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a b s t r a c t

Increased market demand for composite products and shortage of expert laminators is compelling the

composite industry to explore ways to acquire layup skills from experts and transfer them to novices and

eventually to machines. There is a lack of holistic methods in literature for capturing composite layup

skills especially involving complex moulds. This research aims to develop an informatics-based method,

enabled by consumer-grade gaming technology and machine learning, to capture and digitise

manufacturing task knowledge from skill-intensive hand layup. The digitisation is underpinned by the

proposed human-workpiece interaction theory and implemented to automatically extract and decode

key knowledge constituents such as layup strategies, ply manipulation techniques, motion mechanics

and problem-solving during hand layup, collectively categorised as layup skills. The significance of this

research is its potential to facilitate cost-effective transfer of skills from experts to novices, real-time

automated supervision of hand layup and automation of layup tasks in the future.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The demand for goods made out of composite materials is ever

increasing in aerospace, automotive and sports equipment sectors.

This is because compositematerials exhibit superior qualities (e.g. a

carbon fibre reinforced polymer is up to 5 times stronger than steel

1020 while weighing only a fifth), have high corrosion and fatigue

resistance and provide high product-design flexibility [1].

Increased demand has resulted in growing pressures on the com-

posite industry to increase production volumes, speeds and pro-

ductivity while maintaining high product quality. However, the

very properties of the composite materials that make them supe-

rior are also responsible for making them difficult to mass produce

[2]. The manufacturing process involves hand layup of stacks of

woven composite plies pre-impregnated with resin on to an intri-

cate mould to form complex shapes without leaving any air gaps

between the mould surface and the ply. Moreover, different

composite materials exhibit different deformation mechanisms

depending on the direction of the ply and the pattern of the weave.

This multifaceted relationship between the geometry of the mould,

the deformation characteristics of the ply and the ply manipulation

techniques is a knowledge that is possessed by experienced lami-

nators [3].

Manual layup remains a significant part of the composite in-

dustry despite its low production speeds and discrepancies in

quality caused by human variation. However, it is becoming

increasingly difficult to sustain because of high process costs,

dwindling number of skilled laminators and the gestation periods

to acquire expert layup skills. At the same time, automating the

layup is difficult because the inherent knowledge about the process

is not explicitly available [4]. To reinforce this point, in the review of

the engineering aspects of automated prepreg layup, Dirk et al.

have observed that the commercial automated layup systems such

as Automated Tape Laying (ATL) and Automated Fibre Placement

(AFP) are developed by industrial machine companies with either

none or limited background in the composite industry and are

currently building up their composite layup expertise [5].

There are a few related studies in literature that have attempted

to understand the manual layup process. Most recently, Elkington
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et al. [6] have presented a detailed study of the approach and

techniques used by laminators of varying layup experience while

manipulating pre-impregnated woven composite plies onto com-

plex mould shapes. Using visual observation of video footages,

specific hand gestures and plymanipulation techniques used by the

laminators were identified and documented. Kikuchi et al. [7,8]

have presented a motion analysis method to extract tacit knowl-

edge, such as expert hand gestures and eye movements, during a

hand layup and spray coating process and their relationship with

mechanical properties and dimensional stability of the resulting

composite samples. In other recent studies in extraction of human

skills, Gu et al. [9] have developed a skill acquisition method that

uses a single RGB-D camera to capture human demonstration of a

simplified toy assembly task. The method can recognise the part

involved, the actions used and estimate the assembly states to

generate an assembly skill script for robot learning. Yoshida et al.

[10] have used field-oriented interviews and video analysis to

extract and compare hand movements during a manual whetstone

polishing task performed by skilled technicians and novices. In

recent research in human action recognition and extraction from a

manual task, Tang et al. [11] have used depth imaging and extrac-

tion of variability between different depth image modalities and

pre-defined action datasets. Chen et al. [12] have used a combina-

tion of depth camera and inertial sensors strapped to the human's

body to extract and analyse human actions during a manual task.

Han et al. [13] have provided a detailed study of manufacturing task

analysis by comparing the capabilities and limitations of different

motion sensing technologies using depth imaging such as the

Microsoft Kinect, Leapmotion and Senz3D. The more traditional

approach of experimental derivation of manufacturing knowledge

of layup tasks is demonstrated by Kim et al. [14] and Lightfoot et al.

[15]. Kim et al. reported the study of material characteristics, layup

accuracy, and thickness variations recorded during the continuous

tow shearing (CTS) layup technique using microscopic observation

of impregnation quality, tow path tracing using image analysis to

gauge layup accuracy and CT scanning to measure thickness vari-

ation of the manufactured specimen. Lightfoot et al. studied the

mechanism of shear force based wrinkle formation during hand

layup due to ply slippage as well as mismatches between the

thermal characteristics of the composite material and tool.

