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Evolutionary Extreme Learning Machine for the Interval Type-2 Radial

Basis Function Neural Network: A Fuzzy Modelling Approach

Adrian Rubio-Solis1, Uriel Martinez-Hernandez2 and George Panoutsos1

Abstract— It has been demonstrated that Evolutionary Ex-
treme Learning Machine (E-ELM) is frequently much more
efficient than traditional gradient-based algorithms for the
parameter identification of feedforward neural networks. In
particular, E-ELM is usually faster and provides a higher trade-
off between accuracy and model simplicity. For that reason, this
paper shows that an E-ELM that is based on Particle Swarm
Optimisation (PSO) and Extreme Learning machine (ELM) can
be extended to the Interval Type-2 Radial Basis Function Neural
Network (IT2-RBFNN) with a Karnik-Mendel type-reduction
layer. To evaluate the efficiency of E-ELM, the IT2-RBFNN is
used as an Interval Type-2 Fuzzy Logic System (IT2 FLS) for
the modelling of two popular data sets and for the prediction of
chaotic time series. According to our results, E-ELM applied to
the IT2-RBFNN not only outperforms adaptive-gradient-based
algorithms and provide a better generalisation compared to
other existing IT2 fuzzy methodologies, but similarly to pure
fuzzy models, the IT2-RBFNN is also able to preserve some
model interpretation and transparency.

Index Terms— Interval type-2 fuzzy logic systems. RBF
neural networks, extreme learning machine, Particle Swarm
Optimisation (PSO), fuzzy modelling.

I. INTRODUCTION

Fuzzy Logic Systems (FLSs) have been widely used to

solve a large number of real world problems [1–5]. In partic-

ular, in the areas of function approximation and classification

problems, FLSs of Interval Type-2 (IT2) have demonstrated

to be more efficient to handle with uncertainties, such as

nosiy and sparse data as well as their ability to operate under

disturbances that usually T1 FLSs can not [5, 6]. Moreover,

Adaptive Fuzzy Inference Systems (AFISs) based on the

fusion of IT2 FLSs and Neural Networks (NNs) not only

inherit the ability to deal with uncertainty, but also adaptive-

ness, generalisation properties, fault tolerance, approximate

reasoning under cognitive uncertainty [7]. The Interval Type-

2 Radial Basis Function Neural Network (IT2-RBFNN) is

a neural structure that can be viewed as a Interval Type-2

Fuzzy Logic System and that inherits the ability of NNs

for function approximation of piecewise continuous real-

valued mappings, and the ability of FLSs to use an inference

engine as the fuzzy rule generation criterion [5]. Until now,

the parameter identification for the IT2-RBFNN has been

based on gradient-based optimisation algorithms that require

a high number of mathematical formulas to compute the
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associated derivatives. This computation results much more

complicated for an IT2-RBFNN with a Karnik-Mendel (KM)

type reducer. Especially, because a KM algorithm requires

a reordering process that creates a number of permutations

which must be tracked during the learning process [8]. Due to

its simplicity and applicability to train a wider type of Single

Layer Feedforward Networks (SLFNs), Extreme Learning

Machine (ELM) has gained a lot of popularity during the

last decade [9, 10]. ELM provides a higher generalisation

performance and compared to gradient-descent learning al-

gorithms, it avoids getting trapped in local minima while

decreasing the associated computational load. Particularly

for the Radial Basis Function Neural Network (we call it

RBFNN of type-1), it has been proven a higher efficiency

and better performance compared to the gradient descent

approach. However, compared to traditional approaches, the

implementation of ELM still requires a higher number of

hidden units to train a SLFN as a consequence of the random

estimation of the input weights and hidden unit parameters

[11, 12]. To overcome those drawbacks of ELM, a number

of hybrid approaches based on evolutionary optimisation

algorithms and ELM have been proposed [13–17].

