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Abstract 

The application of quartz crystal microbalance (QCM) as a device to measure the rheology of 

colloidal suspensions has been studied. Using a commercial dip-probe QCM, the yield stress 

of magnesium hydroxide suspensions has been correlated to the resonance properties of a 5 

MHz AT-cut quartz sensor. A stable resonance baseline was first established in air before 

submerging the sensor into the colloidal suspension. The response of the sensor resistance was 

shown to correlate to changes in the suspension yield stress, while the frequency response was 

found to result from more complex contact mechanics and suspension viscoelasticity 

contributions.  Since the QCM is a relatively simple technique with no mechanically moving 

parts, this approach offers the potential for rapid in situ rheology assessment.  

Introduction 

The UK nuclear industry is currently entering a phase of post operational clean out (POCO) to 

safely remove and store legacy wastes which have accumulated over several decades of nuclear 

power generation. A particular concern for the UK is the legacy sludge waste which has been 

stored in open air ponds and silos and now needs to be retrieved for further interim storage or 

ultimate disposal. To ensure the safe recovery of the wastes, design guides for sludge retrieval 
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will be proposed based on the physical and chemical properties of the materials to be recovered. 

Understanding the rheology of the legacy sludge, along with its modification during handling 

is therefore of great importance. However, conventional rheometer techniques are often 

unsuitable due to issues of sample handling (radioactivity and methods of extraction), and the 

requirement to frequently collect data in confined spaces. With its simple design, small size 

and no mechanical parts, a quartz crystal microbalance (QCM) has the potential to directly 

measure rheology in challenging environments.  

In its standard configuration, a QCM consists of a piezoelectric AT-cut quartz sensor with 

electrodes coated on each surface.  Applying an oscillating electric field across the piezoelectric 

sensor generates an internal mechanical stress that vibrates the sensor1. Interpretation of the 

vibrational motion reveals the viscosity-density product of the deposited material from which 

other physical properties such a deposited film thickness and viscoelasticity can be 

determined2-6. 

The baseline data includes QCM resonance frequency and motional resistance. The resonance 

frequency is often quoted due to the simplicity of the Sauerbrey equation (Eq. 1) which 

provides a simple conversion of resonance frequency shift to deposited mass:    

∆𝑓 =  − 2𝑓02∆𝑚𝐴√𝜌𝑞𝜇𝑞              (1) 

where ∆𝑓 is the measured frequency shift, 𝑓0 is the fundamental frequency, ∆𝑚 is the mass 

change, A is the sensor area, 𝜌𝑞 is the density of quartz sensor (2.648 g cm-3), and 𝜇𝑞  is the 

shear modulus of quartz sensor (2.947 x 1011 g cm.s-2).   

While a Sauerbrey conversion is often useful, the underlying principle as an extension of the 

resonating sensor is only truly valid when the added mass satisfies: i) no slip, ii) rigid 

deposition, and iii) even deposition on the sensor surface2. 



Nomura and Bruckenstein demonstrated the stable resonance of QCM when one surface of the 

sensor was intimately in contact with a bulk liquid7-9. Gordon-Kanazawa-Mason3, 10-11 derived 

a simple relationship correlating the change in resonance frequency to changes in the density 

and viscosity of a non-adsorbing fluid (Eq. 2):  

∆𝑓 =  − 𝑓0∗32 ( 𝜌𝐿𝜇𝐿𝜋𝜌𝑞𝜇𝑞)1/2         (2) 

where 𝑓0∗ is the fundamental resonance frequency, and 𝜌𝐿 and 𝜇𝐿 are the absolute density and 

viscosity of the fluid, respectively. More recently, studies based on the Mason equivalent 

circuit theory12 or the Voigt-Voinova theory13 have demonstrated the applicability of QCM to 

measure the viscoelastic properties of bulk fluids and deposited layers on the sensor surface. 