The above studies have been able to capture information about

the specific techniques involved in the manual tasks at specific

times but fail to extract the expert's overall task strategies as well as

provide amedium to conduct real-time automated task supervision

and a guide to automate the manual tasks. Moreover, the knowl-

edge about these techniques is limited to the expert's hand and eye

movements without considering how the other parts of the body

may have contributed to the techniques. Also, the real-time effects

of these techniques on the workpiece are not simultaneously

tracked thereby making the association of human actions to

workpiece progress a near impossible affair. Another disadvantage

of these studies is that the knowledge extracted is limited to the

process runs that have been directly observed and human response

to unobserved/unforeseen process scenarios cannot be anticipated.

Finally, the methods proposed are highly specific to the concerned

manufacturing task and the task-recording set-up and therefore are

not generic enough to capture knowledge from other manual in-

dustrial tasks.

This article presents a cohesive and holistic process for digiti-

sation of manual manufacturing task knowledge based on the

proposed human-workpiece interaction theory. In this work,

innovative informatics methods using gaming technology, such as

the Microsoft Kinect, and using machine learning such as Hidden

Markov Modelling are used to capture and digitise important

constituents of manufacturing knowledge embedded within any

manual task involving a human and a workpiece, which in this

study is the manual composite layup task. The Kinect is used

because it provides a robust and low-cost way of obtaining human

motion capture as well as object recognition and tracking from

infra-red (depth) and colour imaging [16].

The knowledge constituents of interest in the composite layup

task are: (i) layup strategy, (ii) time taken per sub task, (iii) precise

human motion, (iv) ply manipulation techniques, (v) mechanics of

the laminator's motion during task execution, and (vi) problem

solving approach used to correct layup errors. These constituents

collectively categorised as layup skills are thus captured and digi-

tised to enable skills transfer from expert laminators to novices, to

facilitate real-time automated supervision of manual tasks as well

as eventual automation of the manual task. Researchers from the

value-creation domain can subsequently develop technology

Fig. 1. Human-workpiece interaction theory.
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strategies that companies can use to extract value and capture

profits from digitised knowledge assets, such as the above for

composites manufacturing, as illustrated by Kyl€aheiko et al. [17].

2. Method

2.1. Underlying human-workpiece interaction theory

The concept of human-workpiece interactions proposed by

Prabhu et al. [18] states that any manual manufacturing task

involving a human and aworkpiece can be considered as a series of

human-workpiece interactions in which every human action is

followed by feedback from the workpiece on its state of progress.

This feedback is analysed by the human on the fly to choose and

execute the next action on the workpiece to channel it towards

successful completion. Successive such iterations, some of which

may include problem solving, take the workpiece from its initial

state to final desired state.

The above theory however is rudimentary in nature, as it does

not completely represent human response to different task sce-

narios. This research is of the view that human response during a

task changes according to the way in which workpiece feedback is

analysed. Therefore, in order to advance the theory, three seminal

theories from literature that are popularly used to analyse human

behaviour in industrial settings, namely, Rasmussen's Skill-Rule-

Knowledge (S-R-K) framework, Rasmussen's Decision Ladder and

Gibson's theory of object affordances are used with relevant ad-

aptations to suit the basic theory (Fig. 1) [19e21].

In a manual manufacturing task there are periods in which

human actions on the workpiece are repetitive in nature and are

largely governed by muscle memory. This is skill-based human

response in which workpiece feedback is subconsciously processed

as signals. A task is typically associated with a standard procedure

for normal execution. The human response when following the

standard procedure is rule-based in which workpiece feedback is

observed consciously as signs that direct the human to pick

appropriate rules to apply while choosing actions during the task.

Sometimes when unforeseen problems occur during a task, a

standard solution is not available. In such cases, the human

response is knowledge-based in which the human uses his/her

knowledge accumulated from past task executions to solve the

problem. This is the adaptation of Rasmussen's S-R-K framework to

the human-workpiece interaction theory.

A detailed approach to understanding human problem-solving

behaviour during the knowledge-based response is needed. Ras-

mussen's Decision Ladder concept is used to understand the

human's approach as a 4-step process. The human detects a

problem with the workpiece by observing its feedback as a symbol

that represents the problem, e.g., a wrinkled ply surface after layup.

This activates the problem-solving response which begins by

identifying the problem and its underlying cause, evaluating the

various solutions at the human's disposal and selecting the most

appropriate one by keeping the overall task goal in mind, and

finally planning the actions within the chosen solution for

execution.

Finally, human action on the workpiece at all the 3 response

levels depends on the state of the workpiece, which is continuously

observed during the task. According to Gibson, an object's affor-

dances are action possibilities available to a human to execute on

Fig. 2. 6-Step Digitisation process.