In this paper the main target is to extent E-ELM to

the Interval Type-2 Radial Basis Function Neural Network

(IT2-RBFNN) case. To find the optimal parameters of the

antecedent and consequent parts of the IT2-RBFNN, we use

a Particle Swarm Optimisation (PSO) and Extreme Learning

Machine theory (ELM) respectively. To test the efficiency

of the IT2-RBFNN and E-ELM, we use two complex and

popular data sets from the UCI repository and the Mackey-

Glass chaotic time series. The resulting IT2-RBFNN is com-

pared to other existing IT2 neural structures such as an IT2-

RBFNN with a KM type reduction and including Support

Vector Machines (SVM) and the RBFNN. According to our

results, the utilisation of an Evolutionary Extreme Learning

approach (E-ELM) enhances the generalisation properties of

the IT2-RBFNN while preserving the model interpretation

and ransparency that pure fuzzy models usually offer.

The rest of this paper is organised as follows: in section

II, a brief review of Extreme Learning Machine (ELM) for

Single Layer Feedforward Networks (SLFNs) and Particle

Swarm Optimisation (PSO) is provided. Section III, de-

scribes the functional equivalence between IT2 FLSs and the

IT2-RBFNN. Experimental results are compared in section

IV, and finally section V draws the conclusions.



II. RELATED WORK

This section provides a brief review of Extreme Learning

Machine theory for Single Layer Feed-forward Networks

(SLFN) and the Particle Swarm Optimisation algorithm

(PSO).

A. Extreme Learning Machine for SLFNs

According to the basics of ELM [9, 10], for a number of

P different samples (xp, yi)
P
p=1 ⊂ Rn × RP , Single Layer

Feed-forward Networks (SLFNs) can be mathematically ex-

pressed as:

Ñ∑

i=1

βigi(xp) =

Ñ∑

i=1

βig(wi · xp + bi) = yp (1)

in which xp = [xp1, . . . , xpn] is the input vector, wi =
[wi1, . . . , win]

T and βi = [βi1, . . . , βip] are the weight

vectors that connects the ith hidden node to the input and to

the output nodes respectively. A SLFN with Ñ hidden nodes

and activation function g(x) can approximate P samples with

zero error means
∑M

p=1 ‖ yp−tp ‖. Thus, the set of equations

described in (10) can be written compactly as:

H(w1, . . . , wÑ , b1 . . . , bÑ , x1, . . . , xP )

=






g(w1 · x1 + b1) · · · g(w1 · x1 + b1)
...

...
...

g(w1 · xP + b1) · · · g(wÑ · xP + bÑ )






P×Ñ

β =






βT
1
...

βT
Ñ






Ñ×n

and Y =






yT1
...

yTP






P×n

(2)

Where H is the hidden layer output matrix of a SLFN with

respect to the input xp. Thus, the minimum norm least-

squares solution of the linear system Hβ = T is unique

and can be achieved by calculating the pseudoinverse H†

as:

β̂ = H†T (3)

B. Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) has demonstrated

to be an efficient population-based stochastic optimisation

technique originally developed by Eberhart and Kennedy

[18, 19]. PSO mimics the societal behaviour of some species

such as fish, birds and some mammals to flocking while

obtaining individual benefits. PSO initialises with a flock

of birds usually called particles that are randomly selected.

Every jth particle flies with an specific velocity vj while

keeping track of its best position pbest. Thus, at each

time step, each particle changes its velocity and position

(direction) x̂j towards the best location x̂best. The associated

acceleration of each particle is weighted by a random term.

Hence, the velocity and position is defined

vj = wdvj + c1rp (pbest,j − x̂j) + c2rg (gbest − x̂j) (4)

x̂j = x̂j + vj ; j = 1, . . . , np (5)

where c1 and c2 are acceleration constants with positive

values; rp and rg are random numbers between 0 and 1.

The term wd is used for adaptation purposes as an inertial

weight. Such parameter is decreased gradually as the number

of generation for the PSO increases according to the rate:

wd(t) =
(wmax − winit)

MaxT
(6)

in which, winit and wmax are the initial and final inertial

weights respectively.

