
This is a repository copy of Simultaneous Search and Monitoring by Unmanned Aerial
Vehicles.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/129540/

Version: Accepted Version

Proceedings Paper:
Zhang, H., Veres, S. and Kolling, A. (2018) Simultaneous Search and Monitoring by
Unmanned Aerial Vehicles. In: Decision and Control (CDC), 2017 IEEE 56th Annual
Conference on. 2017 IEEE 56th Annual Conference on Decision and Control (CDC), 12-15
Dec 2017, Melbourne, Australia. IEEE .

https://doi.org/10.1109/CDC.2017.8263774

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Simultaneous Search and Monitoring by Unmanned Aerial Vehicles

Haoyu Zhang1, Sandor Veres1, Andreas Kolling2

Abstract— Simultaneous Search and Monitoring (SSM) is
studied in this paper for a single Unmanned Aerial Vehicle
(UAV) searcher and multiple moving ground targets. Searching
for unknown targets and monitoring known targets are two
intrinsically related problems, but have mostly been addressed
in isolation. We combine the two problems with a joint objective
function in a Partially Observable Markov Decision Process
(POMDP). An online policy planning approach is proposed to
plan a reactive policy to solve the POMDP, using both Monte-
Carlo sampling and Simulated Annealing. The simulation result
shows that the searcher will successfully find unknown targets
without losing known ones. We demonstrate, with a theoretical
proof and comparative simulations, that the proposed approach
can deliver a better performance than conventional foresight
optimization methods.

I. INTRODUCTION

Search and Pursuit Evasion is a problem for a single or

multiple robot system trying to detect or capture one or

more targets [1]. In practice, relevant problems are mainly

divided into two categories: one is searching for unknown

targets [2], the other is monitoring known scattered targets

to update their information [3][4]. In both categories, the

problem formulations are further divided by how fast the

agent can outrun the targets, how many targets each agent

needs to cover, and how big area of the environment can be

sensed. In search missions, the searcher may build a fixed

formation to cover the whole area statically [5], or sweep in

a fixed pattern [6], or explore dynamically to achieve fastest

or best chance of detection [2]. In a monitoring mission

the pursuers may track one individual target [7], or cover

multiple ones [8], or traverse them in a sequence [3].

In most realistic applications, however, search and moni-

toring are both required. Unknown targets should be found

and known ones should be kept under surveillance. To

address the dichotomy in current works, we study a Simul-

taneous Search and Monitoring (SSM) problem, in which a

single UAV searcher is required to search and continuously

monitor several targets in a large environment. The pursuer

tries to update the location information of as many targets

as possible, through searching for unknown targets while

monitoring known ones in parallel. At first glance, the search

and monitoring solutions appear to be incompatible, and

the trade-off between clashing interests of the UAV has

previously been formulated as a Task Assignment Problem

[9]. In our work, however, the trade-off is transformed into a

1 Haoyu Zang is a research student and Sandor M. Veres is a
Professor at ACSE, The University of Sheffield, corresponding author,
s.veres@sheffield.ac.uk

2 Andreas Kolling is a Principal Robotics Scientist at iRobot Corp.
akolling@irobot.com

cooperation, by treating search and monitoring combinatori-

ally under a united objective function. This objective function

can better address the objective in SSM problems, and hence

can better exploit the potential of the UAV.

The main difficulties in search and monitoring problems

relate to the uncertainties around target locations and mo-

tions. Many prior publications incorporated the uncertainties

into rewards, which were deterministic and predictable with

respect to pursuer actions. These rewards can be expected

number of detections [10], expected monitoring or service

levels [11], overall awareness [12], or information entropy

[13]. Thus the resulting objective functions are not stochas-

tic, and generate fixed sequences of actions as solutions.

However, when search and monitoring are combined, new

contingencies such as a detection of a new target or losing

a known one, may greatly change the situation and affect

the quality of an old fixed plan. The alternative is either

a re-planning approach or an approach that plans for these

contingencies. We choose a mixed approach and formulated

the problem as a Partially Observable Markov Decision

Process (POMDP), which models the uncertain system as

a Markov Process, and plans a reactive policy with a look-

ahead capability for possible future events.

It has been proven that the optimization problems for many

variations of Search, Monitoring, and Pursuit Evasion are

NP-hard [14], indicating the computational intractability of

this problem. Some past works on POMDP take advantage

of the piecewise linear property of the objective function,

to do offline computation of an optimal policy [15][16].