Fig. 3. Task capture setup using two Kinect sensors.
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that object depending on his/her action capabilities. Therefore by

adopting Gibson's theory it can be noted that every workpiece

feedback conveys a set of affordances to the humanwho selects the

most appropriate one depending on his abilities, the task situation

and the response level at which he/she is operating.

2.2. Digitisation process

The digitisation process is underpinned by the above advanced

human-workpiece interaction theory and is designed to extract and

decode manufacturing knowledge constituents of a task that

belong to the skill, rule and knowledge based levels. The data flow

within the process follows the standard informatics data flow,

namely, data input, data processing, data storage and data output.

The resulting digitisation process comprises 6 sequential steps,

namely Capture, Segment, Model, Extract, Decode, and Reproduce

(Fig. 2).

Step 1) Capture: This is a critical first step whose reliability and

accuracy determines the eventual success of the digitisation pro-

cess of the manual composite lamination task. The main objective

of this step is to acquire the actions of the laminator during the

Fig. 4. Laminator's skeleton being tracked during the task.

Fig. 5. Tracking ply orientation by computing surface normals of the finite triangular elements.

Fig. 6. Capturing workpiece progress by tracking ply surface orientation and comparing against that of the bare mould.
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layup process and the effects of those actions on the workpiece

(composite prepreg ply draped over themetallic mould) into digital

data. The vital requirement and the key innovation in this step is to

simultaneously acquire digital action and effect data in real-time so

that the action-effect relationships within the task can be estab-

lished in the subsequent steps using the common data acquisition

timestamps.

The key and unique focus of this work is to use consumer-grade

gaming technologies for data acquisition. Within this focus, there

are three main methods to acquire laminator's action data during

the layup task. The first method is to use high-end fixed motion

capture systems such as the OptiTrack [22], which captures human

motion by tracking markers attached to the human body. This

method is not suitable to capture manual tasks in manufacturing

settings because it requires installation of multi-sensor localisation

infrastructure in each area of task capture on the shopfloor, making

it an expensive piece of kit to own and operate. Secondly, apart

from the inconvenience of attaching markers on the laminator's

body, such systems are tailored to accurately capture human mo-

tion but are not designed to recognise objects and track deforma-

tion in objects in real-time. The second method is to use inertial

sensors, such as accelerometers [23] and attach them to the lami-

nator's body in order to obtain 3D position and orientation data of

the human body joint during motion. Even though these sensors

are affordable and provide accurate motion capture data, the entire

system including data acquisition and communication modules are

not fully portable apart from being intrusive for the laminators

during the layup task. Wireless inertial sensors are also available

such as Perception Neurons [24], but the body kit comprises cables

that connect the sensors to the wireless communication module

thereby not making any significant improvement in reducing

intrusiveness. Also, inertial sensors cannot provide data on how the

workpiece deforms as a result of the laminator's actions and hence

another camera-based solution including image processing for

object recognition is needed. The third method, chosen in this

work, is to use depth imaging based portable, markerless and low-

cost motion capture solution, such as Microsoft Kinect, which not

only provides reliable human skeletal motion data but also RGB and

depth image streams which can be used for 3D object recognition

and tracking in real-time.

In the ‘Capture’ step, Kinect sensors capture the human-

workpiece interactions involved in a composite layup task per-

formed by an expert laminator in a 20 �C clean room environment

at the University of Bristol's Advanced Composite Centre for Inno-

vation and Science (ACCIS) (Fig. 3). The workpiece is a

600 mm � 400 mm stainless steel mould with varying surface

ramp angles and features. The laminator drapes a plain-woven

glass fibre ply pre-impregnated with resin onto the mould. Six

runs of the layup task are captured including two in which the

laminator has solved simulated layup problems. The task captures

were conducted in accordance to the University of Bristol's policy

for experiments involving human participants.

The laminator's actions during the task are captured using the

standard skeletal motion tracking provided by the second genera-

tion of the Kinect sensor (Kinect V2). The 3D coordinates of the 12

skeletal joints belonging to the laminator's upper body are tracked

at the rate of up to 20 times per second and recorded in a

spreadsheet along with the tracking timestamps in seconds (Fig. 4).

Simultaneously, the workpiece progress is tracked by the 1st

version of the Kinect sensor (Kinect V1). The Kinect V1 is used

because it is not possible to operate two Kinect V2 sensors at the

same time on the same computer. An innovative and effective

method is proposed to track the deformations on the composite ply

as it is pressed down on to the mould during the layup task.

Workpiece progress is tracked by obtaining the orientation of the

ply and comparing it continuously with that of the surface of the

mould underneath. The surfaces of the ply that have the same

orientation as that of the contours of the mould surface are

considered to be fully conformed and laid up. The conversion of the

ply from non-conforming to conforming can be captured by

dividing its surface into finite triangular elements and tracking the

orientation of these elements in real-time by computing their

surface normals (Fig. 5).