III. RADIAL BASIS FUNCTION NEURAL NETWORK AND

INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS

As described in [20], a Radial Basis Function Neural

Network (RBFNN) can be viewed as a Type-1 Fuzzy Logic

System of either Mamdani or Takagi-Sugeno-Kang type

(TSK) under some mild restrictions. This equivalence has

been extended in [5] in order to design an RBFNN that

is functionally equivalent to an Interval Type-2 FLS with

a Karnik-Mendel type-reduction in which all the fuzzy sets

are interval type-2 fuzzy sets (IT2 FSs). An RBFNN can

be regarded as an FLS whose main inference engine is

interpreted as an adaptive filter [21, 22]. According to [21],

the fired-rule output sets in the hidden layer of an RBFNN

resemble an additive weighted combination of the MFs

[21]. Thus, as illustrated in Fig. 1, each hidden receptive

unit in the RBFNN is functionally equivalence to a fuzzy

rule Ri described by a multi-variable MF µRi(xp, yp) =
µRi [x1, . . . , xn, y] of Gaussian type, where the input vector

xp = [x1, . . . , xn] ∈ X1× . . . Xn and the implication engine

can be defined as:

µRi(xp, y) = µAi→Gi =
[
TN
s=1µF i

s
(xs) ⋆ µGi(y)

]
(7)

Where ⋆ is the minimum t−norm that represents the shortest

Euclidean distance of the input vector xp in which the ith

receptive unit is represented as a fuzzy rule in the form:

Ri : IF x1 is F i
1 and . . . IF xs is F i

s and . . .

IF xN is F i
N THEN y is Gi; i = 1, . . . ,M (8)

Therefore, the firing strength fi of each receptive unit is

defined as:

µAi→Gi(xp, y) =

n∏

s=1

µF i
s
(xs) (9)

= fi

(

exp

[

−

∑n
s=1 (xs −msi)

2

σ2
i

])

(10)

Strictly speaking, any kind of FLS enhancement might

be directly applicable to the RBFNN theory because the

structure of its fuzzy rule base (receptive units) in going

from T1 FSs to IT2 FSs does not change; it is the way

the associated antecedents and consequents are modelled [8].

Therefore, an RBFNN can be functionally equivalence to an

IT2 FLS if an RBFNN consists of:

I. An input layer with a singleton fuzzification.

II. The T-norm operator used to compute each rule’s firing

strength is multiplication (meet).
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Fig. 1: Singleton fuzzification and triangle secondary MF that is activated
when xp = x

′

l
for the ith receptive unit of the IT2-RBFNN

III. The output of each MF is an IT2 FS that is defined by

a lower and upper MF.

IV. The output weight is an interval [wi
l , w

i
r] (or a constant

wi).

A. Interval Type-2 Radial Basis Function Neural Network

Based on the functional equivalence between the RBFNN

and IT2 FLSs [5, 23], in this paper, an Interval Type-2

Radial Basis Function Neural Network (IT2-RBFNN) having

a center-of-sets type reduction, product inference rule and

a singleton output space is used. The type-reduced set

(yl, yr) is obtained by using a Karnik-Mendel algorithm

[24]. According to Fig. 2, if wi is a crisp value and the

IT2-RBFNN is either of Mamdani or TSK type, the matrix

representation of the IT2-RBFNN output can be written as

[8, 25]:

yf =
1

2
(Yl + Yr)wT (11)

in which yl = Ylw
T and yr = YrwT and

Yl =
fTQTET

1 E1Q+ fTQTET
2 E2Q

rTl Qf + sTl Qf
(12)

where Yl = (ψl,1, . . . , ψl,M )

E1 = (e1|e2| . . . |eL|0| . . . |0)
T
L×M

E2 = (0| . . . |0|ξ1|ξ2| . . . |ξM−L)
T

(M − L)× 1

rl ≡ (1, 1, . . . , 1
︸ ︷︷ ︸

L

, 0, . . . , . . . , 0)T M × 1

sl ≡ (0, . . . , . . . , 0

M−L
︷ ︸︸ ︷

1, 1, . . . , 1)T M × 1
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Fig. 2: Interval Type-2 Mamdani Radial Basis Function with an Karnik
Mendel type-reduction.

with ej ∈ RL (j = 1, . . . , L) and ξj ∈ RM−L, j =
1, . . . ,M − L as the elementary vectors where all the

elements are zero except the jth one that is equal to 1.