These approaches can produce precise optimal policies which

are fast to execute. But they require an enumeration of

the state space and deal with a specific environment, thus

are limited to small problems and are not adaptive to

changing environments [17]. Therefore we apply an inflight

planning approach, which combines Monte-Carlo Sampling

and Heuristics to calculate solutions with a reasonable com-

putational cost. Our method can hence also be interpreted as

a stochastically verifiable search and monitoring behaviour

of UAVs.

The paper is structured as follows: the basic assumptions

and models are described in Section II, and the objective

function is built in Section III. The policy and trajectory

planning approaches are designed in Section IV and V. The

simulation results, conclusion and future work are shown in

Section VI and VII.

II. TARGET AND PURSUER MODELLING

A. Target Modelling

In a discretized arena ς = {ci, j|i= 1,2, ...,nx, j = 1, ...,ny},

where ci, j denote grid cells, there are n sparsely scattered

ground targets and one aerial pursuer. Assume that n is

known to the pursuer, and each target is distinguishable and

is assigned with an ID λ ∈Λ . Λ is the set of all the targets.

Each cell can contain only one target and one pursuer. Both

the pursuer and targets can move only between neighbouring

cells. For a pursuer in ci, j, its sensor footprint is the area

∆= {ci+a, j+b|a,b∈ {−k,−k+1, ...,0, ...,k}}. Without losing

generality, we assume that nx = (2k+ 1)L,ny = (2k+ 1)M.

Thus if agent visits cells Cs = {c(2k+1)l−k,(2k+1)m−k|l =
1,2, ...,L,m = 1,2, ...,M}, the whole environment can be

swept by sensor footprint.

As the environment is partially observable, the target loca-

tion xλ (t) is estimated by a probability map. Let P̂λ (c, t|Yt)
be the estimated probability distribution of target λ in cell

c at time t, given Yt which is the set of measurement up to

time t. The whole environment is shown in Figure 1.

Fig. 1. Example of the environment, which are partitioned by grid cells.
Circles denote the targets, among which the filled ones are known targets.
The crosses are the estimated locations of known targets. The numbers
label the target IDs. The plus signs denote cells in Cs. The rectangle is the
agent sensor footprint. The contour denotes the probability distribution of
all unknown targets

For the pursuers to update P̂λ (c, t|Yt), we apply the

Bayesian formulation, which is based on the work of [2],

[18], and [19]. Let t− = t−1, t+ = t+1. And let N(c) denote

the neighbouring area of c. π(c|c′) is the transition function

representing the probability if target moves from c′ to c in a

time step, where

π(c|c′) =

ps if c = c′

pc|c′ if c ∈ N(c′)

0 else

(1)

pc|c′ is the probability that the target moves from c′ to a

neighbouring cell c ∈ N(c′). ps is the probability that target

stays unmoved. And ps +∑c∈N(c′) pc|c′ = 1

p(yt |c) denotes the probability density function of sensing,

indicating the probability of possible individual measurement

at time t given that the target is at c, thus

p(yt |c) =

p false positive

1− p true negative

q false negative

1−q true positive

(2)

Based on the above, the Bayesian formulation of the

updating law for target estimation is as follows [2][18][19]:

1) Prediction. Compute prediction using the prior proba-

bility distribution P̂λ (c
′, t−|Yt−), the transition function

(1), and the Chapman-Kolmogorov equation

P̂λ (c, t|Yt−) = ∑
c′∈ς

π(c|c′)P̂λ (c
′, t−|Yt−) (3)

2) Correction by observation. Update the prediction for

cells which are being observed, using Bayes’ theorem

P̂λ (c, t|Yt) =
P̂λ (c, t|Yt−)p(yt |c)

∑c′∈∆ P̂λ (c′, t|Yt−)p(yt |c′)
(4)

3) Correction by inference. For cells outside of sensor

footprint, the prediction can be corrected using the fact

that ∑c∈ς P̂λ (c, t|Yt)dc = 1

P̂λ (c, t|Yt) = P̂λ (c, t|Yt−)
1−∑c′∈∆ P̂λ (c

′, t|Yt)

∑c′∈ς/∆ P̂λ (c′, t|Yt−)
(5)

To simplify path planning, we categorise targets as known

and unknown. If the aggregation level of P̂λ (c, t|Yt) becomes

higher than a upper threshold, λ is known. x̂λ (t) is the

estimation of target location xλ (t). Let Λt ∈Λ denote the set

of known targets at time t. If the aggregation of P̂λ (c, t|Yt) is

lower than a bottom threshold, or if the agent fails to detect λ
when agent traverses x̂λ (t), λ is lost and becomes unknown.