The surface normals are then grouped and displayed in different

colours depending on their orientation with respect to the unit

vectors along x, y and z axis. This way, the surface orientation of the

ply can be visualised as either being conformed to the mould sur-

faces underneath or not (See Fig. 6).

The workpiece progress is recorded as running numbers from

0 (ply placed over the mould) to 7 (fully laid up ply) according to

when the layup process is completed in a sequence across the seven

workpiece sectors as identified by the laminator (Fig. 7).
Fig. 7. Seven sectors of the workpiece (mould) named according to their position on

the mould.

Table 1

Segmentation of continuous human action and workpiece data according to workpiece progress.

Time (s) Timestamp (s) Frame_No WP_Progress_State Head_X Head_Y Head_Z Left Hand X Left Hand Y Left Hand Z LH_Elbow_X

50.6 50.6 441 0 1166 254 729 894 873 778 910

50.7 50.7 442 0 1208 201 754 891 848 792 918

50.8 50.8 443 0 1242 141 799 901 782 815 936

51.0 51.0 444 0 1236 119 873 910 741 826 937

51.1 51.1 445 0 1194 106 968 905 686 913 926

51.2 51.2 446 0 1133 109 1083 913 678 1041 897

52.3 0.8 470 1 973 71 1176 895 712 1022 785

52.4 0.9 471 1 997 69 1157 912 724 995 802

52.5 1.0 472 1 1032 66 1132 932 738 947 824

52.7 1.2 473 1 1078 64 1088 955 778 859 855

52.8 1.3 474 1 1102 65 1061 956 790 832 871

52.9 1.4 475 1 1129 69 1026 981 823 805 899
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The workpiece progress is recorded in the same

spreadsheet alongside the human action data with the corre-

sponding timestamps. This way specific human action that is

responsible for specific workpiece progress can be identified.

Step 2) Segment: The main objective of this step is to segregate

the continuous human action data acquired in step 1 into action

primitives where each primitive has a notable effect on the prog-

ress of the workpiece in the manual layup task. Thus continuous

human action and workpiece progress data is segmented into

discrete human action states and workpiece states. In literature,

motion capture data segmentation has been addressed by consid-

ering the human motion data as stand-alone for purposes such as

behaviour analysis, ergonomic analysis and activity recognition.

Stand-alone motion capture data segmentation has been reported

using methods such as filtered sub-space clustering [25], K-means

algorithm [26], kernelised temporal cut method [27], and recently

low-level temporal segmentation followed by hierarchical clus-

tering [28].

These methods, though successfully applied to segment motion

capture data into distinct human action, cannot be applied in this

work. This is because a manual layup task involves close interde-

pendency between the human action on the workpiece and the

progressive change in the workpiece with workpiece change being

the primary driving factor behind the human action. Therefore,

segmentation of human action is made more effective by segre-

gating the continuous human action data at points where the layup

task on the workpiece progresses from one sector to another

(Table 1), i.e. when one sector of the mould is completely laid up

and the next one is attended to.

Even though the human action states are considered discrete,

each state is a set of continuous skeletal motion data, which con-

tributes to changing the workpiece state (Fig. 8). The nomenclature

of the states is given in Table 2.

Fig. 8. Discrete human action and workpiece states.

Table 2

Discrete human action and workpiece states.

State Sequence Human Action States Workpiece States

1 H_C_T WP_C_T

2 H_C_M WP_C_M

3 H_R_T WP_R_T

4 H_L_T WP_L_T

5 H_C_B WP_C_B

6 H_R_MB WP_R_MB

7 H_L_MB WP_L_MB

V.A. Prabhu et al. / Composites Part B 112 (2017) 314e326 319



Step 3) Model: The main objective of this step is to give a digital

representation to the human-workpiece interactions involved in

the layup task for subsequent extraction of the layup task knowl-

edge. The discrete human action and workpiece states, obtained in

step 2 above, are modelled using Hidden Markov Models (HMMs)

inwhich the observable states are the human action states whereas

the hidden states are the workpiece states.

In literature, modelling is primarily used to recognise human

activity from segmented human action data. The most common

modelling method is 3-dimensional Convolutional Neural Net-

works (CNNs), a deep modelling approach that extracts human

action features from both temporal and spatial dimensions of ac-

tion data frommultiple continuous frames of video frames [29e31].

Hidden Markov modelling is a stochastic machine learning tool for

modelling a time series of multivariate observations and is widely

used to analyse and predict time series phenomena [32]. Several

forms of Hidden Markov Models (HMMs) are common in literature

for human activity recognition such as Hierarchical HMMs and

Parametric HMMs. Generally, the HMM is used to classify human

action time series data into distinct gestures that when combined

form a complete activity. The classification is made by assigning

exemplar gestures as observable states and the segmented human

action states as hidden states in order to stochastically determine

which action states sequences contributed to forming a gesture and

then using known gesture sequences to recognise activity [33e35].