Yr =
fTQTET

3 E3Q+ fTQTET
4 E4Q

rTr Qf + sTl Qf
(13)

where Yr = (ψr,1, . . . , ψr,M )

E3 = (e1|e2| . . . |eR|0| . . . |0)
T
R×M

E4 = (0| . . . |0|ξ1|ξ2| . . . |ξM−R)
T

(M −R)× 1

rr ≡ (1, 1, . . . , 1
︸ ︷︷ ︸

R

, 0, . . . , . . . , 0)T M × 1

sr ≡ (0, . . . , . . . , 0

M−R
︷ ︸︸ ︷

1, 1, . . . , 1)T M × 1

with ej ∈ RR (j = 1, . . . , R) and ξj ∈ RM−R, j =
1, . . . ,M − R as the elementary vectors where all the

elements are zero except the jth one that is equal to 1.

f = (f1, . . . , fM )T , f =
(
f1, . . . , fM ,

)T
. By using Karnik-

Mendel algorithms [24], the reordered consequent weights

w̃ that results from the permutation process to find the

switching points L and R can be calculated according to

[25]

w̃ = QwT , Q ∈ RM×M (14)

In which w = (w1, . . . , wM ) is the set of original rule-

ordered consequent weights and Q is the corresponding

permutation matrix [25]. The ith fuzzy rule of an IT2-

RBFNN is written as

R̃i : IF x1 is F i
1 and . . . IF xs is F i

s and . . .

IF xn is F i
n THEN y is wi; i = 1, . . . ,M (15)

For an IT2-RBFNN of Mamdani type wi is a single crisp

value, while for a TSK model wi = ci0+c
i
1x1+c

i
2x2+ . . .+

cinxn. For each rule in the IT2-RBFNN, its interval firing

strength F i for a Gaussian function having a fixed mean mi
s



and an uncertain standard deviation [σ1
i , σ

2
i ] when xs = x′l

and computed as:

F i :=







F i = [f i(~xp), f
αs

i (~xp)]

f i(~xp) = exp

[

−

n∑

k=1

(
xs −m

i
s

σ2
i

)2
]

f i(~xp) = exp

[

−
n∑

s=1

(
xs −m

i
s

σ1
i

)2
]

(16)

IV. EVOLUTIONARY EXTREME LEARNING FOR AN

INTERVAL TYPE-2 RBFNN

In Neural Networks applications, the implementation of

ELM usually requires a higher number of hidden neurons due

to the random estimation of input weights and hidden biases

that may cause the computation of unnecessary parameters.

Thus, in order to determine a reduced number of optimal

parameters for the IT2-RBFNN with a Gaussian MF having

a fixed mean msi and a variable standard deviation [σ1
i , σ

2
2 ],

in this section we apply an Evolutionary Extreme Learning

Machine methodology (E-ELM for short) that is based on

the Particle Swarm Optimisation (PSO) and ELM theory.

According to algorithm 1, given a predefined number of

fuzzy rules, the PSO starts from randomly selecting the

values of each IT2 antecedent whose particle’s codification

x̂j ∼ U(lj , uj) is shown below (line 2), where lj and uj are

the lower and upper dimension limits respectively.

x̂j =






IT2 antecedent 1
︷ ︸︸ ︷

m11, . . . ,mn1, σ
1
1 , σ

2
1 , . . . ,

IT2 antecedent n
︷ ︸︸ ︷

m1M , . . . ,mnM , σ
1
1 , σ

2
1

︸ ︷︷ ︸

Rule 1

,

. . . ,

IT2 antecedent 1
︷ ︸︸ ︷

m11, . . . ,mn1, σ
1
M , σ

2
M , . . . ,

IT2 antecedent n
︷ ︸︸ ︷

m1M , . . . ,mnM , σ
1
M , σ

2
M

︸ ︷︷ ︸

Rule M






in which Np is the number of particles. For P input-output

data vectors (~xp, dp), p = 1, . . . , P , the fitness of each

candidate model Jt(x̂j) is the Root-Mean-Squared-Error of

each candidate model (line 3)

Jt(xj) =

(

1

P

P∑

p=1

(yp − tp)
2

)1/2

(17)

At each iteration of the PSO (line 9-12), the updated position

of each particle is used as the set of the antecedent parts of

each new IT2-RBFNN model. Therefore, ELM is system-

atically called in two different steps in order to update the

consequent weights of each candidate model [17]. At first

step [6], the optimal inital values for the consequents are

obtained by approximating the reduced set [yl, yr] as:

yl,1 =

∑M
i=1 f iwi
∑M

i=1 f i
=

M∑

i=1

f ′iwi; f
′
i =

f i
∑M

i=1 f i
(18)

yr,1 =

∑M
i=1 f iwi
∑M

i=1 f i
=

M∑

i=1

f ′iwi; f
′
i =

f i
∑M

i=1 f i
(19)