While those fundamental studies highlight the great potential of QCM when investigating solid, 

liquid and gaseous systems, until recently solid-liquid systems had received very little 

attention; in particular particle suspensions.  The interaction of particles and the QCM sensor 

has been considered in detail by Johannsmann and co-workers6, 14, where the Mason model has 

been suitably modified to include point-contact loads that are relevant to non-uniform loads 

such as deposited particles on the resonating sensor.  Of the few studies considering QCM and 

particles, other applications include i) measuring the particle concentration by drying 

suspensions onto the sensor15 and ii) detecting particle deposition onto a heterogeneous 

surface,16-17 with the resonance properties correlated to the colloidal forces acting between the 

resonating sensor and suspension. When studying particle systems, researchers have reported 

positive frequency shifts during mass deposition, which is contrary to the mass deposition 

theories described by Sauerbrey and Voigt-Voinova18-20.  

Dybwad and Pomorksa20-21 developed a model termed the ‘coupled resonance model’ to 

account for such interesting behaviour. The model states that for a sphere in contact with a 

resonating sensor of angular frequency, 𝜔, the sphere will adopt its own resonance of angular 



frequency, 𝜔𝑠 = (𝜅/𝑚)1/2, where κ is the contact stiffness and m the particle mass20-21. The 

contact stiffness is a function of both tangential and normal load contributions, although for a 

5 MHz sensor the contact stiffness is strongly influenced by the normal oscillatory load due to 

the flexural contributions to the displacement pattern.  If the sphere is small and the particle 

contact with the resonating sensor is sufficiently stiff, the condition 𝜔𝑠 >> 𝜔 holds true and 

‘inertial loading’ occurs where the mass of the sphere reduces the sensor resonance frequency, 

i.e. Sauerbrey behavior 2, 20-21. If the sphere is large however (typically > 1 µm) and is weakly 

bound to the sensor, the condition 𝜔𝑠 << 𝜔 holds true and the resonance frequency of the sensor 

increases, described as ‘elastic loading’20-21.  Pomorska et al. performed finite element 

calculations on relevant systems and concluded that this phenomena is plausable in liquid phase 

media, where the resonance frequency of the sensor is dependent on the strength of the sphere-

sensor contact rather than the adsorbed mass20. 

The objective of the current study is to extend the application of QCM and correlate the 

frequency and resistance responses to changes in the rheology of particle suspensions, i.e. the 

shear yield stress. The measurement approach is quite simple and involves measuring the 

frequency and resistance shifts from the baseline resonance in air to the steady-state values 

once submerged into the test material. In particular, samples of two different types of 

magnesium hydroxide were investigated, as similar materials are thought to represent the major 

fractions of corroded fuel canister wastes, present in various nuclear legacy ponds and silos in 

the UK22. 

Materials and Methods 

Materials: Two magnesium hydroxide (Mg(OH)2) samples were used as model test materials 

relevant to legacy nuclear waste in the UK. The first test material Versamag A was supplied 

by Rohm and Hass and the second test material Versamag B (sample labelling used throughout) 



was supplied by Martin Marietta. Both samples were chosen due to their varied magnesium 

oxide (MgO) contents leading to differences in aging behavior, see discussion below. The pH 

of all suspensions was maintained at pH 10.2 due to the natural buffering of the system, which 

corresponded to conditions close to the particle isoelectric point (𝑝𝐻 10.2, 𝜁 =  −7 ± 4 𝑚𝑉).  

Both particle types were used as received and dispersed in deionised water with a resistivity of 

18 MΩ.cm. 

Sample aging: 80 g Versamag (A or B) was added to 120 g  deionised water (solid content = 

22 vol%) in a 250 mL glass beaker and hand mixed for 15 min until the suspension resembled 

a smooth paste. The suspension was left undisturbed for 5 min before measuring the yield stress 

and QCM response (separate samples). The objective of the aging tests was to measure the 

time-dependent changes in the suspension yield stress between 0 and 70 h. The suspension 

volume fraction was chosen such that the particle concentration exceeded the gelling 

concentration23-24 (Fig. S1), hence no suspension consolidation would occur during sample 

aging. To avoid yield stress changes due to sample drying, a thin layer of mineral oil (𝜌 = 0.84 

g/cm3) was gently pipetted onto the suspension (following immersion of the QCM sensor), 

before finally sealing the glass beaker with Parafilm.   