The common limitation of both the above popular approaches is

that the workpiece states are completely excluded from the models

and therefore close dependency of the human action with the

changes observed in the workpiece are not modelled. Hence the

action-effect relationship that exists within a manual task such as

composite layup is not represented and therefore the models

cannot be subsequently queried to extract task insights.

In this work, HMMs are used to both represent as well as extract

the manufacturing knowledge constituents that are specific to

Table 3

HMM lT1 for the normal layup task scenario.

p H_C_T H_C_M H_R_T H_L_T H_C_B H_R_MB H_L_MB

0.5 0.05 0.15 0.15 0.05 0.05 0.05

A H_C_T H_C_M H_R_T H_L_T H_C_B H_R_MB H_L_MB

H_C_T 0.03 0.60 0.15 0.15 0.03 0.03 0.03

H_C_M 0.05 0.05 0.40 0.20 0.10 0.10 0.10

H_R_T 0.05 0.05 0.05 0.50 0.10 0.20 0.05

H_L_T 0.05 0.05 0.05 0.05 0.50 0.15 0.15

H_C_B 0.04 0.04 0.04 0.04 0.04 0.50 0.30

H_R_MB 0.05 0.05 0.05 0.05 0.05 0.05 0.70

H_L_MB 0.05 0.20 0.10 0.10 0.40 0.10 0.05

B WP_C_T WP_C_M WP_R_T WP_L_T WP_C_ B WP_R_MB WP_L_MB

H_C_T 0.90 0.02 0.02 0.02 0.02 0.02 0.02

H_C_M 0.02 0.90 0.02 0.02 0.02 0.02 0.02

H_R_T 0.02 0.02 0.90 0.02 0.02 0.02 0.02

H_L_T 0.02 0.02 0.02 0.90 0.02 0.02 0.02

H_C_B 0.02 0.02 0.02 0.02 0.90 0.02 0.02

H_R_MB 0.02 0.02 0.02 0.02 0.02 0.90 0.02

H_L_MB 0.02 0.02 0.02 0.02 0.02 0.02 0.90

Table 4

HMM lT2 for the problem-solving scenario (highlighted).

p H_C_T H_C_M_P H_C_M_PS1 H_C_M_PS2 H_C_M_PS3 H_C_M H_R_T H_L_T H_C_B H_R_MB H_L_MB

0.525 0.2 0.025 0.025 0.025 0.025 0.05 0.05 0.025 0.025 0.025

A H_C_T H_C_M_P H_C_M_PS1 H_C_M_PS2 H_C_M_PS3 H_C_M H_R_T H_L_T H_C_B H_R_MB H_L_MB

H_C_T 0.013 0.600 0.013 0.013 0.013 0.013 0.150 0.150 0.013 0.013 0.013

H_C_M_P 0.025 0.025 0.500 0.060 0.050 0.050 0.100 0.100 0.030 0.030 0.030

H_C_M_PS1 0.025 0.025 0.050 0.500 0.060 0.050 0.100 0.100 0.030 0.030 0.030

H_C_M_PS2 0.025 0.025 0.050 0.050 0.500 0.060 0.100 0.100 0.030 0.030 0.030

H_C_M_PS3 0.025 0.025 0.040 0.050 0.050 0.500 0.150 0.100 0.020 0.020 0.020

H_C_M 0.025 0.025 0.025 0.025 0.025 0.025 0.500 0.100 0.200 0.025 0.025

H_R_T 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.500 0.100 0.200 0.025

H_L_T 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.700 0.050 0.050

H_C_B 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.500 0.275

H_R_MB 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.750

H_L_MB 0.025 0.200 0.025 0.025 0.025 0.025 0.050 0.050 0.350 0.200 0.025

B WP_C_T WP_C_M_P WP_C_M_PS1 WP_C_M_PS2 WP_C_M_PS3 WP_C_M WP_R_T WP_L_T WP_C_ B WP_R_MB WP_L_MB

H_C_T 0.900 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

H_C_M_P 0.010 0.900 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

H_C_M_PS1 0.010 0.010 0.900 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

H_C_M_PS2 0.010 0.010 0.010 0.900 0.010 0.010 0.010 0.010 0.010 0.010 0.010

H_C_M_PS3 0.010 0.010 0.010 0.010 0.900 0.010 0.010 0.010 0.010 0.010 0.010

H_C_M 0.010 0.010 0.010 0.010 0.010 0.900 0.010 0.010 0.010 0.010 0.010

H_R_T 0.010 0.010 0.010 0.010 0.010 0.010 0.900 0.010 0.010 0.010 0.010

H_L_T 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.900 0.010 0.010 0.010

H_C_B 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.900 0.010 0.010

H_R_MB 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.900 0.010

H_L_MB 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.900
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individual experts that perform the manual layup task. A novel and

effective way of modelling human-workpiece interactions using

HMMs is proposed in which the workpiece states that are con-

spicuous are considered observable whereas the human action

states that have implicit skills embeddedwithin them, even though

the actions themselves are conspicuous, are considered hidden.