By using Eq. (12) and (13), the following linear system can

Algorithm 1: PSEUDOCODE FOR THE EVOLUTIONARY EX-

TREME LEARNING METHODOLOGY FOR THE IT2-RBFNN

Input: Input Training Data (xp, tp)
Output: Optimal IT2 antecedents msi, σi and

consequent weights gi
1 function Particle Swarm Optimisation (PSO)

2 Initialise a set Sp of Np random particle’s position:

x̂j ∼ U(lj , uj)
3 Calculate Jt(x̂j), j = 1, . . . , Np

4 Initialise the particle’s best position pbest,j ← x̂j
5 while t ≤ MaxT do

6 forall x̂j ∈ Sp do

7 Update particle’s velocity vj ← wdvj +
c1rp (pbest,j − x̂j) + c2rg (gbest − x̂j)

8 Update particle’s position x̂j ← x̂j + vj
9 Calculate w = Φ(x)†Y at iteration j

10 Calculate fitness Jt(x̂j)
11 Select the best antecedent and consequent

parameters

12 if Jt(xp) < pbest,j then

13 Update the particle’s best position

xbest,j ← x̂j
14 if pbest,j < gbest then

15 Update the best known position

xbest ← xbest,j

16 t = t+ 1

17 return (msi, σ
1
i , σ

2
i , ĉ)best

be written for a number of P patterns:

Y = Φ1(x)w (20)

in which, x = {xp|p = 1, . . . , P}, xp = [xp1, . . . , xpn]
and Y is the desired output vector, where n is the number of

input variables. For a IT2-RBFNN with a TSK (Mamdani)

fuzzy rule structure, the matrix Φ can be written as.

Φ1(x) =








Φ1

Φ2

...

Φp







∈ RP×M(n) (21)

From Eq. (18) and (19) it follows for a TSK implication:

Φpw =
1

2

M∑

i=1

(f ′i + f ′i)

(
n∑

s=1

cisxs

)

(22)

For an IT2-RBFNN of Mamdani type, the second addition

term in Eq. (22) is a single crisp value wi. Therefore,

the solution to the linear system described in Eq. (20) is

calculated as follows:

w1 = Φ1(x)
†Y (23)

where w1 is the optimal initial value for the consequent vec-

tor w and Φ1(x)
† is the Moore-Penrose generalised inverse

of Φ1(x). Secondly, the final optimisation of w consists of



implementing the KM algorithm. From Eq. (12) and (13)

the terms Yl and Yr are used to calculate w that can be

expressed as the linear system:

Y = Φ2(x)w (24)

Such as

Φ2(x) =








Φ1

Φ2

...

Φp







∈ RP×M(n) (25)

in which

Φpw =
1

2

M∑

i=1

(ψl,i + ψr,i)

(
n∑

s=1

cisxs

)

(26)

And w is obtained by finding the corresponding Φ†
2 as

w = Φ2(x)
†Y (27)

After one iteration of the PSO, each IT2 antecedent in the

IT2-RBFNN is updated by using the particle’s position x̂j
that produce the best fitness Jt(x̂j) (line 7-10). Finally, the

codification of the best candidate model (particle’s position)

is used as the optimal set of values for msi, [σ
1
i , σ

2
i ] and csi

or wi if the IT2-RBFNN is of Mamdani type (line 18).

V. EXPERIMENTAL RESULTS

In this section, the performance of the proposed E-ELM

for the optimisation of the antecedent and consequent parts

of the IT2-RBFNN having a fixed mean msi and a variable

standard deviation [σ1
i , σ

2
i ] is compared to other techniques

such as an IT2-RBFNN trained with an Adaptive Gradient

Descent (AGD) approach [5, 23, 26], Support Vector Ma-

chines (SVMs), Back propagation networks (BPNs), RBFNN

and an Interval Type-2 Fuzzy Neural Network with Support

Vector Regression. We use two complex data sets from

the UCI repository, i.e. 1) the High-performance Concrete

(HPC) data set for the prediction of compressive strength

[27, 28] and 2) the Parkinson telemonitoring data set for

the diagnosis of patients having or not Parkinson’s disease.

