror the performance characteristics on the

source and target side of a migration.

The Apache OFBiz database used a provisioned IOPS

SSD on AWS (1000 IOPS, $0.0017) and a P20 Premium

Managed Disk on Azure (2300 IOPS, $0.0002). Both

databases have higher performance levels than for the Sci-

ence Warehouse system due to the increased size. The

impact of this extra performance can be seen in Table 4

and 5 as the migration time is not proportional to size.

Our evaluation compares like-for-like hardware so the

performance differences do not affect the results. For

example, the AWS to Azure migration of the Science

Warehouse database uses magnetic storage (Table 5). The

simulation of this migration models the performance of

magnetic storage (Table 4).

Running costs

In this section we evaluate the accuracy of the estimated

cloud running costs produced by our tool-supported

approach. Running a system on multiple clouds for a long

period of time (with additional servers applying a syn-

thetic load) was not feasible for our evaluation, so we

instead focused on the auto-scaling accuracy. Our simula-

tion considers the future database load (extrapolated from

the workload model) and the capacity of the new database

server. Once the load exceeds capacity an additional server

is introduced i.e., auto-scaling takes place. The error

Table 6 Predicted cloud running costs for Apache OFBiz (inc.

migration)

Cloud Load Mean cost
(year 1)

Mean scaling
point

Std. dev Cloud cost calc.

AWS

+40% $7,084 Week 16 0.46

$16,396+20% $6,410 Week 24 0.39

+5% $6,073 Week 28 0.46

Azure

+40% $15,003 Week 16 0.39

$32,564+20% $13,574 Week 24 0.46

+5% $12,860 Week 28 0.46
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Fig. 7 Cumulative cost for an AWS deployment of Apache OFBiz

between simulated auto-scaling and actual auto-scaling is

the main factor influencing the accuracy of the running

costs. For example, if our simulation underestimated the

database performance then servers would be added too

soon and inflate the predicted costs.

Table 6 presents the predicted running costs we

obtained for Apache OFBiz on Amazon Web Services

and Microsoft Azure. Figure 7 shows how these costs

are incurred over time. These values are based on the

synthetic OFBiz models we created using the DBLMod-

eller method before cloud migration. Additionally, we

used the cloud cost calculators from Azure [49] and

AWS [48] to provide a comparison baseline. Neither tool

supports the selection for cloud resources for the cur-

rent system’s workload (or any future workload growth).

We therefore estimated the cloud resources required at

the end of the one-year period and ran these for the

entire year without any up-scaling. This represents over-

provisioning at the start of the year, although as upgrading

from a single database server to multiple servers is com-

plex we believe organisations such as our project partner

would over-provision due to uncertainty. For example,

an organisation would likely wish to migrate to a clus-

ter of two database servers from the start rather than

upgrade from one to two servers at the end of the first

month.

By default our approach produces cost estimates based

on the assumption that the observed load trends in the

model will continue. The growth rate can also be manu-

ally adjusted to accommodate business plans. The results

in Table 6 use this functionality to produce the 5 and 40%

growth rates. These represent potential business scenar-

ios where growth is higher or lower than expected. The

results for 20% growth represent the actual trend in the

model.

In order to assess the accuracy of these results, we set up

a single OFBiz instance and applied the load from Table 6

for the 20% growth rate. The queue length and error logs

for the Oracle database were monitored. At this load the

database should be below capacity, therefore the queue

should be stable and no timeout errors should be thrown

(ORA-12170); these characteristics were confirmed in our

experiment. The load was then ramped up by 1 query/sec

every five minutes, until a timeout error was thrown by

the application.

The target database performance was set to 100 IOPS,

which matched the storage performance of a HDD-

backed AWS RDS instance [54] and a HDD-backed

‘standard disk’ in Azure [55]. We selected the storage

devices with the lowest level of performance to reduce

the cost of our evaluation—these devices required the

least synthetic/generated load to reach full capacity, and

therefore we had fewer cloud instances to pay for.

In MigSim, 100 IOPS equates to an auto-scaling thresh-

old of 24 queries per second for each database server. This

threshold remains constant in every simulation, although

it is reached at time moments that depend on the growth

rate (sooner for high growing rate, as shown in Fig. 7). In

this definition, a query is a typical CRUD (create, read,

update, or delete) SQL query for an ERP system. Batch,

back-up, and replication tasks are excluded. The calibra-

tion between published database performance (IOPS) and

typical database queries per second is a fixed-ratio. The

default value for this ratio was determined during the

design phase of MigSim by analysing the database traffic

from Science Warehouse and Apache OFBiz.