This way, the interdependency between the human actions and the

workpiece states are completely modelled within a single HMM

rather than separately.

The HMM is defined as l ¼ ðp; A; BÞ with discrete states S and

O where S ¼ fs1; s2:::; sng is a finite set of 0n0 human action states

(hidden states), O ¼ fo1; o2; :::; omg is a finite set of 0m0 workpiece

states (observation states), p ¼ fpig are the initial state probabili-

ties, A ¼ faijg is the state transition matrix where aij is the proba-

bility of human action state i transitioning to state j, B ¼ fbiðOkÞg is

the emission matrix where biðokÞ is the probability of observing

workpiece state Ok at human action state i. It is assumed that the

state machine emits an observation and starts to jump to a new

state at the same time. Time t is discrete and starts with t ¼ 1. The

probabilities in the two matrices are time invariant.

Out of the six task runs performed by the laminator, four are

uneventful and nearly identical while two include a scenario each

where a wrinkled ply surface during the layup was corrected.

Therefore, two distinct HMMs are constructed; lT1 for the normal

task scenario and lT2 for the problem-solving task scenario. The

probabilities aij and biðokÞ are assigned heuristically with inputs

from the laminator and on observing multiple runs of the layup

task performed by the laminator (Table 3 and Table 4).

HMM lT1 captures how the expert laminator performs the layup

task routinely on the chosen mould. This model represents the

laminator's actions and the effects of those actions on the ply layup

on the mould. The human action states and the workpiece progress

states listed in Table 2 and their interdependency is modelled

within lT1.

HMM lT2 represents how the expert laminator solves the

problem (wrinkled ply) that occurs in the state 2 (H_C_M now

named H_C_M_P) in 3 steps, namely, H_M_PS1, H_M_PS2, and

H_M_PS3 to restore the task back to the correct state H_C_M.

It must be noted that the probabilities in the above HMMs are

heuristically obtained and may not be the most optimum values.

Though there are two commonly used methods to optimise these

probabilities, namely, ‘Viterbi’ and ‘Baum-Welch’ training algo-

rithms [36], in this research the Baum-Welch algorithm is preferred

due to its robust and exhaustive nature. However for these HMMs,

the Baum-Welch algorithm did not advance past the first iteration

implying that the probabilities assigned are reasonably true to the

task scenarios being modelled.

This research believes that the two HMMs lT1 and lT2 collec-

tively represent the expert laminator's manufacturing knowledge

that is embedded within the execution of the layup task thereby

realising a way to digitise this task knowledge and its constituents.

The last 3 steps of the digitisation process that enable the extrac-

tion, decoding and reproduction of task knowledge are described in

the next section.

3. Results and discussion

The HMMs that represent the layup task are queried with a

given task scenario to extract, decode and reproduce the

manufacturing knowledge constituents belonging to the task. The

standard methods/algorithms reported in literature to query or

analyse hidden Markov models are used in this work without any

modifications. However, the way in which these standard algo-

rithms are used to extract and decode key constituents of knowl-

edge used by the expert laminators during the manual composite

layup task are new and are described below.

Step 4) Extract: The main objective of this step is to obtain likely

human response for any given task scenario, not just the captured

ones, thus extracting the task knowledge possessed by the lami-

nator which was used in the layup task. The task scenario is a

sequence of workpiece states and the human response is a

sequence of human action states that are likely responsible for the

scenario. However, before the human action states can be extrac-

ted, it is necessary to pick the right HMM for the given task scenario

that contain the human action states. Consider a task scenario

represented by the workpiece observation sequence OQ as

OQ ¼ {WP_C_T, WP_C_M, WP_C_B, WP_R_T, WP_R_MB, WP_L_T,

WP_L_MB}. The ‘Forward’ algorithm [19] is used to obtain the

probabilities of observing OQ, given the two HMMs lT1 and lT2 as

P(OQ j lT1) ¼ 8.34e-7 and P(OQ j lT2) ¼ 3.12e-7. Since P(OQ j lT1) ¼

8.34e-7 is the highest probability, lT1 is picked as the most likely

model to represent the task scenario OQ.

i. Using the ‘Viterbi’ algorithm [19], HMM lT1 is queried with the

workpiece state sequence OQ to obtain the most likely sequence

of human action states HQ that could produce the given task

scenario as HQ ¼ {H_C_T, H_C_M, H_C_B, H_R_T, H_R_MB, H_L_T,

H_L_MB}

Similarly, multiple task scenarios can be queried from the

HMMs to obtain the human actions responsible for them. Because

of the stochastic nature of the HMMs, human response to not only

captured task scenarios but also those that are not captured can be

extracted. From these extracted human action states, the constit-

uents of manufacturing knowledge are decoded.