Finally, we evaluate the E-ELM and the IT2-RBFNN for

noisy regression prediction using the Mackey-Glass chaotic

time series [6].

A. Example 1: High-Performance Concrete (HPC) Compres-

sive Strentgh Prediction

In this example, the performance of the E-ELM and

the IT2-RBFNN for the prediction of HPC compressive

strength is studied. The main difference between HPC and

conventional concrete lies on the use of mineral and chemical

admixture. Due to its nonlinearity with respect to age,

ingredients and those admixtures, the HPC is a difficult

and highly complex behaviour to be predicted. HPC is a

composite in construction industry whose basic composition

includes cement, fine coarse aggregate and water. The HPC

data set is a regression problem that consists of 1030 samples

with 8 inputs each whose general details are presented in

Table I.

TABLE I: General details of the HPC compressive strength data set.

Input/output variables Unit Minimum Maximum

Cement (kg/m3) 102.00 540.0

Blast furnace slag (kg/m3) 0.00 359.4

Fly ash (kg/m3) 0.00 200.1

water (kg/m3) 121.75 247.0

Superplasticiser (kg/m3) 0.00 32.2

Coarse aggregate (kg/m3) 801.00 1145.0

Fine aggregate (kg/m3) 594.00 992.6

Age of testing (kg/m3) 1.00 365.0

Concrete compressive strength (MPa) 2.33 82.6

For cross-validation reasons, the HPC data set is divided

into two subsets, i.e. 90% for training and 10% for testing.

Unlike the results presented in [27, 28], we perform a number

of 20 random experiments and the average RMSE is used

to evaluate the IT2-RBFNN efficiency. As shown in Table

II, the model accuracy of the IT2-RBFNN models based

on E-ELM and an AGD approach [29] are compared to a

Support Vector Machine (SVM) [27, 28], a Back-Propagation

Network (BPN) [27, 28] and an Evolutionary Fuzzy Support

Vector Machine Inference Model (ESFIM) [27, 28] that uses

a number of linear, quadratic or exponential time series

functions for the parameter identification of the SVMs. The

experimental setup consists of a number of 300 evolution

generations for the E-ELM, a number of 8 IT2 fuzzy rules

for the IT2-RBFNN and the input data was normalised to the

interval [0− 1]. From our simulation results in Table II, it is

clear that the best generalisation performance is achieved by

using a Mamdani IT2-RBFNN based on E-ELM. To exem-

plify the ability of the most accurate IT2-RBFNN to provide

some physical interpretation about the HPC data set, the data-

fit for the testing stage and the effect surface response that

corresponds to the ingredients cement and superplasticiser

are presented in Fig. 3 and 4, respectively. This is achieved

by keeping (n− 1) input variables constant and plotting the

remaining variables agaisnt the HPC compressive strength.

Usually the variables that are kept constant use their average

or the dominat value of their corresponding input dimension.

This is mainly due to the nature of the data and its associated

sparsity.

TABLE II: Comparison performance between the IT2-RBFNN, EFSIM,
SVM and BPN.

Model Type-reduction Training Testing

E
F

S
IM

Linear 5.120 5.865

Quadratic 5.126 5.378

Exponential 5.152 5.430

SVM [27] 8.854 10.406

BPN [27] 5.094 6.900

IT
2

-R
B

F
N

N

Adaptive Gradient Descent Methodology (AGD)

Mamdani KM 5.010 5.170

TSK KM 5.871 5.392

Evolutionary Extreme Learning Machine (E-ELM)

Mamdani KM 5.636 4.735

TSK KM 5.361 4.820
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Fig. 3: Data-fit for a random testing experiment for the HPC concrete
compressive strength using an IT2-RBFNN based on E-ELM.
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Fig. 4: Surface response for the Superplasticiser and Cement ingredients.

