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Abstract

Previous studies have demonstrated that reinforced concrete flat slab structures

could be vulnerable to progressive collapse. Although such events are highly

dynamic, simplified static analyses using the sudden column loss scenario are

often used to gain an indication into the robustness of the structure. In this

study, finite element analysis is used to replicate column loss scenarios on a

range of RC flat slab floor models. The model was firstly validated against the

results of scaled slab experiments and then used to investigate the influence of

different geometric and material variables, within standard design ranges, on the

response of the structure. The results demonstrate that slab elements are able

to effectively redistribute loading after a column loss event, and therefore prevent

a progressive collapse. However, the shear forces to remaining columns were

159% of their fully supported condition and increased to 300% when a dynamic

amplification factor of 2.0 was applied. It is shown that this can potentially lead

to a punching shear failure in some of the slab elements.
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Introduction5

Since the collapse of Ronan Point tower building in 1968 the issue of progressive6

collapse of structures has been an important consideration for structural engineers. Much7

research has been aimed at understanding the response of different structural systems8

to a damaging event, commonly using the sudden column loss scenario. Extensive9

studies have covered the experimental, theoretical and numerical analysis of steel and10

Reinforced Concrete (RC) frame structures (Sasani et al. 2007; Flint et al. 2007; Yi11

et al. 2008; Su et al. 2009; Valipour and Foster 2010; Qian and Li 2013; Pham and12

Tan 2017). However the nature of flat slab construction creates a different response13

to extreme events compared to beam structures as a slab is able to redistribute forces14

more effectively. Previous events have demonstrated that flat slabs can be susceptible to15

progressive collapse, as seen with the Piper’s Row car park, UK, in 1998 (Whittle 2013)16

or Sampoon department store, South Korea, 1995 (Gardner et al. 2002; Park 2012). RC17

Slabs can undergo brittle failure due to punching shear or exhibit geometric nonlinearity18

in the form of tensile or compressive membranes (Hawkins and Mitchell 1979; Mitchell19

and Cook 1984; Muttoni 2008; Qian and Li 2012; Dat and Hai 2013; Keyvani et al.20

2014).21

Finite Element (FE) analysis has been used successfully to model the response of22

structures to extreme events such as column loss, typically for framed structures (Kokot23

et al. 2012; Fu 2010; Kwasniewski 2010) and has been shown to suitably consider24

the nonlinear aspects involved. FE analysis has also been successfully used for RC25

slab sections (Trivedi and Singh 2013; Li and Hao 2013), including consideration of26

shear capacity (Mamede et al. 2013). However, accurate modelling of the post-punching27

behaviour remains a challenge for FE packages despite the work of others (Faria et al.28

2012; Ruiz et al. 2013; Mirzaei and Sasani 2013; Genikomsou and Polak 2015).29
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Russell et al. 3

Furthermore, after Liu et al. (2015)’s important work into the response of flat slab30

structures to progressive collapse highlights that such structures can be highly susceptible31

to extreme events and that further studies are needed. As the potential for progressive32

collapse is dependant on the whole structural response it is important to consider the33

behaviour of a full floor section to consider the complete performance and what factors34

influence it. In particular the extent of damage and the potential for punching shear failure35

should be addressed.36

This study therefore investigated the effect of column loss on a large RC flat slab37

floor structure. The main objectives are to demonstrate how the loading is redistributed,38

determine the extent of damage this causes, identify the potential overloading of39

surrounding columns and consider how geometric and material variations affect this.40

An FE model of a flat slab structure was validated against a series of experimental tests41

on scaled substructures and then a static push down analysis was conducted focusing on42

the nonlinear behaviour and the redistribution of forces after a column loss. The Critical43

Shear Crack Theory (CSCT) was applied to the surrounding columns to determine which44

areas and conditions might be susceptible to punching shear and would therefore require45

more detailed consideration.46

Description of FE model47

To assess the response of a concrete flat slab structure to column loss event, a FE model48

was created and analysed using Abaqus/Explicit (Simulia 2010). Solid, 8 node, brick49

elements (C3N8R) with reduced integration were used to model the concrete sections.50

Geometric non-linearities, for example compressive membrane action, are also taken into51

account by using such an approach. The nonlinear behaviour of the concrete was defined52

using the Concrete Damaged Plasticity (CDP) model suggested by Lubliner et al. (1989)53

and modified by Lee and Fenves (1998) which is based on a Drucker-Prager hyperbolic54

function. This damage model considers the behaviour of the concrete after cracking55

as a region of plastic strain, in effect representing a continuum of micro-cracks. This56

model has been regularly used for considering damage to concrete sections (Cicekli et al.57

2007; Genikomsou and Polak 2015) due to its general purpose application for static and58

dynamic modelling of concrete. Full details can be found in the Abaqus manual (Simulia59