On Amazon AWS, the first timeout error was logged

at a load of 27 queries per second (cf. Fig. 8). Database

capacity was therefore reached 3 queries/sec after it was

in the simulation. This is a relative error of 12% andmeant

that our simulation “launched” a new instance six weeks

earlier than necessary. This would result in the simulated

cost likely being $246.96 higher than actual running costs.

However, scaling-out a database from 1 to 2 instances is a

Fig. 8 Timeout errors received at different load levels
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time consuming and non-trivial task. We expect that this

operation would take multiple weeks, therefore reducing

the error.

On Microsoft Azure the first timeout error occurred

when the load reached 26 queries per second, i.e., a rela-

tive error of 8% compared to the simulation results. This

would result in the predicted cost being $722.24 higher

than the actual cost for this scenario.

The accuracy of auto-scaling depends on multiple fac-

tors, including the performance of the cloud instance [56],

the size and structure of the database, and the queries

being made to the database. However, we expect an error

of up to ±12% to be typical for most enterprise web

applications when modelling database performance on

published IOPS.

Comparing the predicted costs from our approach with

those from the existing cloud cost calculators [48, 49]

shows an increase of between 53 and 60% (Table 6).

This is due to over-provisioning as the calculators do not

use workload information to select the required cloud

resources. Cloud cost calculators are typically intended

to produce cost estimates for short periods, where the

resource requirements are known. However, migrating

large growing database to the cloud requires a more

sophisticated approach to determine costs. We have

shown that MigSim can accurately predict when the

database infrastructure requires scaling, and therefore the

number of database instances that must be running.

Threats to validity

Construct validity threats may be due to simplifications

and assumptions made when evaluating our approach.

During the evaluation of the database modelling stage

of the approach, 15 real-world database schemas and

logs were used. Similarly, our evaluation of cloud migra-

tion costs and duration compared the predictions of our

database migration simulations to real-world migrations.

On the other hand, cloud running cost accuracy was

inferred from database capacity accuracy (for the rea-

sons presented in the results analysis from the previous

section). Real long-term experiments to assess this cost

would be necessary to increase the confidence that this

result is accurate.

Internal validity threats can originate from how the

experiments were performed, and from bias in the inter-

pretation of the results. To mitigate against these threats,

we repeated the experiments prone to such bias (i.e.,

the database migration simulations with MigSim and the

DBLModeller performance results) over 20 independent

runs. The code, experimental data, and results are publicly

available in our GitHub repositories at [12] for DBLMod-

eller and [13] for MigSim to enable replication. While the

real-world cloud database migrations used to evaluate our

estimated migration cost and duration were small-scale,

we have referenced much larger cloud migrations when

interpreting the experimental results. It should also be

noted that migrating databases from ERP systems is an

expensive and time consuming process. While we made

full use of our systems by migrating them twice, experi-

ments on other systems should performed to confirm our

encouraging findings.

External validity is concerned with the generality of our

approach. The characteristics of the closed-source sys-

tem used in our work (Science Warehouse) have been

explained in detail so the results can be generalised. Our

migration and running cost evaluation focused on Ora-

cle databases although since our approach abstracts away

from the database implementation it can be applied else-

where. MigSim considers the database capacity, load, and

size; these are all implementation-independent proper-

ties. Furthermore, we used two cloud platforms during the

evaluation (Amazon Web Services and Microsoft Azure)

and argue that our approach is compatible with other IaaS

and PaaS providers.

One other concern with the DBLModeller evaluation is

whether the sample sets of schemas used in “SQL support”

section are representative of the real world. This has

been mitigated by choosing multiple schemas from sys-

tems of varying sizes and from different domains. A

second concern is that a single case study has been

used in “Extensibility” section to evaluate the extensi-

bility. To partly address this concern, the case study

used a Microsoft SharePoint schema with characteris-

tics common to a wide range of systems. Nevertheless,

additional evaluation is required to confirm generality for

databases with characteristics that differ from those in our

evaluation.

Related work
The Cloud Adoption Toolkit from Khajeh-Hosseini et al.

[57, 58] is an approach for determining cloud migration

feasibility. It considers (1) cloud adoption costs, (2) risk

management, and (3) understanding tradeoffs between

cloud benefits and migration risks. Compared to our

work, Khajeh-Hosseini et al. have looked at the broader

problem of feasibility. Their cost modelling method is

high-level and focuses on current infrastructure costs,

without considering utilisation. We add the ability to

determine utilisation from workload models, avoiding

over-provisioning on the new cloud. Their cost estimation

tool (also used in [38]) has been released commercially as

PlanForCloud [59]. The authors recommendmodelling an

application and its underlying infrastructure to estimate

cloud running costs, thereby endorsing our approach.