Each known target is under monitoring until lost.

For all the unknown targets λ ∈ Λ/Λt , let P̂u(c, t|Yt) be

their total probability distribution, thus

P̂u(c, t|Yt) = ∑
λ∈Λ/Λt

P̂λ (c, t|Yt) (6)

B. Pursuer Modelling

Assume that the pursuer could fly with a speed constraint

and an arbitrarily small turning radius. The location of

pursuer at time t is defined as xp(t).

C. Overall Model

The state space of an agent in SSM is denoted by S, and at

time t, each state st ∈ S = {{P̂λ (c, t|Yt)|λ ∈ Λ},{x̂λ (t)|λ ∈
Λt},xp(t),Λt , t}. Let a denote the agent action which is its

movement between neighbouring cells. And As is the set

of all possible actions when the agent is in state s. Thus

p(st+ |st ,a) is a system state transition function, which is

a probability distribution over S. The state space is then

formulated as a Discrete-Time Markov Chain.

III. OBJECTIVE FUNCTION

As introduced, the requirements for search and monitoring

are contradicting as they may demand the agent to fly over

different areas at the same time. By taking advantage of the

stochastic character of both missions, we choose an objective

function to be a unified goal for search and monitoring.

Definition 1: In state st , the belief of the estimated loca-

tion x̂λ (t) is the probability that xλ (t) is within F(x̂λ (t)) =
{ci+a, j+b|a,b ∈ {−k,−k+, ...,0, ...,k},ci, j = x̂λ (t)}. The be-

lief is denoted by B̃λ (st). F(x̂λ (t)) is the sensor footprint

shaped area centred at x̂λ (t). �
The rationale of B̃λ (st) is that it provides a lower bound of

probability which target λ will be re-detected, if agent visit

x̂λ (t) at t. For state st , we define R(st) = ∑λ∈Λt
B̃λ (st) to

be the reward for SSM mission. It provides the lower bound

for the expected number of targets which can be detected, if

m = |Λt | agents are deployed to reach the estimated location

of each known target at time t.

µ denotes an agent policy to decide which action to take,

according to current information. st f
denotes one of the

possible terminal states, and p(st f
|µ,sti) is its probability

distribution over S given policy µ and initial state sti .

According to [20], objective function for SSM over time

horizon T = t f − ti is formulated as the expected average

of the rewards for all time steps within time horizon:

G(µ,sti , t f) = E{
∆T

T

t f

∑
t=ti

R(st)}=
∆T

T

t f

∑
t=ti

E{R(st)}

=
∆T

T

t f

∑
t=ti

∑
st∈S

p(st |µ,sti)R(st)

=
∆T

T

t f

∑
t=ti

∑
st∈S

p(st |µ,sti) ∑
λ∈Λt

B̃λ (st)

where ∆T is the time step of system.

This objective can be increased by synergies of search and

monitoring through cooperation. The agent can search new

targets to enlarge Λt , or to monitor known ones to increase

B̃λ (st). Thus by planning a policy, the agent can do both

missions simultaneously for the same goal.

IV. POLICY PLANNING

A. Solution Methods for POMDP

As we have defined the tuple (S,As, p(st+ |st ,a),
G(µ,sti , t f)) for the system, the SSM problem is formulated

as a Finite-Horizon Partially Observable Markov Decision

Process (POMDP), of which the goal is to plan the policy µ
of pursuer, to optimize the objective value.

Lemma 4.1: For the POMDP defined by tuple

(S,As, p(st+ |st ,a),G(µ,sti , t f)), there exists a deterministic

history dependent policy µ∗(st ,ht) to decide the action at at

each time t, which can achieve the optimal objective value.

Where ht = (ht− ,at− ,st) denotes system history. [20]

Some past work applied a policy iteration method to

compute µ∗(st ,ht) offline [20]. Other works reduced the

dimension of offline enumeration by utilizing the piecewise

linear character of the objective function [15][16]. However,

these offline methods require enumeration of state space, thus

the computation cost grows exponentially with the number

of states. Also the planned policy has not been adaptive to

the environmental changes, thus might not have been flexible

for a scenario with uncertainty in environment [17].