2010). The uniaxial stress-strain behaviour of concrete in compression, after the linear60

elastic phase, is modelled with Equation 1 from CEB-fib du Béton (2012):61
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(a) Uniaxial compression (b) Uniaxial tension

Figure 1. Annotated concrete stress-strain models

σc = −fcm
(

k · η − η2

1 + (k − 2) · η

)

(1)

where η = ǫc/ǫc1, i.e. the ratio of compression strain to crushing strain, and k is the62

plasticity number taken as 2.15 for C25/30 concrete. This gives a parabola shape beyond63

the elastic limit (see Figure 1(a)), with a softening effect until the ultimate limit, fcm,64

due to compressive micro-cracks. After this point, there is a reduction in capacity as the65

concrete crushes. However, from all the scenarios considered with this FE model, only in66

the most extreme cases was the compression ultimate limit exceeded and so the material67

definition for this range is not believed to be critical to the results.68

In tension, concrete is taken to be linear elastic up to its cracking stress, after which a69

nonlinear tension softening model is used to account for the reduction in the capacity of70

concrete. This is described Figure 1(b) according to Okamura and Maekawa (1990).71

σt =















E0 · ǫt for σt ≤ fctm

fctm ·
(

ǫt,ck
ǫt

)0.4

for σt > fctm

(2)

Additionally, account is made for the permanent reduction in elastic stiffness after72

crushing or cracking by use of a damage index, dt or dc for tension and compression73

respectively. These parameters are considered to be proportional to the maximum stress74

in each direction and vary from 0 for before the ultimate tensile or compressive stress is75

reached, up to 1 for a complete loss of stiffness (Simulia 2010).76
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Russell et al. 5

For the concrete plastic model it requires the following inputs, the Dilation angle (ψ)77

was taken as 35◦, an eccentricity (m) of 0.1, Kc factor of 2/3, ratio of initial equibiaxial78

compressive yield stress to initial uniaxial compressive yield stress (σb0/σc0) of 1.16 and79

a viscosity parameter of 0. These definitions and the values used come from the Abaqus80

user manual (Simulia 2010) and are all default values which convert the uniaxial stress81

strain relationship for compression and tension into the yield surface (Jankowiak and82

Lodygowski 2005).83

The steel reinforcement was modelled with circular beam elements, element ID84

B31. The bond between the steel bars and the concrete was achieved by using85

Abaqus’s embedded region feature, which constrains the translational degree between86

the elements nodes (Simulia 2010). Additionally, full bond was assumed between the87

steel and concrete, including along the entire anchorage length. Although this potentially88

overestimates the capacity provided by the steel in these regions, since no bar pull out89

was observed during the experimental validation tests, this simplification is considered90

adequate. Furthermore, as the Critical Shear Crack Theory, rather than FE results, was91

used for estimating shear strength, this approach is suitable for considering the response92

up to punching shear failure.93

Solutions from nonlinear FE analysis are usually influenced by the mesh refinement.94

While a coarse mesh will not replicate the true stress gradients across a section, if there95

are localised areas of high tensile stress, decreasing the mesh size results in narrower96

crack bands and may not represent true distribution of stresses and strains. To determine97

a suitable mesh density, a mesh sensitivity study was conducted on the model for the98

corner removal with static loading condition (test C-S). It was found that using concrete99

elements 25mm wide by 6.67mm deep and 100mm rebar elements, which resulted100

in a model with 165312 elements requiring 264 hours of computational time, was a101

suitable balance between computational time and accuracy. In general, this refinement102

overestimates the deflections at the highest loading levels but it shows a good agreement103

within the elastic range and into the early cracking phase. For example, Table 1 compares104

the results of the mesh sensitivity analyses for the corner removal (test C-S). More105

information on about the mesh refinement can be found in Russell (2015). Figure 2 shows106

the meshed FE model. The bearing supports, as used in the experimental programme, can107

also be seen. These are fixed at their base but allow separation and rotation between the108

steel components.109
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Table 1. Results from mesh sensitivity study

Coarse Fine Very Fine Experimental

No. of concrete elements 27552 165312 344400

N/A
Slab Element Width (mm) 50 25 20

Slab Element Depth (mm) 10 6.67 5

Rebar Element Length (mm) 200 100 50

Peak displacement at: (mm)

3.0kN/m2 4.40 4.57 4.52 4.8

6.0kN/m2 15.00 18.44 18.01 15.1

7.5kN/m2 44.95 67.91 87.24 63.8

Computational Time (Hr) 28 264 431 N/A

(a) Full model (b) Support and Boundary Condition

Figure 2. Rendering of the FE model showing mesh and boundary conditions

Validation against experimental results110

Two static loading tests of RC flat slab substructures conducted by Russell et al. (2015)111

were replicated to validate the FE models. Both tests were based on a 2x1 bay 1/3 scale112

slab substructures as shown in Figure 3. Two column removal scenarios with uniformly113

distributed loads (UDLs) were considered, the loss of a corner (C) column and the114

loss of an edge column causing a penultimate (P) column loss (i.e. the bottom left and115

bottom middle columns in Figure 3 respectively). An FE model based on the geometry116

of the experimental slabs was constructed. Concrete and steel properties required for117

the material models were determined from tests conducted on samples taken during the118

experimental programme.119

Support reactions were measured during the testing with load cells so comparisons120

could be made with the calculated values from the FE. The displacement readings121

recorded from LVDTs, were compared against nodal displacements at the equivalent122

positions. The locations of monitored points for displacements are shown in Figure 3.123
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Russell et al. 7