Furthermore, we consider cloud-to-cloud migrations in

addition to the feasibility of the initial migration.

Binz et al. [21] present an approach for migrating enter-

prise applications to the cloud. Their key focus is on
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modelling the existing system (including all software,

middleware, and hardware components) and deploying a

‘cloud enabled’ version on a cloud. The key tasks in this

process are also automated. Our own approach comple-

ments this work by adding workload-based cost predic-

tion. This brings two key benefits. Firstly, our approach

could be used to determine financial viability and/or to

select a cloud platform. Secondly, it could be used dur-

ing the cloud-enablement phase of the approach to choose

between cloud database types. The notable strengths of

[21] include: (1) the high-level of automation, and (2) the

ability to support any system or database. We aimed to

incorporate these by also taking a model-based approach.

The methodology devised by the REMICS project [4]

supports the migration of legacy systems to the ‘service

cloud paradigm’, i.e., systems with a service-orientated

architecture running in a cloud. Its focus is the re-design

of the code, with related issues like testing, deployment,

and interoperability also considered. The methodology is

underpinned by a toolset to extract models from COBOL

applications and generate Java from these. Similarly, the

ARTIST methodology and framework [5] supports the

migration of legacy systems to the cloud. Compared to

REMICS, it adds feasibility assessment and business pro-

cess modification. The authors argue that these are com-

mon and important activities whenmigrating to the cloud.

Neither work investigates modelling or migration of the

database explicitly.

CloudMIG [30] is a model-based tool which automati-

cally determines a system’s suitability for a cloud platform.

It extracts an architecturemodel from the source code and

a utilisation model from log files. Together with a model

of the target cloud environment, these are used to identify

if the system is incompatible, compatible, ready, aligned,

or optimised for the cloud. However, it does not consider

the database when identifying compatibility. CloudMIG

extends the CloudSim simulation framework (like our

MigSim), but the modelling and simulation components

are not separate. This tight coupling prevents their reuse

for evaluating cloud migration.

Strauch et al. [60, 61] propose a novel methodology

for migrating the database of an existing system to the

cloud. It focuses on complex migrations where signifi-

cant quantities of data exist, and the software components

remain on physical in-house servers. The strengths of

this methodology include its level of detail, the evalua-

tion with large real-world systems (SimTech SWfMS and

NovaERM), and the accompanying Cloud Data Migra-

tion Tool. As a result, many organisations could eas-

ily employ it to migrate their databases. Our approach

complements this methodology by accurately predicting

database migration and deployment costs.

Other key approaches in the field of database moderni-

sation and migration include Minimal Schema Extraction

[62] and the business knowledge discovery framework

from Normantas and Vasilecas [63]. The latter is a model-

based framework for discovering terms and facts from a

database. Terms are business concepts, and facts make

assertions about these as defined in SBVR [64]. The

researchers argue that some business vocabulary can be

ingrained/implemented in a system which is not present

elsewhere, and it is valuable to extract this. Their xText-

based tool extracts a KDMdatamodel from a SQL schema

and derives a KDM conceptual model containing the

term/fact units.

The existing approaches for extracting KDM mod-

els from SQL use an intermediate ASTM-based model

[10, 63]. The Abstract Syntax Tree Metamodel is an

ADM metamodel [65] which is used to standardise

the syntax tree produced from the source code. The

goal of the metamodel is to improve interoperability. A

model-to-model transformation is then performed on the

ASTM model to produce the KDM model. An interme-

diate model requires two transformations to be devel-

oped and maintained. However, in our DBLModeller

a different approach has been used: the T2M trans-

formation produces an annotated KDM model, then

the annotations are executed to increase the level of

detail. This approach reduces the lines of code needed

to achieve the model extraction, bringing performance

and maintainability benefits while reducing the potential

for defects.

Perez-Castillo et al. propose automated approaches to

extract a data schema from software source code [62]

and encapsulate legacy databases using web services [66].

These will likely be of interest to organisations dealing

with legacy databases. In [62] a static analysis of a systems

source code is performed to identify and extract the SQL

statements it contains. These SQL statements are used to

generate a schema that only includes the tables/columns

used by the application. However, the disadvantage of this

approach is that it is difficult to implement. Many pro-

gramming languages, SQL variants, and database access

libraries (e.g. Hibernate) exist; and in practice, a tool will

likely need to be system specific to capture all of the

queries embedded in the code. In contrast, DBLMod-

eller uses SQL dumps produced from database IDEs (e.g.