Instead, we apply online planning [17], which explores the

reachable states from the initial state until a time horizon,

then plans a local policy. The local policy will be imple-

mented till time horizon or the occurrence of certain events,

and will then be replanned. This approach focuses on local

and current information, thus can be computed online with

moderate cost and can be adaptive to environmental changes.

The objective value can be estimated in a recursive way:

G(µ,sti , t f) =

∆T

T
Rti(sti)+

T −∆T

T
∑

sti+∈S

p(sti+ |sti ,a)G(µ,sti+ , t f)
(7)

Thus the vital part of planning is to calculate the ex-

pected future rewards ∑sti+∈S p(sti+ |sti ,a)G(µ,sti+ , t f). The

backward induction method [20] is infeasible because of its

computational intractability. In [21], some different approx-

imation approaches for expected future rewards are intro-

duced. Amongst those approaches, the foresight optimization

is commonly used in relevant problems [4]. It plans a

deterministic path which is a fixed sequence of actions [21].

It has been stated in [21] that foresight optimization can

guarantee a lower bound of optimal reward.

However, as mentioned in introduction, in our case, be-

cause of the sensitivity of the state s and objective function

G(µ,sti , t f) to contingencies such as new detection or failed

monitoring, the reactions to future events should be con-

sidered in planning. Therefore, we need a trade-off between

computational efficiency and optimality. Some heuristics and

Monte-Carlo methods will be implemented as follows.

B. Simplifications

To reduce computational complexity, we make the follow-

ing assumptions/simplifications for planning:

1) Perfect Sensor Assumption. We assume that for the

sensor model in equation (2), p = 0,q = 0.

2) Contingency Density Assumption. As the target dis-

tribution is sparse, we assume that for each time step,

only one contingency may happen. The contingencies

can be four kinds of events: 1. detecting a new target,

2. re-detecting a known target, 3. losing a known target,

4. other events.

3) Probability Distribution Update Simplification.

P̂u(c, t|Yt) is estimated by both target dynamics and

sensing. In policy planning, for a future time instant,

we ignore the influence of sensing on P̂u(c, t|Yt).
4) Location Update Assumption. Once a known target

λ is redetected, x̂λ (t) will be updated. We assume that

this update does not dramatically change st .

Based on assumption 2), we classify the states in which

the agent fails to detect a new target or succeed to monitor a

known one as s′, and other states as s◦. States s◦ are called

branching states.

Based on assumptions 3), we make the simplification that

when doing the prediction in planning, the P̂u(c, t|Yt) is a

fixed sequence within time horizon, which are predicted only

by information at initial time, thus P̂u(c, t|Yt) = P̂u(c, t|Yti).
The induced error is compensated by not allowing an agent

to search for a location twice within time horizon. And

according to 4), in prediction, we do not consider the

adaptation to any change of x̂λ (t) although it may be updated

by monitoring. Both simplifications prune branching.

It should be noted that all these simplifications only apply

to planning, when the agent is estimating future events. It

does not apply during the execution of a policy.

C. Concept for Policy Planning

At initial state sti , we propose a deterministic trajectory for

agent: χ = {x′p(t)|t = ti, ti+, ..., t f ,x
′
p(ti) = xp(ti)}, called base

trajectory. x′p(t) denotes the location that the target is planned

to visit at time t. The trajectory will include a set of target

locations X(ti) = {x̂λ (ti)|λ ∈ Π(ti)}, where Π(ti) ∈ Λ(ti) is

the set of known targets to be monitored along χ .

Assume that there is a function χ◦ = f (s◦,χ,ht) which

maps a branching state s◦, current base trajectory χ and

system history ht , to a new base trajectory χ◦ starting from

xp ∈ s◦. Also let {at |at = xp(t+), t ∈ {ti, ti+, ..., t f−}} be the

action taken by the agent to decide the next immediate

location. Thus we define a policy µ as Algorithm 1:

Algorithm 1: at = µ(st ,χ,ht)

if st ∈ s◦ then
χ◦ = f (s◦,χ,ht), χ = χ◦

end

at = xp(t+) ∈ χ

where ht = (ht− ,at− ,st) denotes system history.