Figure 3. Locations of LVDTs and visual targets (D) from experiential programme for
corner removal condition (Russell et al. 2015)

The final crack locations from the experiment were also compared to the plastic strain124

distributions in the concrete slab elements.125

Force redistribution126

The relative load on each support after a corner column removal case (test C-S) is127

shown in Figure 4. The solid lines show the FE results while the data points from the128

experimental test are also plotted to allow comparison. For all positions and for most of129

the loading, a very similar response is observed. There is a higher deviation at higher130

load levels (i.e. UDL > 6kN/m2), with a maximum difference of 3.6 percentage points.131

This is due to the effects of cracking in the concrete, which reduces the stiffness around132

the supports. It should be mentioned that the proposed model does not capture this effect133

fully, partly because the plastic damage rule used leads to a gradual reduction in stiffness134

after cracking, whilst concrete often undergoes a sudden change. However, past the initial135

cracking phase there is again a strong agreement between the results and the overall136

response is considered to be good enough to make predictions on the demand placed on137

surrounding supports after a column loss.138

Displacements139

The force-displacement diagram is one of the key indicators into the suitability of the140

FE model as it allows validation of the elastic response of a structure and identifies the141

onset of cracking. It can also provide an indication of the ductility of the structure in142

the nonlinear range. As expected, at all recorded points there is an initial linear force-143

displacement response, however, once cracking starts to occur, there is a significant144

reduction in stiffness. Considering the displacement against loading for the corner145
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Figure 4. Distribution of forces to each support as loading increases. Test C-S. Solid line
is FE model, +’s the experimental results

column loss condition shown in Figure 5, there is a very good agreement between the146

FE model and the experimental results. The locations of the monitored points were given147

in Figure 3. Both the positions presented match the initial stiffness of the experimental148

results at low levels of loading. After cracking occurs there was a sudden increase in149

displacements observed in the experimental case, however the FE model gives a more150

gradual response. This matches the tensile response of concrete described by Equation 2.151

Despite this effect, variation between the cases remains small for the whole range of load152

applied.153

Flexural damage154

It is important to consider the location and extent of damage when assessing the effect of155

a column loss on a structure. The finite element analysis gives an indication of the areas156

that might experience damage or cracking and these were compared with the cracking157

patterns from the experimental results.158

The CDP model considers cracks to be a region of plastic deformation. Therefore, the159

location of the plastic strains should correspond to the location of cracks observed from160

the experimental case; this is compared in Figure 6. The location of cracks and plastic161
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Figure 5. Normalised displacement against load for test comparing experimental results
to the FE. Test C-S

strains (Figures 6(a) and 6(b) respectively) after a corner column loss, with 7.8kN/m2 of162

loading is shown. The cracks and plastic strain follow the sagging yield lines acting163

between the supports and the damage occurs across most of the slab, with the most164

extensive effects close to the remaining corner support. In the adjacent bay the cracks can165

be seen to follow the reinforcement locations, which are also annotated, as was seen from166

the experimental results. On the top surface the cracks/plastic strains run between the167

supports with most of the damage concentrated in a fanning pattern of cracks around the168

middle supports (contrasting the radial pattern seen on the underside), which identifies169

the hogging yield lines resulting from the non-regular layout of remaining supports.170

All these patterns fit closely with the observed results discussed in more detail in the171

experimental work (Russell et al. 2015).172

In general, the presented FE model correlates well to the results from the experimental173

slabs. In particular, the changes in reaction forces after a column loss show a close174

similarity, as do the locations of concrete cracks. This indicates that the stress distribution175

of FE model matches the true non-linear behaviour after a column loss scenario. The176

static displacements against load also correspond well between the experimental and FE177

cases, especially at the low loading levels. The higher loading conditions showed higher178

deviations due to the difficulty in defining the material properties for reinforced concrete179
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(a) Final crack locations from experiment (b) Equivalent plastic strain. Reinforcement is also

annotated

Figure 6. Comparisons of bottom surface cracking patterns at 7.8kN/m2 of loading for
test C-S

Table 2. Values for the dimensions in Figure 7 used for the parameter study

Symbol Label Values (mm)