The shear yield stress was measured using an AMETEK Brookfield DV-II+ Pro Viscometer 

with a four blade vane (H = 43.33 mm, D = 21.67 mm). The vane was gently lowered into the 

sediment to a pre-determined height and rotated at 1 rpm for 2 min, with the motor torque 

continuously measured. At the yield point the suspension begins to flow and the measured 

torque decreases. The shear yield stress (𝜏𝑦) can be calculated from the maximum torque and 

vane dimensions as follows25-26: 

𝜏𝑦 = 2𝑇(max) 𝜋𝐷3 (𝐻𝐷 + 16)⁄                                                                                                    (3)  



where 𝑇(𝑚𝑎𝑥) is the maximum torque, 𝐷 is the vane diameter, and 𝐻 is the vane height. To 

minimize any wall effects, the vane-to-cylinder ratio equalled 1:3.5, and the glass beaker was 

held in place using a clamp to ensure no sample rotation during the measurement.  

Equivalent time-dependent studies were completed using a Stanford Research Systems (SRS) 

QCM 200, see Fig. S2. A 5 MHz AT-cut gold coated quartz sensor (d = 25.4 mm) was cleaned 

by sonication in 2 vol% Decon-90 solution for 5 min and rinsed thoroughly with deionised 

water prior to drying under a stream of N2 gas. The cleaned sensor was then mounted in the 

QCM holder and left to resonate in air for approximately 30 min. The QCM compensation was 

adjusted to null the capacitance ensuring that the frequency and resistance values reflected the 

true resonant properties of the sensor. A stable resonance frequency and resistance was 

achieved when the sensor responses were within the limits of 2 Hz/h and 0.5 Ohm/h, 

respectively.   

With a stable baseline the QCM probe was gently submerged into the suspension and agitated 

to enhance the sensor-suspension contact. The QCM probe was repeatedly agitated until the 

frequency and resistance values of the sensor stabilized, thus confirming good contact between 

the QCM sensor and particle suspension. The QCM compensation was then re-adjusted to null 

the capacitance. To avoid any sensor drift due to thermal fluctuation, the sample beaker was 

submerged in a water bath that was heated using a hot plate. A temperature probe was immersed 

in the suspension to maintain the temperature at 30 oC.  Long term (70 h) stability of the QCM 

sensor was first verified by conducting a time-dependent measurement in water, see Fig. 4.   

Solids concentration: With minimal time-dependent aging, Versamag B was chosen to study 

the effect of solids concentration on the shear yield stress and QCM response. A stock 

suspension of 44.2 vol% Versamag B was prepared and left to hydrate for two weeks. The 

stock suspension was prepared in a sealed container and periodically agitated (hand stirring) 



before diluting the suspension to the desired solids concentration for testing. All test samples 

were mixed until homogenous and used within three days following hydration.   

The same method for measuring the shear yield stress was followed. However, the range of 

shear yield stresses was broad, and thus to ensure that the maximum torque of the viscometer 

was not exceeded, two vane geometries of different dimensions were used: Vane 72 (H = 43.33 

mm, D = 21.67 mm) for yield stresses between 0 Pa to ~ 40 Pa, and Vane 73 (H = 12.70 mm, 

D = 12.50 mm) for yield stresses > 45 Pa. Previous research has shown good agreement 

between shear yield stresses measured using different sized geometries in the crossover region 

25, 27-29.  

The QCM measurement protocol followed the method previously described. Since all 

measurements were completed within 30 min, sample drying was considered negligible in the 

absence of a thin oil layer.   

Particle size distribution:  A Malvern Mastersizer 2000 E (Malvern Instruments, UK) was 

used to measure the particle size distribution of both Versamag samples. Particle suspensions 

were prepared to 0.9 vol% and sonicated for 10 min.  The particle size distribution and 

Scanning Electron Microscopy (SEM) images of Versamag A and B are shown in Fig. 1. The 

d50 for both samples is almost equivalent (~ 4 µm), although the Versamag B sample showed 

an observable shoulder towards the larger particle fraction leading to a d90 ~ 20 µm compared 

with d90 ~ 15 µm for Versamag A. Both samples had a d10 equal to 1.5 µm. SEM images of the 

two particles revealed a tabular plate-like crystal formation common to the Brucite crystal 

structure30.  