B. Example 2: Parkinson Telemonitoring Data Set

This data set consists of a collection of biomedical voice

measurements from a number of 31 patients, 23 with Parkin-

son’s disease (PD). The purpose of this example is to evaluate

the classification accuracy of the IT2-RBFNN based on E-

ELM to diagnose a patient with PD or not. We compare

its performance to an IT2-RBFNN that is trained with AGD,

three different types of Probabilistic Neural Networks (PNN)

whose main optimisation process is based on an incremental

search (IS), Monte Carlo method (MC) [30] and a hybrid

search [31–33]. To quantify the model accuracy, we use

the following metrics:a) specificity, b) sensitivity and c)

accuracy. While specificity measures the number of patients

without PD (TA), sensitivity measures the proportion of

patients with PD (TP) that are correctly classified. Accuracy

is the overall percentage that both categories of diagnosis are

correctly classified.

Specificity =
TA

TA+ FP
(28)

Sensitivity =
TP

FA+ TP
(29)

TABLE III: Comparison performance between the IT2-RBFNN, EFSIM,
SVM and BPN.

Model Type-reduction
Training

accuracy

Testing

accuracy

PNN-IS [31] 81.73% 79.78%

PNN-MC [31] 81.48% 80.92%

PNN-HS [31] 81.74% 81.28%

IT
2

-R
B

F
N

N

Adaptive Gradient Descent Methodology (AGD)

Mamdani KM 89.74% 88.33%

TSK KM 89.91% 87.58%

Evolutionary Extreme Learning Machine (E-ELM)

Mamdani KM 97.10% 93.07%

TSK KM 98.07% 92.29%

Where FP and FA represent false prediction for the pres-

ence and abscence of PD respectively. For cross validation

purposes, the PD data set was divided into two subsets, 70%
for training and 30% for testing. A number of 20 random

simulations was performed, and the mode average accuracy

is presented in Table III. From these reults, the application of

an E-ELM confirms its superiority as an heuristic search to

enhance the performance and adaptation of the IT2-RBFNN.

C. Example 3: Noisy Chaotic Time-Series Prediction

As the last experiment, we use a time-series prediction

problem to evaluate the performance of the IT2-RBFNN.

We employ the Mackey-Glass chaotic time series which is

generated from the following differential equation [?]:

dx(t)

dt
=

0.2x(t− τ)

1 + 10x(t− τ)
− 0.1x(t) (30)

For comparison reasons with previous results, we use the

parameters τ = 30, x(0) = 1.2. Four past values were

employed to predict x(t) where the input data format is used

as:

[x(t− 24), x(t− 18), x(t− 12), x(t− 6);x(t)]

A number of 1000 patterns were generated from the obser-

vation t = 124 to t = 1123. For cross-validation purposes,

the input data was divided into two subsets, i.e. a) 50% for

training and b) 50% for testing and a number of 20 random

experiemnts were carried out. To compare the performance

of the IT2-RBFNN and the E-ELM to other existing IT2

methodologies, two different types of training data were

created by adding a Gaussian noise with a standard deviation

of σ = 0.2 and σ = 0.3 with a mean of 0 to the original data

x(t). This type of noise has been selected because it usually

occurs in real situations and it is frequently employed to

verify model robustness [6]. For testing data, three data sets

were created from the original data set. The first consists

of the original 500 values. The last two testing data sets

were created by adding a Gaussian noise with a σ = 0.2
and σ = 0.3 . From Table IV and V, row clean is used to

show those results that correspond to the data with no noise.

We divided the simulation results according to the type of

implication engine, i.e. of a Mamdani or b) TSK type.



TABLE IV: Performance of the IT2-RBFNN based on E-ELM and other models with a training noise σ = 0.2 in example 3.

Parameters IT2-RBFNN based on E-ELM Mamdani IT2-RBFNN-(AGD) TSK IT2-RBFNN-(AGD) IT2 -FNN

Mamdani TSK KM Nie-Tan KM Nie-Tan SVR-(N) SVR-(F)

Number of Parameters 30 45 30 30 45 45 103 103

Number of Rules 5 5 5 5 5 5 6 6

Training RMSE (σ = 0.2) 0.080 0.089 0.125 0.123 0.129 0.137 0.234 0.233

Test RMSE
Clean 0.069 0.071 0.085 0.082 0.091 0.092 0.085 0.083

σ = 0.1 0.080 0.068 0.092 0.087 0.095 0.098 0.105 0.103

σ = 0.3 0.109 0.107 0.122 0.131 0.133 0.144 0.186 0.180

TABLE V: Performance of the IT2-RBFNN based on E-ELM and other models with a training noise σ = 0.3 in example 3.