L Span length 4000, 5000 and 6000

t Slab thickness 180, 200, 250 and 300

Lover Overhang 200

c Column width 400

H Storey height 3000

after extensive cracking has occurred for two-dimensional elements such as slabs. This180

leads to uncertainty in modelling the required nonlinear relationships for the extreme181

range. However, this occurs at higher deformations than is typical for accidental loading182

cases and so the proposed approach is considered suitable for the the range of conditions183

expected. Further information about the reference experimental tests and validation of184

the FE models can be found in Russell (2015).185

Description of floor model186

The validated FE model was extended to investigate the influence of changing different187

design parameters on the response of typical structures after a column loss event. A188

plan and elevation of the floor model is shown in Figure 7. Table 2 lists the geometric189

dimensions that were varied for the parameter study. The values used were limited by190

common configurations and the requirement to meet design guidelines.191
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Figure 7. Plan and elevation showing labels, key column locations, typical reinforcement
and grid markings

Each of the models was designed to meet current Eurocode requirements according192

to EN 1992 (2004). The structures were analysed using the equivalent frame method to193

obtain the required bending moments and shear forces. Characteristic dead loading was194

based on the selfweight of the material, taken as 25kN/m3, plus an additional 1.0kN/m2
195

to account for other finishes. Live loading for design was taken at 2.5kN/m2. Unless196

otherwise stated, the characteristic compressive concrete strength was 30MPa. Based197

on the design forces, adequate flexural steel was provided, including the requirement198

to place 50% of the tensile steel for hogging moments within 0.125 times the span199

width. To meet durability specifications, 25mm of cover was provided to all steel. In200

all locations, for both top and bottom steel, at least a minimum area of steel was provided201

according to Eurocode requirements. Each model configuration met the required shear202

stress capacity without the inclusion of extra reinforcement. As the size of the columns203

was kept constant, the maximum span to depth ratio considered was limited by the shear204

capacity of the concrete.205
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Table 3. Span length and slab thickness for each model

Span length Slab thickness Effective span Span to depth ratio

L (mm) t (mm) Leff Leff/t
4000 180 3780 21.0

4000 200 3800 19.0

4000 250 3850 15.4

5000 200 4800 24.0

5000 250 4850 19.4

5000 300 4900 16.3

6000 250 5850 23.4

In total, seven different arrangements were considered as listed in Table 3. The span206

to depth ratios are based on the effective span length, Leff , of an internal bay with a207

continuous slab over the supports according to Equation 3. These represent the range of208

span to depth ratios that are typical for flat slabs without shear reinforcement, i.e. 15–25.209

Leff = L− 2
( c

2

)

+ 2

(

t

2

)

(3)

where the terms L, c and t are the span length, column width and slab thickness210

respectively, as identified in Figure 7 and Table 2. All bays were square and had the211

same span lengths, i.e. the aspect ratio of both the bays and the entire floor was constant.212

Loading on the slab213

For the FE simulations a UDL was applied to the entire slab area and was linearly214

increased up to the accidental load combination, wac, as given in Equation 4 from US215

General Services Administration (GSA) (2013), where DL and LL are the Dead and Live216

Loads respectively. While other load factors could be used to account for loading during217

an accidental event, this requirement is one of the highest commonly used.218

wac = 1.2DL+ 0.5LL (4)

Once this level was reached, a further UDL was applied only to the bays around the219

lost column. The loading in this area was increased linearly up to a value of 2wac, i.e. a220

Dynamic Amplification Factor (DAF) of 2.0. This additional load replicates the dynamic221

influence affecting those bays (Tsai and Lin 2009).222
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Punching shear calculations223

Modelling of punching shear failure in finite element software is possible but requires224

the connections to be very carefully defined and the failure is more sensitive to mesh225

arrangement and the modelling solver. As has been demonstrated by others such as226

Genikomsou and Polak (2015), consideration of punching shear failure for a single227

connection is a demanding problem. For the size of floor slabs considered in this study, it228

would not be efficient to model the connections for this. Additionally, this work is focused229

on the response of the slab before punching shear failure and the potential complete230

collapse this could cause. As such, crack patterns, force redistributions, the displacement231

response and their relation to different column removal cases and geometric and material232

variables are not dependant on the shear approach used. Therefore each simulation was233

run to full loading and excluded shear failure and the punching shear capacity of the234

unreinforced flat slab connections was estimated with the Critical Shear Crack Theory235

(CSCT) developed by Muttoni (Muttoni 2008). The CSCT has been demonstrated to be236

suitable for assessing progressive collapse of flat slab structures (Micallef et al. 2014;237

Liu et al. 2015; Olmati et al. 2017) and the equation for predicting shear strength without238

transverse reinforcement is given in Equation 5, shown below,239

VR

bod
√
fck

=
3/4

1 + 15 ψd
dgo+dg

(5)

where Vr is the shear force strength of the connection, bo is the shear perimeter including240

a reduction to account of eccentric loading, d is the slab depth, fck is the concrete241

compressive strength, dg is the aggregate diameter, ψ is the rotation of the slab, and242

is used as a proxy for crack width. The rotations and reactions were taken from the243

nonlinear finite element model which corresponds to a Level IV approximation from the244