 

Figure 1. Particle size distribution and SEM images showing the physical appearance of 

aggregated (A) Versamag A and (B) Versamag B (circlet scale is 500 nm in diameter). 

X-ray diffraction (XRD): Dried samples were disaggregated using a mortar and pestle and 

mounted in a PANalytical X’pert Powder X-ray diffractometer (pXRD), with Cu-Kα radiation 

(λ = 0.15418 nm) in the 2θ range of 10º - 65º with step size of 0.01˚. Lattice parameters for 

MgO (Periclase) (ICDD: 04-014-7440) and Mg(OH)2 (Brucite) (ICDD: 04-011-5938) were 

obtained from the International Centre for Diffraction Data – Powder Diffraction File database 

(ICDD-PDF4+). 

Intensity-normalised X-ray diffraction patterns for Versamag A and B are shown in Fig. 2. 

Both Versamag samples were predominantly composed of a crystalline hydrated Mg(OH)2 

phase (Brucite, ICDD 04-011-5938), comprising infinite stacked layers of Mg-O-Mg sheets.  

Some minor MgO-content (Periclase, ICDD 04-014-7440), a by-product of the manufacturing 

process, was also present in both samples, where the higher intensity-maxima of the Periclase 

[002]-reflection at ~ 43º 2theta (Fig 2. inset) indicates a higher apparent oxide content for 

Versamag A.  



 

Figure 2. Intensity normalised X-ray diffraction patterns for Versamag A and B. 

Thermogravimetric-Differential Scanning Calorimetry (TGA-DSC): Aliquots of the aged 

Versamag samples were extracted and quenched using propan-2-ol and allowed to dry. 

Samples were subsequently pulverised and inserted into 70 μL alumina crucibles (Mettler 

Toledo) of known mass and weighed. Dynamic thermogravimetric and calometric analyses 

were carried out using a TGA-DSC 1 (Mettler Toledo) under dry air (70:30 N2:O2 mix) at a 

flow-rate of 50 mL/s. The heating rate was set at 10 ºC/min and data was recorded between 

250 ºC and 450 ºC. Background scans using spent samples (pure MgO) were subtracted from 

mass loss data to account for air buoyancy effects. 

The MgO content was determined by firstly calculating the molar amount of water lost between 

250 – 450 °C. The mass of Mg(OH)2 was then calculated through the degradation reaction Mg(OH)2 → MgO + H2O 31, with the theoretical Mg(OH)2 mass then subtracted from the 

original sample mass to yield the MgO content. In addition, the enthalpy change per mole of 

Mg(OH)2 was determined by integrating the peak obtained in the heat flow as the Mg(OH) 2 

thermally decomposes (Fig. S3). 



Results and Discussion 

Sample aging: Vane viscometry was used to assess the time-dependent shear yield stress of 

Versamag A and B. The two Versamag samples exhibited different aging behaviour (Fig. 3) 

with the yield stress of Versamag A significantly increasing from ~50 Pa to ~300 Pa (~ 490% 

increase), showing  rapid strengthening between t = 6 and 21 h, while Versamag B attained a 

maximum yield stress of ~73.5 Pa (~ 46% increase from ~50 Pa at t = 0) at 70 h aging. As 

previously discussed, aging effects due to sediment consolidation and/or sample drying can be 

considered negligible, with the sample aging dynamics more associated to the physicochemical 

properties of the two particle types, see later discussion.   

 

Figure 3. Time-dependent shear yield stress of 22 vol% Versamag A and B. 

In situ QCM measurements confirmed the contrasting aging behaviour of Versamag A and B.  