Step 5) Decode: Themain objective and innovation of this step is

to decode four key manufacturing knowledge constituents of theFig. 9. Layup strategy adopted by the expert laminator.

Table 5

Layup time taken in workpiece sectors.

State Time taken (s)

W_C_T 51.5

W_C_M 113.6

W_L_T 30.6

W_R_T 38.4

W_C_B 28.1

W_L_MB 92.8

W_R_MB 100.9
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composite layup task from the extracted human action states. The

constituents are i) Task strategy, ii) plymanipulation techniques, iii)

mechanics of the laminator's motion during task execution, and iv)

problem solving approach used to correct layup errors.

i. Task strategy: The approach taken by the technician to lay

the ply on the mould depends on the geometry of the mould,

the deformation characteristics of the ply and the awareness

of sector dependencies where one sector must be laid before

another to avoid layup errors. In this case, the task strategy

can be observed from the sequence of actions taken by the

technician to perform the task. This sequence is already ob-

tained in the previous step where human action state se-

quences are obtained for any given task scenarios. For

example, for task scenario OQ, the human action sequence

obtained was HQ which when superimposed on the mould

shows the task strategy adopted (Fig. 9).

ii. Time taken: The time taken by the laminator to layup each

sector of theworkpiece can also be obtained from the human

action states by using the capture timestamps stored. With

this knowledge, workpiece areas that take longer to layup

than others indicating higher layup complexities in those

sectors, can be automatically identified (Table 5).

iii. Precise human motion: The actual action data from within

each extracted human action state is obtained from the

spreadsheet that contains the laminator's skeletal motion

data. The x, y and z motion of the laminator's left and right

hands are plotted against time so that the motion patterns

can be visualised thereby revealing the ply manipulation

techniques used in each state. As an example, the techni-

cian's hand motion during action state 5 (H_C_B) is shown in

Fig. 10. Similarly, motion charts of the rest of the upper body

joints, such as head, neck, elbows, shoulders, and torso can

also be plotted and visualised.

iv. Ply manipulation techniques: According to the Elkington

et al. [4], there are seven standard hand ply manipulation

techniques. The techniques are (i) one handed guiding, (ii)

two handed guiding, (iii) manual folding, (iv) mould inter-

action shearing, (v) double tension shearing, (vi) tension

secured shearing, and (vii) smoothing and tensioning. One or

more of these techniques are used within each of the human

action states and therefore can be isolated and revealed as an

important constituent of layup task knowledge. The lami-

nator's hand motion charts during the techniques are listed

in Fig. 11.

v. Laminator's motion mechanics: The skeletal joint co-

ordinates belonging to the laminator's upper body are

recorded in the capture step of the framework. From these

joint coordinates, severalmotion parameters can be obtained

using vector computing. Examples of four different motion

Fig. 10. Layup strategy adopted by the expert laminator.
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Fig. 11. Ply manipulation techniques used by the expert laminator.
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mechanics computed using skeletal coordinate data is shown

in Fig. 12. This data helps in visualising the laminator's body

posture sand orientations, glance angles and the positions of

his hands with respect to the ply and the mould while per-

forming critical hand layup techniques.

Another influential constituent of motion mechanics that is

critical to the success of the layup is the laminator's hand speed

while performing ply manipulation [6]. A small portion of hand

motion chart is shown in Fig. 13 and the hand speed in two zones A

and B is computed from coordinate data stream of the hands. The

screen coordinates are converted to real-world coordinates to

obtain speed values in mm/s rather than in pixels/s.

vi. Laminator's problem-solving approach: In this study, the

laminator deliberately introduced an error into the task. A

simulated error wasmadewhile laying up the ply on a particular

area of theworkpiece resulting in awrinkle on the surface. If not

resolved, the wrinkle might result in a serious surface defect

that could weaken the structure post curing. The laminator

using a 3-step approach removed the wrinkle from the surface

of the ply. This problem solving scenario is represented by the

workpiece observation sequence OQP as OQP ¼ {WP_C_M_P,

WP_C_M_PS1, WP_C_M_PS2, WP_C_M_PS3, WP_C_M}

In order to understand this approach, the HMM that most likely

represents this scenario is chosen using the ‘Forward’ algorithm.

The chosen HMM is lT2 fromwhich the human action sequence HQP

that is most likely responsible for OQP is extracted using the ‘Viterbi’

algorithm (Fig. 14). HQP ¼ {H_C_M_P, H_C_M_PS1, H_C_M_PS2,

H_C_M_PS3, H_C_M}

Fig. 12. Laminator's motion mechanics during the layup task.