Parameters IT2-RBFNN based on E-ELM Mamdani IT2-RBFNN-(AGD) TSK IT2-RBFNN-(AGD) IT2 -FNN

Mamdani TSK KM Nie-Tan KM Nie-Tan SVR-(N) SVR-(F)

Number of Parameters 30 45 30 30 45 45 103 103

Number of Rules 5 5 5 5 5 5 6 6

Training RMSE (σ = 0.3) 0.080 0.089 0.133 0.138 0.152 0.145 0.349 0.347

Test RMSE
Clean 0.070 0.078 0.092 0.094 0.101 0.105 0.127 0.121

σ = 0.1 0.101 0.094 0.127 0.139 0.133 0.143 0.138 0.131

σ = 0.3 0.119 0.121 0.144 0.155 0.147 0.161 0.188 0.184

Time Step
0 100 200 300 400 500

O
u

tp
u

t 
P

re
d

ic
ti
o

n

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
TSK IT2-RBFNN based on E-ELM

Measured Output
Predicted Output

Fig. 5: Data fit of a dandom experiment for the prediction of the Mackey-
Glass chaotic time series using a TSK IT2-RBFNN based on E-ELM.

To compare the IT2-RBFNN performance, we use the

results obtained by three different interval type-2 fuzzy mod-

elling methodologies, namely: a) an IT2FNN-SVR-(N), b)

an IT2-FNN-SVR-(F) and an c) KM IT2-RBFNN. The first

two models a) and b) were introduced in [6]. The IT2-FNN-

SVR is a six-layer interval type-2 fuzzy neural network with

support vector machine regression that uses two different

types of input nodes. For the first type, the input nodes

in an IT2-FNN-SVR simply forwards each numerical data

and is called IT2-FNN-SVR-(N) for short. Thus, the output

of the IT2-FNN-SVR-(N) is a bounded interval which is

described in terms the lower and upper limits of its Footprint

Of Uncertainty (FOU). An IT2-FNN-SVR-(F) uses an input

node layer that fuzzifies the input numerical data. The third

IT2 methodology is an IT2-RBFNN with a Karnik-Mendel

(KM) type-reduction layer and an IT2-RBFNN with a direct

defuzzification method based on the Nie-Tan approach whose

parameter optimisation is based on an AGD and that we

call in this example IT2-RBFNN-(AGD) for short. According

to our results, it is evident from Table IV and V, the IT2-

RBFNN based on E-ELM outperforms the rest of the neural

models. In Fig. 5, the testing data-fit for a TSK IT2-RBFNN

based on E-ELM is shown. Finally, in Fig. 6 and 7, the

initial and final distribution for the first 4 IT2 fuzzy sets for

the input x(t− 24) is illustrated.

input: x(t− 24)
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Fig. 6: Initial Membership Functions for the input x(t− 24).
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Fig. 7: Final Membership Functions for the input x(t− 24).



VI. CONCLUSIONS

In this paper, an Evolutionary Extreme Learning Machine

(E-ELM) that is based on Particle Swarm Optimisation

(PSO) and Extreme Learning Machine (ELM) theory is

extended to the Interval Type-2 Radial Basis Function Neural

Network (IT2-RBFNN) case. To evalute the effectiveness of

the E-ELM, IT2-RBFNN, was applied to model two complex

data ses from the UCI repository and for the noisy prediction

chaotic time series. A comparion about the performance of

the IT2-RBFNN to some existing IT2 fuzzy methodologies

such as fuzzy support vector regression, the IT2-RBFNN

trained with an Adaptive Gradient Descent (AGD) as well

as Backpropagation Neural Networks (BPN) is provided.

Compared to traditional gradient descent approaches, the

implementation of an E-ELM eliminates the initial condition

selection for the antecedent parts that is usually required to

train an IT2-RBFNN. Moreover, based on our simulation

results, the IT2-RBFNN trained with an E-ELM not only

enhances its generalisation accuracy, but also preserves the

ability of Fuzzy Logic Systems (FLS) to provide a good

trade-off between model interpretation and simplicity.

Under similar structural and parametric conditions, in the

future, we are planning to study other type of T2 neural

structures that simplify the implementation of E-ELM. This

includes the design and implementation of new learning

methodoloiges that reduce the associated computational load

and its associated complexity.
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