The sensor resonance frequency (Hz) and resistance (Ohm) were measured (Fig. 4) with the 

QCM submerged in both Versamag suspensions. At t = 0, the measured frequency and 

resistance for both Versamag samples were almost equivalent, confirming comparable 

rheology for the freshly prepared samples (Fig. 3). However, during sample aging the sensor 

resonance frequency and resistance for Versamag A increased, with the sensor frequency 



eventually exceeding the stable resonance frequency in air (i.e. when ΔF = 0 Hz). This 

behaviour is in contrast with the QCM response when submerged in Versamag B, where 

measured changes were significantly smaller.  To verify that these changes in resonance 

frequency and resistance were not due to instabilities of the QCM sensor, we have also included 

a 70 h aging test for water only. With good temperature control (T = 30oC) throughout the 

experiment, neither the sensor resonance frequency nor resistance fluctuated, thus confirming 

the stability of the QCM sensor. The QCM responses were in good agreement with shear yield 

stress trends (Fig. 3), i.e. the QCM frequency and resistance were responsive to the increasing 

suspension yield stress.      

 

Figure 4. Time-dependent QCM air-to-sample (a) ΔF and (b) ΔR responses for Versamag A 

(black line), Versamag B (red line), and water only (blue line).  

Further analysis of the Versamag A QCM data revealed a time-dependent response 

characterized by an approximately bilinear trend (Fig. 5).  The resistance shift ∆𝑅1 (Ohm) can 

be transformed to a shift in half-bandwidth ∆𝛤 (Hz) using Eq. 4 32: 

∆𝑅 + 𝑖∆𝑓 =  𝐴4𝜙2 𝑍𝐿 = −𝑖 𝜋16 𝑍𝑞3𝐴𝑒262 𝜌𝑞2 𝑓03 (∆𝑓 + 𝑖∆𝛤)       (4) 

where A is the active sensor area (m2), Zq the acoustic wave impedance (8.8 × 106 kg m-2 s-1), 

e26 the piezoelectric stress coefficient (9.65 × 10-2 C m-2), 𝜌𝑞 the density of crystalline quartz 



(2.65 g cm-3) and 𝑓0 the fundamental resonance frequency (5 MHz).  Solving Eq. 4 leads to a 

simple conversion of ∆𝛤 ~ 2∆𝑅1. The apparent differential loss tangent 
∆𝛤∆𝐹 for Region I (t = 1 

h to ~8.6 h) was 1.992 and for Region II (t = ~8.6 h to ~13 h) 
∆𝛤∆𝐹 = 0.445.  A higher apparent 

differential loss tangent in Region I suggests that the measured mass is more lossy, since ∆𝛤 

measures losses, while ∆𝐹 measures stiffness. Thus, the stiffness contribution dominates 

Region II as the suspension yield stress increases. Some non-linearity lies at the threshold 

between the two regions (Fig. 5, ∆𝐹 = ~-1000 to -750 Hz at ~16 h), indicating a non-steady-

state transition from Region I to Region II. Since the particle and sensor zeta potentials were 

expected to remain constant (no change in pH or electrolyte concentration), these two regions 

highlight a two-stage aging process which most likely contributes to the increased suspension 

yield stress. 

 

Figure 5. Apparent differential loss tangent (ΔΓ/ΔF) as a function of sample aging, suggesting 

the occurrence of a 2-stage aging process (sample: Versamag A). 

XRD analysis (as previously shown in Fig. 2) revealed measurable differences in MgO content 

between Versamag A and B prior to aging. As MgO hydration to form Mg(OH)2 is expected 

to occur in water, ex situ time-dependent-XRD was performed to verify this conversion with 



the aging of Versamag A (Fig. 6a). To this end, 7 g samples of Versamag A were hydrated 

sacrificially for 0, 24, 48 and 70 h, before reactions were quenched by rinsing in 20 mL propan-

2-ol, followed by air-drying for 12 h. X-ray diffractograms revealed a progressive reduction in 

the Periclase [002]-peak with increasing aging time (Fig. 6b), indicating significant dissolution, 

or conversion of Periclase (MgO) into Brucite (Mg(OH)2). Using the Scherrer equation (K = 

1)33 to approximate the crystallite size for Brucite across multiple reflection peaks ([001], 

[100], [101], [102], [110], [111]), Versamag A showed little variation and the crystallite size 

was substantially smaller than that measured for Versamag B (Fig. 6c). Such small changes in 

crystalline size may preclude direct MgO to Mg(OH)2 conversion from influencing the QCM 

response, instead an aggregation-dominated mechanism akin to oriented attachment or Ostwald 

ripening effects could be more influential34.  