Model Code 2010 (2012).245

FE analysis results and discussion246

Concrete cracking247

During the analysis, cracking in the concrete elements was monitored to understand248

which areas of the structure were susceptible to flexural damage. The following results249

are based on the response of the model with a span to depth ratio of 19.4. However, it250

was seen that increasing the span to depth ratio primarily causes nonlinear behaviour due251

to cracking to occur earlier, but does not change the stress distribution and progression of252
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(a) Bottom surface cracks (b) Top surface cracks

Figure 8. Location of tensile plastic strain regions in the concrete elements after corner
column (A1) removal; w = 2wac

damage patterns. Figure 8 shows the location and extent of plastic strains, representing253

cracks, that occurred after a corner column loss. Minimal plastic damage was observed254

before 1.5wac. On the bottom surface (Figure 8(a)) diagonal cracks develop between the255

two orthogonally adjacent supports, as was observed during the experimental programme256

(Russell et al. 2015). However, these are limited to the bay directly around the removed257

column. On the top surface (Figure 8(b)) the cracks span between the surrounding258

supports, although the locations directly adjacent to the columns remain the most critical259

areas. Additionally, the start of a diagonal crack between columns A2 and B1 can be260

seen.261

After an internal column removal, a similar response is observed with cracks262

concentrated directly next to the adjacent supports at relatively low loading (see Figure263

9). By increasing the load, a large area of the structure is affected by extensive cracking264

on both the bottom surface (Figure 9(a)) and the top surface (Figure 9(b)). These plastic265

strains are larger, and cover more of the structure, than the corner condition, which266

explains why the internal column removal case has higher displacements, as shown later.267

It can also be noted that the hogging moments create cracks that surround the damaged268

bay and the sagging condition results in many cracks in the middle of the bay, however,269

the rest of the structure remains largely unaffected.270

These cracking patterns demonstrate the change in stress distribution for a structure271

that has lost a column. For sagging moments, it is clear there is significant stress acting272

between diagonal columns (see B1-A2 for both presented cases). On the top surface the273
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(a) Bottom surface cracks (b) Top surface cracks

Figure 9. Location of equivalent plastic strain regions in the concrete elements after
internal column (B2) removal; w = 2wac

stress distribution has changed from the pattern expected for a regular column layout274

and now act perpendicular to grid line C1-C2 for internal case as well as towards the275

removed column location, perpendicular to line A2-B3, B3-C2 etc. The pattern of cracks276

match these seen in the experimental programme and the FE validation for the small277

slab section. In particular the radial yield lines around the remaining supports on the278

underside can be seen while on the top surface there is a fanning pattern around the279

adjacent supports after a column removal. Additionally, there is a clear hogging yield280

line acting between supports.281

These concrete cracking patterns highlight the important changes to the internal forces282

in the slabs as a column loss event. For a flat slab with a regular arrangement of columns283

there is the traditional bending moment response along the grid lines. However, after a284

column removal event the span length will not be doubled, as would be predicted for285

a beam system, and a new bending moment arrangement forms utilising the shorter286

diagonal distance. Therefore the area around the removed column, although originally287

designed as a hogging moment location, may experience some sagging (particularly in288

an internal column removal case). The area of largest sagging bending stress is likely to289

be around the middle of the bay, which was designed for a sagging condition. However,290

the hogging bending stresses clearly extend to areas which were not intended for such291

conditions and may exceed their tensile capacity.292

Understanding these effects is important for considering efficient changes to design293

for reducing damage after a column loss events.294
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Figure 10. Change in column reaction forces due to static load increases for different
span to depth ratios. Corner column removal

Reaction forces295

Figure 10 shows the sum of reaction forces at two column bases as the static load is296

increased after a corner column loss. Column A2 is an orthogonally adjacent column to297

the removed location, see Figure 7, and experiences the highest increase in reaction force.298

For further comparison, column B2 is shown. The experimental programme indicated299

that this location (i.e. across the diagonal from the removed column) experienced a300

reduction in its relative loading (reaction force over fully supported case) as a result301

of the column loss. The seven models with different span to depth ratios are plotted302

and the reaction forces normalised against the fully supported condition with a load of303

wac. The main observation is that there is no significant difference in relative demand304

for structures with different span to depth ratios. As a result, all other comparisons will305

be made with just one configuration, Leff/t=19.4. At a loading of w = wac applied306

to the entire structure, column B2 exhibits a relative load of slightly less than 100%,307

demonstrating the demand is reduced. However, increasing the load in the critical bay308

results in a slight increase in loading at this location.309

After a column loss, some of the remaining columns can experience a significantly310

higher load than they were previously carrying. This can be seen further in Figure 11,311

which shows the change in the column load, compared to its fully supported condition,312

for all the remaining columns after a corner (Figure 11(a)) or internal (Figure 11(b))313

column loss. Due to the symmetry of the structure only half the columns are plotted. It314

can be seen from the results that the two orthogonally adjacent columns have the largest315

increase in vertical loading. As was observed during the experimental programme, there316
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(a) Corner column removal (A1)