Theorem 4.2: For the POMDP defined by tuple

(S,As, p(st+ |st ,a),G(µ,sti , t f)), there exists a deterministic

history dependent policy µ(st ,χ,ht) defined in Algorithm

1, to be optimal. �

The proof is given in the Appendix A.

After the formulation of Algorithm 1, the approach of

policy planning can be achieved in three steps: 1. propose

a candidate policy µ(st ,χ,ht); 2. estimate objective value

G(µ,sti , t f); 3. search among all possible µ(st ,χ,ht) and find

the optimal one. However, in step one, the selection pool of

µ(st ,χ,ht) is enormous considering system state space; and

in step two, the possible branchings in estimation are still

enormous. Thus, further simplification should be applied in

both steps to make them feasible.

D. Heuristic Policy Approximation

To avoid Backward Induction, we propose a heuris-

tic structure of policy, to approximate the optimal policy

µ∗(st ,χ,ht) via adjusting the parameter in that structure.

In a base trajectory χ which traverses target locations

X(ti), the nodes to traverse known targets are called moni-

toring nodes. At states s′, the agent will keep following χ .

Thus we define a heuristic function χ◦ = f (s◦,χ,ht) that is

only reactive to the states s◦:

1) Detecting a New Target. If there is a detection of a

new target λ at time td , then Π(td) = Π(td)
⋃

λ . The

remaining part of χ is χr. We let f (s◦,χ,ht) = χr,

which does not change the original path.

2) Losing a Known Target. If a known target λ is lost at

time td , then Π(td) = Π(td)/λ , and the remaining part

of χ is χr. Then we refine χr in three steps: 1 Prune.

We remove all the monitoring nodes from χr which

traverse λ ; 2 Straighten. For each pruned node, we

use a straight line to connect the possible monitoring

nodes before and after the pruned one, to replace the

original segments of path connecting between them.

Thus χr is straightened to be χrs; 3 Complement. The

straightening may make χrs shorter than χr for a length

of lc. For the remaining monitoring nodes which are

not pruned in all previous branchings, we assume that

there is a polyline Pl connecting them in their original

sequence. We truncate Pl to a length of lc, and add it

to the end of χrs, then obtain χrsc.

µs(st ,χ,ht) = xp(t+)∈ χrsc and µr(st ,χ,ht) = xp(t+)∈
χr are the fixed action sequence policies with respect

to χrsc and χr. The objective value, G(µs,std , t f)
and G(µr,std , t f), can be calculated deterministi-

cally. µs is to prune monitoring nodes of lost

target, to focus on later search and monitor-

ing; µr maintain the old route on the contrary.

Let χc = χr if G(µr,std , t f) > G(µs,std , t f), or χc =
χrsc if G(µs,std , t f) > G(µr,std , t f), which is to com-

pare and choose between two policies. We let

f (s◦,χ,ht) = χc in this case.

The full f (s◦,χ,ht) is presented in Algorithm 2.

Algorithm 2: χ◦ = f (s◦,χ,ht)

χ◦ = χr

if losing a known target then
calculate χc based on χ◦, then χ◦ = χc

end

output χ◦

Thus we have built our heuristic reactive policy at =
µa(st ,χ,ht) based on Algorithm 1 and 2. We will then prove

the sub-optimality of this approximation, which is through

comparison with foresight optimization. In our application,

the foresight optimal policy is a fixed sequence of actions

at = µ f (st ,χ,ht) = xp(t+) ∈ χ , which maintains following

the fixed χ regardless of any contingencies.

Lemma 4.3: For a foresight optimal policy µ f , its esti-

mated objective value is a lower bound of the maximum

objective value achieved by optimal policy µ∗ [21].

Theorem 4.4: The optimal reactive policy µ∗
a has an better

estimated objective value than that of foresight optimal

policy. �

The proof is in Appendix B.

Theorem 4.4 shows that the reactive policy µa can better

approximate the optimal policy compared with foresight

optimization. As function χ◦ = f (s◦,χ,ht) is defined, the

policy planning is transformed into the path planning of χ .

In real application, replanning and revising will be introduced

to better adapt to future contingencies. If a known target is

successfully monitored, χ will be revised to adapt to new

target location. If a new target is detected or a known one is

lost, the µa(st ,χ,ht) will be replanned to adapt.

E. Monte-Carlo Estimation of Objective Value

To estimate the objective value of a candidate policy, we

apply the Monte-Carlo Sampling method.