Fig. 13. Laminator's hand motion speeds during the layup task.
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Step 6) Reproduce: The captured human action and workpiece

data consists of a stream of skeletal joint coordinates of the tech-

nician's upper body and the progress of the workpiece as an ac-

curate digital representation of the task. This way a task can be

digitally captured and stored in a spreadsheet less than a megabyte

in size instead of the usual practice of capturing and storing tasks in

large video files. The skeletal coordinates stored in the spreadsheet

can be rendered graphically to produce a stickman animation of the

captured layup task (Fig. 15). However, when greater level of task

detail, such as finger positions, is required then an animation does

not suffice and the corresponding colour images can be referred to.

Though only 2D animation is used in this work, the digital na-

ture of the extracted and decoded knowledge enables the ‘Repro-

duce’ step to also use graphics-rich media such as immersive virtual

environments in which tasks can be demonstrated by virtual hu-

man avatars on virtual workpieces or the manufacturing knowl-

edge can be augmented on a real environment during a task using

mixed reality technologies. Both these methods help in enabling

quick and cost-effective transfer of manual layup skills.

The two main innovations in this research work are: (i) the

proposed human-workpiece interaction theory that for the first

time seeks to integrate and expand Rasmussen's concept of skill-

based, rule-based and knowledge-based behaviours, Rasmussen's

concept of a decision ladder for problem solving and Gibson's

theory of affordances during human-object interactions, in order to

fully describe a manual skill-intensive task such as composite

layup. The theory is then used to underpin the new digitisation

framework to extract manufacturing knowledge frommanual tasks

and (ii) the 6-step digitisation process that demonstrates the use of

the theory and enables automated extraction and reproduction of

manufacturing knowledge from skill-intensive manual tasks. The

implementation of this process is demonstrated using low-cost

gaming devices to simultaneously capture and digitise human ac-

tions and the more critically the effect of those actions on the

deformableworkpiece during a layup task. This is followed by using

hidden Markov models to digitally represent and query the in-

teractions between the laminator and the composite ply during the

layup task. Interestingly, this research uses standard algorithms

such as the ‘Forward’ algorithm, the ‘Viterbi’ algorithm and the

‘Baum-Welch’ algorithm to extract key knowledge constituents

from the layup task, made possible because of the innovation in

which the human-workpiece interactions are modelled within the

hidden Markov model.

The significance of this research is its direct impact to facilitate

quick and cost-effective skill transfer between people. The captured

knowledge can also be used in a real-time supervision system using

the Kinect sensor that watches the newly trained laminator do the

task and benchmarks his/her layup actions against those captured

and verified by the system. Any movements that are outside the

acceptable limits are flagged as areas of improvements, thereby

constantly refining the layup skills of new laminators. The proposed

digitisation framework can also be an enabler for (i) automated

analysis of manual tasks on the shopfloor to assess task ergonomics

in real-time, (ii) real-time physical collaboration between remote

Fig. 14. Laminator's problem-solving approach during the layup task.

Fig. 15. Layup task animation which is a digital representation of the actual layup task as performed by the laminator.
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engineering teams and (iii) intelligent automation of skill-intensive

manual manufacturing tasks, all contributing towards enhancing

the productivity of the manufacturing industry.

4. Conclusion

The proposed digitisation process, underpinned by the human-

workpiece interaction theory is successfully implemented for

digitising the task knowledge embedded within a manual com-

posite layup task. The framework itself is of a plug and play nature

in which different methods, tools and techniques could be used in

each of the 6 steps to implement it for digitisation of a variety of

manual manufacturing tasks. In summary, this research contributes

to knowledge in the five main areas, namely, (1) the theory of

human-workpiece interactions to decipher human behaviour in

manual manufacturing tasks, such as manual composite layup (2) a

cohesive and holistic framework to digitise manual manufacturing

task knowledge with well defined steps, (3) the use of low-cost

gaming interface technology to simultaneously capture human

actions and the effect of those actions on workpieces during a

manual manufacturing task in an industrial setting, (4) a new

approach to use hidden Markov models to represent human ability

to perform a complex task on a workpiece and (5) extraction and

decoding of manufacturing knowledge constituents from the hid-

den Markov models. The biggest contribution to research as a

combination of all the above is the new ability to unearth and

decode human skills that were always considered very difficult to

extract and reproduce. In the future, more task observations need

to be captured in order to extract layup knowledge from diverse

task scenarios to increase the depth of this study. Involving mul-

tiple laminators with varying degrees of expertise would also

provide a means to digitise each laminator's knowledge into

distinct representations of individual skill models to be used in skill

training and assessments.
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