(b) Internal column removal (B2)

Figure 11. Change in column reaction forces due to static load increases. Leff/t=19.4

is a linear increase in the loads transferred to each support, as total load is increased.317

However, it can be seen that at the higher loadings the effect of damage around the318

column changes this response as the slab is no longer truly continuous over the support319

and so force distributions change.320

The highest relative increase in loading to a column for each scenario is given in Table321

4. It is shown that, even without additional loading to account for dynamic effects, these322

locations were overloaded by at least 35%. As the load factor was increased to 2.0, critical323

columns are overloaded by up to 3 times their fully supported condition. Furthermore,324

although removing two columns could appear to be more critical scenario, as such an325
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Table 4. Summary of static reaction forces at remaining columns

Increase in reaction at:

Removed column(s) Critical column(s) wac 2wac
Corner (A1) A2/B1 135% 231%

Internal (B2) A2/B1 148% 282%

Penultimate (A2) A1 158% 301%

Two Column (A1 and A2) A3 159% 251%

event influences a larger portion of the structure, the load can be redistributed to more326

columns and reduces the demand on a single location. This is seen in Table 4 where by327

the final loading, there is a larger maximum increase for Internal or Penultimate column328

removals than when two edge columns are removed.329

Displacement response330

In this study, to compare the effects of using different geometries, a displacement331

ductility factor µδ , is used as given in Equation 6332

µδ =
δ

δy
(6)

where δ and a δy are the displacement and the yield displacement of the removal point333

respectively. The yield displacement is obtained for each analysis by fitting a bilinear334

relationship to the response with the requirement to ensure the area under the simplified335

model is equal to the area under the measured curve. As δ/t (t=slab thickness) is also336

a common relationship in considering the relative magnitude of the deflections on the337

structure, both this ratio and the ductility factor will be used to discuss the response.338

Figure 12 shows the corner displacement results for each span to depth ratio,339

normalised against the yield displacement. It is shown that there is a relationship between340

increasing the span to depth ratio and the ductility indicating more flexible slabs will341

exhibit more material nonlinearity within the loading range considered for design.342

Additionally, for configurations with a smaller Leff/t, compressive membrane action343

can increase the stiffness of the slab reducing the damage and displacements Keyvani344

et al. (2014).345

The displacement results of the corner removal case are presented in Table 5. The yield346

displacement varies between 0.013 and 0.067 times the slab depth. Up to the accidental347

load case, there are small displacements for all cases and usually a good linear trend is348

Prepared using sagej.cls



Russell et al. 19

Figure 12. Displacement ductility factor, µδ, after corner column removal

observed, as displacements are usually less than δy . The coefficient of determination of349

a linear fit, R2, values in Table 5 indicate that there has only been a minor reduction in350

the stiffness of the section due to the concrete cracking (R2 > 0.958). As the load is351

increased further, displacements in the lower span to depth ratios remain small, while352

beyond a Leff/t of 19.4 larger relative displacements, and associated damage occur.353

For all cases, the nonlinearity in the displacement response starts when the increased354

bending moments generate cracking around the adjacent supports. There is then a gradual355

reduction in the stiffness as these cracks spread, as shown previously. During this phase,356

the underside of the concrete starts to crack, which further reduces the stiffness of the357

slab leading to larger deflections. This behaviour was more evident in flexible slabs with358

higher span to depth ratios.359

As geometric nonlinearity, primarily due to the formation of a tensile membrane,360

typically only becomes significant beyond displacements of 0.5 times the slab depth,361

these results do not suggest this is a key factor. Additionally, it has been noted that362

in order for a tensile membrane to be effective, large rotations are required at the363

supports which may result punching shear failure before the secondary mechanism forms364

(Sagaseta et al. 2016).365

A similar response is observed from an internal column loss, shown in Figure 13.366

In general, with a larger Leff/t, greater normalised displacements occur. However, it367

can be seen that while Leff/t=19.4 and 21.0 start off similar, by a loading of 2wac368

the theoretically stiffer model experiences higher relative displacements. The 19.4 case369

has a thicker section depth, 250mm compared to 180mm, and hence a higher self weight,370
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Table 5. Summary of static deflections - Corner removal

Span to depth ratio Yield displacement δ/t at wac R2 up to wac δ/t at 2wac
Leff/t δy/t