We do m cases of samples. In each sample, the agent

applies the policy µa(st ,χ,ht), and let branching happens

stochastically based on their probability. In each sample i =
1, ...,m, the achieved hindsight objective value Gi(µa,sti , t f)
can be computed based on the corresponding events oc-

curred. Thus G(µa,sti , t f) can be approximated by:

G(µa,sti , t f) = ∑
i∈[1,m]

Gi/m (8)

With a practical method of estimating the objective value

of each candidate policy, we search the best χ by the follow-

ing path planning algorithm based on Simulated Annealing.

V. PATH PLANNING BASED ON SIMULATED ANNEALING

A. Further simplification

A further assumption is made to facilitate planning.

5) Trajectory Planning Constraint. We assume that the

vertices of a planned path can only be Cs

⋃

{x̂λ (t)|λ ∈
Λt}, which are enough to cover the whole environment

without undermining performance. The former set of

cells are called search cells, and the later are called

monitoring cells.

B. Candidate Trajectory Mutation

To generate candidate path χ , we design a mutation

function to get neighbouring candidate solutions. Let χ̂ =
M(χ) be the mutation function for a trajectory, which include

four kinds of mutations as inspired by [22]: 1. Add: at one

position of χ , add a new node. 2 Prune: prune one node from

χ . 3 Swap: swap the position of two nodes in χ or swap one

node in χ with a new location. 4 Null: keep χ unchanged.

Mutation 1-3 are shown in Figure 2

The red triangle is the current agent location. Green

vertices and lines denote the planned trajectory. The numbers

show the sequence of nodes. The cells with a plus signs are

search cells, and the cells with blue solid circles are estimated

location of known targets.

Fig. 2. Mutations on trajectory

Algorithm 3: Simulated Annealing

initialization;

χ = {x′p(t)|t = ti, ti+, ..., t f },Te = Te0,kB = const,Gc = 0

while Te ≥ Tde f ault do
χ̂ = M(χ). Gp =−G(µa,sti , t f), E = |Gp −Gc|
if Gp > Gc then

p = exp(−E/kBTe)
if random(0,1)≤ p then

accept = true

else
accept = false

end

else
accept = true

end

if accept = true then
Gc = Gp, χ = χ̂

end

Lower the temperature Te

end

Output χ

C. Path Planning based on Simulated Annealing

With the mutation function, the path χ can be planned

by a Path Planning algorithm based on Simulated Annealing

(Algorithm 3) [23][24]. Simulated Annealing is widely used

in path planning and can effectively avoid local minima [24].

Then, the reactive policy can be planned by above steps,

which can be executed by the agent for SSM mission.

VI. SIMULATION

A. Case Study

Consider a 100m×100m square environment ς , which is

discretized into 25×25 cells. The agent sensor can cover 5×
5 cells. There are 5 unknown targets and 1 pursuer scattered

in the environment. For each time step ∆T = 0.2s, there will

be ps = 80% probability that a target will stay within the

current location. The pursuer can move at speed V = 20m/s.

The agent will plan and execute proposed reactive policy

µa for SSM task, with a time horizon T = 10s. When a

contingency state s◦ is reached, or when it has been after Tp

long time since last planning, a replanning will be triggered.

We set Tp = 5s < T to make the planning more adaptive

to environmental changes. The initial target probability dis-

tribution P̂λ (c, t|Yt) is uniform within the environment, and

targets are randomly scattered.

Figure 3,4 and 5 are the snapshots of simulation.

Fig. 3. Search

Fig. 4. search and monitoring

The polygons with arrows are the plans of base trajectory.

It can be seen from Figure 3 that when there is an area

with high distribution of unknown targets, the agent will

sweep that area to search. Figure 4 shows that when some

targets are known to be nearby, and there is likely to be an

unknown target in the neighbouring area, the agent may try

to explore the neighbouring unknown area and traverse the

known targets, thus combining search and monitoring in the

same path. And Figure 5 shows that when the monitoring

is saturated, which is when there are some known targets

nearby, but there is unlikely to be unknown targets in vicinity,

Fig. 5. monitoring

the agent will focus on traversing nearby known targets back

and forth.