MySQL Workbench or Oracle SQL Developer) to allevi-

ate this problem and to support a wide range of systems.

These produce SQL in a standard output format irrespec-

tive of how a system queries its database.

In addition to the work discussed above, several sur-

vey papers examine the field of cloud migration. Most

notably, Gholami et al. [67] review 43 papers to identify

their features, similarity, and research quality. The authors

observe how tool support for cloud migration remains

limited despite the quantity of work in the area and several

papers highlighting this issue. The survey also confirms
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the novelty of our work as none of the papers predicted

migration and deployment costs using system models.

However, several did comment on the significance of the

costs involved when migrating a system to the cloud.

Conclusion and future work
Three crucial pieces of information when migrating

a database to the cloud are duration, migration cost,

and future running costs. A detailed understanding of

each allows an organisation to choose between cloud

providers and different migration methods (e.g., Internet

versus HDD shipping). Existing cloud cost calculators and

approaches do not consider a system’s current and future

workload. They rely on a user accurately matching their

workload to the advertised cloud resources. Their accu-

racy is therefore limited in real-world use. To address this

gap, we developed a two-stage approach for evaluating

cloud database migration options.

The first stage of our approach uses DBLModeller, a

tool-supported method for modelling database workload

and structure in a platform independent way. Given a

database that needs to be migrated, this method generates

a structure model conforming to KDM [8] and a workload

model conforming to SMM [7]. These standardised meta-

models ensure interoperability with exiting modelling and

cloud migration tools, e.g., [4, 5]. Previous database mod-

elling tools did not capture the properties which influence

cloud migration costs, i.e., growth and query patterns.

Furthermore, DBLModeller decouples the extraction of

the KDM and SMMmodels from their use (e.g., SMMwas

used within CloudMIG [30] but the user cannot access the

model and other SMMmodels cannot be used as input).

DBLModeller was evaluated using database schemas

and log files from multiple real systems. Our experiments

showed that DBLModeller can extract models from a

wider range of systems and can be extended with less

effort than the leading existing tool (Gra2MoL [10]).

These key benefits were achieved by removing a model-

to-model transformation from the model extraction pro-

cess and by using a single multi-dialect grammar instead

of using a grammar for each dialect.

The second stage of our approach uses MigSim, a tool

supported-method that simulates cloud database migra-

tion from KDM and SMM models of the target database.

We evaluated MigSim by migrating two enterprise sys-

tems between Amazon Web Services and Microsoft

Azure. The migration cost and duration were compared

against the predictions from MigSim. We also ran a

database capacity experiment on Amazon’s Relational

Database Service to evaluate the accuracy of the auto-

scaling functionality in MigSim. The estimated migration

cost and duration had a relative error between 4 and 22%,

while the estimated cloud running costs had a relative

error of 12%.We believe these estimates would be valuable

to organisations when planning a databasemigration from

a physical server to the cloud, or between cloud platforms.

Our plans for future work include: (1) the use of

additional parameters when simulating database capac-

ity, (2) extending the approach to support relational-to-

NoSQL migrations, and (3) automating the extraction

of cloud cost models. Currently, MigSim horizontally

scales database capacity based on the storage/IO perfor-

mance. Storage performance is often the limiting factor

of database performance in OLTP or enterprise systems.

However, considering CPU and RAM utilisation would

increase the accuracy of the simulations. Databases with

analytical or business intelligence workloads would ben-

efit the most from this enhancement, as would databases

which use complex stored procedures that make greater

use of the database server’s CPU.

The (partial or full) migration of relational databases

to NoSQL data stores is desirable for some systems

[68] and supported by the Amazon Database Migra-

tion Tool [16]. However, the process is more complex

than relational-to-relational database migrations. The two

stages of our approach would still apply to this scenario,

although we would need to consider the compute time

required to perform the conversion. The existing structure

and workload models already provide information about

a system’s size and characteristics. Additional experi-

ments could be performed to determine the relationship

between conversion time and the characteristics of the

database.

A large number of public and private cloud providers

exist. Currency fluctuations, the release of new ser-

vices, and new hardware upgrades affect how they

charge. Automating the extraction of cloud cost mod-

els would reduce error and time, and prevent lock-in

[69, 70], so another area of future work is the creation

of a model extraction approach and tool for our cloud

cost models.

In addition to these three features, we would like to

expand our evaluation to include several large-scale sys-

tems with database clusters. This would confirm our

findings and provide interesting data on the impact of

load on migration times. Unlike Science Warehouse and

OFBiz, such systems would usually require minimal or

zero downtime during migration.
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