15.4 0.013 0.009 0.995 0.026

16.3 0.021 0.015 0.991 0.043

19.0 0.025 0.018 0.989 0.061

19.4 0.030 0.025 0.984 0.106

21.0 0.032 0.025 0.988 0.105

23.4 0.064 0.067 0.958 0.575

24.0 0.048 0.052 0.980 0.385

Figure 13. Displacement ductility factor, µδ, after internal column removal

which becomes more significant once concrete damage starts to occur. Considering all the371

configurations demonstrates that up to a loading of wac the system remains in the elastic372

range, however, once cracking starts to occur a significant nonlinearity is observed.373

Of further interest is the response of other parts of the structure to a column loss.374

Figure 14 shows the normalised displacements against loading after the corner column375

has been removed for locations away from the removed column. From Figure 14(a) it is376

clear that the relative displacements in the bay adjacent to the one containing the removed377

column are very small especially for the stiffest structures. Figure 14(b) shows the results378

of locations further from the damaged area. As expected, all the models show a linear379

relationship up to wac. Beyond this point, load is only applied to the bay around the lost380

column, and therefore the adjacent bay and the middle bays show a slight uplift, while381

the furthest bay on the other side of the structure appears to be unaffected. Of final note is382
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Table 6. Load factor at first punching shear failure

Span Thickness Removal Location

(mm) (mm) Corner Internal Penultimate Two Column

4000

180 2.0+ 2.0+

200 2.0+ 2.0+

250 2.0+ 2.0+

5000

200 2.00 1.95 1.90 1.55

250 2.0+ 2.0+ 2.0+ 1.80

300 2.0+ 2.0+

6000 250 1.70 1.55

the response of the adjacent bay for the model with Leff/t=21.0. At the highest loading383

level the pattern changes from an uplift to a slight downward trend. This is related to the384

damage sustained spreading into the adjacent bay and reducing its stiffness. Under other385

scenarios the same pattern was seen.386

Punching shear assessment387

For each scenario the connection rotations were calculated to obtain an estimate for the388

punching shear capacity at the remaining columns, according to Equation 5. Figures 15(a)389

and 15(b) give examples of the CSCT estimations for connection capacity. As can be seen390

for the Leff/t=24.0 case, punching shear is predicted at the maximum level of rotation391

caused by the full DAF loading of 2.0, while with the longer span case, Leff/t=23.4,392

punching shear occurs much earlier. Most other cases did not predict failure within the393

loading considered. Note that a lower concrete strength would naturally lead to an earlier394

punching shear failure.395

The loading levels at which the first punching shear occurs after a corner or internal396

column removal is given in Table 6. It should be noted that if one connection fails,397

then failures at other columns are likely to occur leading to a progressive collapse. The398

majority of cases were loaded to the full DAF value of 2.0 without any failure occurring399

(therefore the failure load is designated as 2.0+, i.e. above the usual DAF), although the400

6m span case was noticeably more susceptible. However, the other removal cases show401

that internal or penultimate column removals can result in shear failures at lower levels402

of loading.403
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(a) Corner location and adjacent bay

(b) Adjacent, middle and far bays

Figure 14. Normalised displacement at different locations against static loading. Corner
column removed with different span to depth ratios
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(a) L=5m, t=200, Leff/t=24.0

(b) L=6m, t=250, Leff/t=23.4y

Figure 15. CSCT prediction of punching shear demand and capacity after a corner
column removal.

Most critical removal locations404

By comparing the maximum displacement for each removal condition, an indication405

into which situation is most critical can be determined. With Leff/t=19.4 all the single406

column loss scenarios show a very similar response, as shown in Figure 16. At a loading407

ofwac, the corner column loss shows the largest deformation by a small amount, however408

all three cases have very similar yield displacements, and remain within the elastic range.409
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Table 7. Displacement ductility, µδ, at different loadings for all column removal locations

Span to depth ratio, Leff/t Column location w = wac w = 1.5wac w = 2wac

15.4
Corner 0.70 1.23 1.94

Internal 0.58 0.94 1.41

19.4

Corner 0.86 1.65 3.59

Internal 0.71 1.46 4.87

Penultimate 0.75 1.52 4.11

Two Columns 1.57 4.86 15.37

24.0

Corner 1.08 2.82 8.07

Internal 1.02 3.18 12.64

Penultimate 1.08 3.01 10.99

Two Columns 1.50 5.59 16.68

By 2wac the loss of an internal column leads to the highest deflections compared to other410

removal cases, except for the stiffest case. Although these differences on the whole are411

not very large. Considering the case withLeff/t=24, Figure 16 shows that the three cases412

have a very similar response at low loading levels, although by wac they have reached413

the yield displacement. Similar to the previous case, an internal column loss is the most414

critical scenario which becomes apparent after 1.5wac.415

For further comparison these values are also presented in Table 7. This highlights that416

for a single column loss, the displacement ductility demand increases by increasing the417

span to depth ratio, up to the accidental load case,wac, and all slab elements remain close418

to the elastic range. By a 50% increase in loading on the damaged bay, the displacements419