 

Figure 6. (a) X-ray diffraction patterns of Versamag A after sample aging for 0, 24, 48 and 70 

h – shaded region represents the Periclase [002] peak. The Periclase [002]-peak intensity was 

normalized to the Brucite [101] maximum peak and plotted as a function of aging time (b). The 

calculated Scherrer crystallite size as a function of sample aging was compared with Versamag 

B at t = 0 (c). 

The apparent two-stage hydration of Versamag A (Fig. 5) via the aggregation mechanism was 

further explored using ex situ thermal analysis of samples aged for t = 0, 4, 16, 24, 31, 48 and 

72 h. The MgO contents for the fresh Versamag A and B samples were ~16.6 wt% and ~11.5 



wt%, respectively, in good agreement with the qualitative assessment by XRD, see Fig. 2. The 

enthalpy associated with the decomposition (ΔHd) of Mg(OH)2 was determined from 

integrating the DSC heat-flux peaks, see Fig. S3. ΔHd ranged between -45 and -80 kJ/mol of 

Mg(OH)2, smaller than previously reported activation energies (Ea) for the dehydroxylation of 

Mg(OH)2 (-80.75 to -98.74 kJ/mol 31, 35), but larger than the dissociation enthalpy of sorbed 

water (-40.92 kJ/mol 36), indicating that both hydrate-dissociation and dehydroxylation 

processes contribute to the dehydration of Versamag A and B.  Hence, the observed two-stage 

aging (Fig. 5) may suggest a dissolution-precipitation reaction of Mg(OH)2. When dispersed 

in water, MgO and smaller Mg(OH)2 particles undergo increased rates of dissolution. As the 

aqueous solution becomes more saturated, precipitated Mg(OH)2 may coat the MgO reactant, 

thus precipitation will exceed dissolution37-38. This enhances the number of bonds between 

particles, which stiffens the overall particle-particle network and increases the suspension yield 

stress (Fig. 3)39-40.  

Suspension concentration: The suspension shear yield stress can be increased by several 

orders of magnitude by increasing the solids concentration. The shear yield stress of Versamag 

B was firstly measured using the vane viscometer and corresponding measurements completed 

using the QCM. Fig. 7 confirms the exponential increase in shear yield stress with increasing 

solids concentration.29 



 

Figure 7. Shear yield stress of Versamag B suspensions as a function of the solids 

concentration. Data collected using the vane viscometer. 

Complementary QCM tests were conducted (Fig. 8) to determine the QCM response as the 

suspension yield stress increased. The measured ΔR (Fig. 8a) also exhibited an apparently 

exponential response to changes in the suspension yield stress (Fig. 7), with the two data sets 

showing excellent agreement with a correlation coefficient R2 = 0.984, see Fig. 8b. The 

motional resistance across the QCM circuit is a measure of the amount of energy required to 

oscillate the sensor. Therefore, as the suspension concentration is increased, the number of 

point contacts between the sensor and suspension is also thought to increase, thus providing 

greater resistance to the oscillating sensor. Such an effect may also be enhanced by the ‘caging’ 

of particles due to restrictions from their closest neighbours41.  

 



Figure 8. QCM ΔR (a), its correlation to suspension yield stress (b) and ΔF (c) responses for 

Versamag B as a function of solids concentration. 

In the solids concentration range 5 – 43 vol%, the frequency response (Fig. 8c) was less 

characteristic of the exponential increase in suspension shear yield stress. At lower solid 

concentrations (5 – 12 vol%), the measured −∆F was shown to be almost independent of the 

increasing solids concentration. At these low concentrations, the suspension was below the gel 

point (Fig. S1), hence, a contiguous particle network throughout the suspension had not formed, 

and particles remained mobile relative to one-another. As such, the suspension loading on the 

resonating sensor remained constant due to the negligible suspension yield stress. The small 

decrease in frequency (~ 70 Hz) over the solids concentration range likely resulted from 

changes in the bulk fluid properties, i.e. small changes in the suspension density and viscosity.  