at the removal locations can increase up to 3 times the yield displacement. With a DAF of420

two, currently recommended for static analyses, the displacements exceeded 10 times the421

yield displacement, indicating a very strong nonlinear behaviour. The maximum ductility422

demands indicate that an internal column removal would be the most critical case for423

slabs with Leff/t of 19.4 and 24, which is consistent with the displacement results424

presented before. However, corner column loss could lead to higher ductility demands425

in the slab elements with lower span to depth ratios (i.e. Leff/t=15).426

The loss of two columns, a corner and a penultimate edge, naturally creates a worse427

scenario with deflections higher than any of the other cases, and peak deflections more428

than four times the next largest value. This indicates that a structure that is considered429

safe against a single column loss could be vulnerable to progressive failures should a430

second column fail and if the structure does not have enough ductility to maintain its431

integrity.432
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Figure 16. Normalised displacement against loading for different column loss scenarios

Effects of concrete strength433

To investigate the effects of concrete strength on the behaviour of flat slabs after a434

column loss, a final comparison is made between three different compressive concrete435

strengths, based on displacement against loading curves, plotted in Figure 17. Two436

removal scenarios are presented for a model with Leff/t=19.4. It is shown that up437

to wac there is very little difference in the response of the structures with different438

concrete strengths with displacements below, or close to, the yield displacement. Total439

variation between cases is less than 3mm for a slab with a depth of 250mm. However,440

as the loading is increased further, the lower strength concrete structure shows higher441

normalised displacements. Note that the lower concrete strength case had additional442

reinforcement to meet design requirements.443

Of further note is the change in critical column loss scenario between corner and444

internal column removal cases. At all concrete strengths the corner loss causes a higher445

displacement at low loading levels. However, damage starts to occur at a lower load for446

the internal case which reduces its stiffness and causes higher final deflections. As the447

changeover point is dependent on the flexural damage to the slab elements, a higher448

concrete strength delays this effect.449

A static analysis provides information on many of the important aspects for progressive450

collapse, and is commonly used for design. However, in reality, sudden column loss is a451
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Figure 17. Normalised displacement against static loading for concrete strengths.
Corner and internal column removal. Leff/t=19.4

dynamic event that affects the demand placed on the structure due to inertial effects, and452

potentially increases the material strength if high strain rates are involved. The influence453

of the dynamic effects on flat slab structure will be addressed in a further paper.454

Summary and conclusions455

This study aimed to investigate the nonlinear behaviour of RC flat slab structures after456

a sudden column loss event. Non-linear finite element models were developed and457

validated against experimental results. It was shown that the models can accurately458

simulate the force-displacement response of the flat slabs and predict the location of459

concrete cracks and changes in the reaction forces after a column loss event. The460

validated FE models were then extended to investigate the effects of different design461

parameters such as span length, slab thickness and concrete compressive strength on the462

nonlinear response of flat slab structures considering different column loss scenarios.463

Based on the results presented in this paper, the following conclusions can be drawn:464

• In general the flat slab systems showed to be robust and could redistribute the465

loads after a column loss by utilising alternative load paths. Changing the span to466
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depth ratio did not affect the stress distribution and progression of damage patterns467

after a column loss. However, by increasing the span to depth ratio the nonlinear468

behaviour due to cracking occurred earlier.469

• Beyond the elastic limits, damage and a permanent reduction in its stiffness470

occurred due to cracking of the concrete, with the most critical aspect being the471

extension of hogging bending stresses to areas that may not have been designed for472

such conditions. Compared to the corner column loss, an internal column removal473

affected a larger area of the slab and therefore led to higher displacement demands.474

Increasing the span to depth ratio (i.e. more flexible slabs) caused an increase in the475

displacement ductility demand after both corner and internal column. In general,476

the relative displacements in the bays adjacent to the one containing the removed477

column are very small especially for the stiff slabs with low span to depth ratios.478

• There was no significant difference in the reaction force demands for structures479

with different span to depth ratios. After a corner or an internal column loss, the480

orthogonally adjacent columns to the removed location experienced the largest481

increase in their vertical loading (by up to 3 times after accounting for dynamic482

effects). It was shown that removing two columns simultaneously may not be the483

most critical design scenario as the vertical loads can be redistributed to more484

columns and reduce the demand on a single location.485

• For long span slabs (over 5 m), the punching shear may occur at DAF values lower486

than the 2.0 suggested by the design guidelines. However, in shorter span slabs487

the punching shear was not usually a dominant failure mode. It was shown that, in488

general, the internal or penultimate column removals can result in shear failures at489

lower levels of loading.490

• The results suggest that the most critical removal location depends on the slab491

geometry with an internal column removal case causing the largest nonlinear492

behaviour for stiffer slabs, and a corner column removal for more flexible493

slabs. Additionally, the use of low strength concrete results in structures more494

prone to progressive collapse, even after accounting for an increase in flexural495

reinforcement.496
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