In the solids concentration range ~12 to ~23 vol%, the QCM -ΔF response increased with 

increasing solids content. The solids concentration was now beyond the suspension gel point, 

hence a 3D contiguous network had formed, restricting particle mobility, and inducing an 

intermediary suspension yield stress (~2 – 30 Pa). As the particle network in contact with the 

QCM sensor stiffens (i.e. increased yield stress), the QCM may detect the associated stiffening 

as an increase in the apparent mass loaded on the sensor2, or as a stiffening viscoelastic 

medium6. Another factor that has not yet been explored, is the influence of the contiguous 

particle network on the shear wave penetration depth. For a 5 MHz sensor, the shear wave 

penetration depth (or viscous penetration depth) in water is ~ 250 nm (penetration depth 𝛿 =
 ( 2𝜇𝐿𝜔𝜌𝐿)1/2

), with the penetration depth forming the measurement region6. With contacts 

between the sensor-particle and particle-particle, the pathway for dissipating energy is likely 

to vary from a simple viscous decay. As such, an increase in the shear wave penetration depth 

would result in increased ‘mass sensing’ and an overall increase in the air-sample −∆F.   



With further increases in solids concentration (> 23 vol%) the suspension yield stress was 

observed to increase to several thousand Pa. In response, the air-to-sample frequency shift of 

the QCM sensor decreased, eventually measuring frequency shifts less than ΔFwater = -825 Hz 

(i.e. no particles). At such high yield stresses the apparent mass detected by the QCM may now 

become large enough for the condition 𝜔𝑆 ≪ 𝜔 to be satisfied, resulting in a transition from 

inertial to elastic loading2, 20-21. Alternatively, we could also consider the frequency response 

to be governed by changes in the suspension viscoelasticity. Hence, an increase in the 

viscoelastic ratio of the suspension, storage modulus (elastic component) to loss modulus 

(viscous component), may lead to changes in the sensor resonance frequency (i.e. less negative 

shift) 6. At present, it is not possible to exactly describe the mechanism(s) governing the 

measured frequency shifts, further work is ongoing.  

Conclusions 

A new technique to characterize the rheology of colloidal suspensions has been demonstrated. 

QCM is ubiquitously used to study kinetics, adsorbed/deposited film and bulk fluid properties, 

yet the technique has not been extensively utilized to probe colloidal suspensions. Two 

Mg(OH)2 suspensions were considered due to their considerable differences in sample aging, 

influenced by dissolution-precipitation mechanisms of MgO conversion to Mg(OH)2 and 

Ostwald ripening of smaller Mg(OH)2 crystallites.   As a result, the Versamag sample with the 

higher MgO content (Versamag A) exhibited yield stress aging, with the yield stress of a 22 

vol% suspension increasing to ~300 Pa in 70 h, while Versamag B showed minimal yield stress 

aging and a maximum yield stress of 73.5 Pa.  When the QCM sensor was submerged in 22 

vol% suspensions, the sensor resonance properties, frequency and resistance, were able to 

monitor those differences in yield stress aging, with the resonance frequency and resistance 

increasing as the particle network stiffened (increased yield stress).  



In the absence of sample aging, the solids concentration was increased to enhance suspension 

yield stress. The air-to-sample responses of the QCM sensor were recorded and the shift in 

resonance resistance shown to correlate with the suspension yield stress. The frequency 

response was shown to be more complex and likely influenced by multiple factors such as: i) 

contact mechanics, ii) suspension viscoelasticity and iii) shear wave penetration depth. Since 

this is the first study of its kind, the present understanding of the resonance frequency remains 

poorly understood and is the focus of ongoing research.  The research has however 

demonstrated the applicability of QCM to monitor changes in suspension yield stress, which 

can be of great value, although the full potential of QCM in characterizing colloidal 

suspensions is yet to be realized.    

Supplementary Information 

Gel-point determination of Versamag B using the method described in de Kretser et al.23. (Fig. 

S1); QCM experimental set-up – Stanford Research System QCM200 (Fig. S2); Typical TGA 

(a) and DSC (b) data for the thermal decomposition of dried Versamag A (Fig. S3).   
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