B. Comparison

We did quantitative study of the SSM, and compared

the performance of the proposed reactive policy planning

with foresight optimization. Scenarios with n=2, 3, 5 and 7

targets had been studied, and with ps = 60,70,80%. For each

scenario, we did 200 cases of simulation for 200 seconds

long each. The reward of a scenario is the average reward

in each time step, and the average computation time of

each planning is recorded as well. We also consider the

cases with imperfect sensor, where at each time step, for

the sensing of each target, there would be 0.2% chance of

false positive or 5% chance of false negative. Figure 6 shows

the performances in each scenarios. Each simulation is done

by one core of E5 2650V2 processor (2.6 GHz).

Fig. 6. Comparison of Performances

It can be seen that in most scenarios, the reward of reactive

policy is better than foresight optimization. It proves that, if

the future contingencies and corresponding reactions are con-

sidered during planning, the agent can make better decision

about future actions, which is consistent with Theorem 4.4 .

To explain the advantage of reactive policy, we study the

following case. In a situation where there are only two known

targets and ps = 80%, we plan the policy using both proposed

reactive policy planning and foresight optimization. The base

trajectories planned by both methods are shown in Figure 7

Fig. 7. base trajectory planned by reactive policy planning (left), and
foresight optimization (right).

In this case, the foresight optimization keeps the robot to

follow only one target, with a estimated objective value of

1.70. On the contrary, the reactive policy planning drives the

robot to go back and forth between two known targets, with

a better objective value of 1.92. Foresight optimization does

not choose the back-and-forth route because if it follows such

a fixed route, the agent will not react if one target is lost and

will still go back and forth, thus the remaining target will

always have a chance to escape between each visit. However,

if the policy is reactive, the agent will keep monitoring the

remaining target if another is lost, which is more rational

with higher estimated objective value.

It is also shown that, in the case of imperfect sensor, there

will be a decrease in the performance of both approaches.

However, this can be improved by introducing sensor filtering

to reduce the influence of false measurement.

According to simulation, each planning of proposed reac-

tive policy takes 0.87 seconds in average, which is much

slower than foresight optimization, which takes average

0.01 seconds. Nevertheless, the speed of reactive policy is

practical for real time implementation.

VII. CONCLUSION

Through modelling the system and formulating an objec-

tive function, we set up a POMDP framework for a SSM

problem, which reconciles search and monitoring missions

under a united goal. A novel reactive policy planning method

is proposed to solve the problem. Some measures were

taken to tackle the computational intractability of finding the

best policy and estimating stochastic reward, which include

designing a heuristic structure of reactive policy and applying

Monte-Carlo sampling. The case study simulation result

shows that the proposed approach can effectively search

for unknown targets in an initially unknown environment,

and can maintain the surveillance of them, with a moderate

computational cost. Whenever the monitoring capability is

not saturated, the agent will try to find more targets without

losing current known ones. We have theoretically proved that

our proposed method should work better than conventional

foresight optimization and tested that in simulation.

Currently we are testing our methods on multi-rotors and

rovers at our Field Robotics Centre near Sheffield, UK.

APPENDIX I

PROOF OF THEOREM 4.2

Proof: Assume that there is an arbitrary deterministic

history dependent policy µ(st ,ht), applied on a arbitrary

initial system state sti , until terminal time t f . Let ati =
µ(sti ,hti) be the first action. For all the later states, if {st |t =
ti+, ...t f } ∈ s′, let {a′t |t = ti+, ...t f ,a

′
t = µ(st ,ht)} denotes

the corresponding sequence of actions taken by policy. Let

χ = {ati ,a
′
ti+
, ...,a′t f

}. If at time t1, st1 ∈ s◦, the immediate

action taken is a◦t1 = µ(st1 ,ht1), and let {a
′′

t |t = t1+, ...t f ,a
′′

t =
µ(st ,ht)} denotes all the corresponding actions for later

states if those states belong to s′. Let χ◦ = {a◦t1 ,a
′′

t1+
, ...,a

′′

t f
}.

It can be seen that after recursively applying this pro-

cess, all possible states and corresponding actions can be

reconstructed by χ and all branching χ◦, which means

that µ(st ,ht) can be fully reconstructed by µ(st ,χ,ht) in

Algorithm 1. According to Lemma 4.1, there exist a optimal

µ∗(st ,ht), and thus it can be reconstructed by a µ(st ,χ,ht),
which is also optimal.

APPENDIX II

PROOF OF THEOREM 4.4

Proof: Assume that there is a foresight optimal policy

at = µ f (st ,χ f ,ht) = xp(t+) ∈ χ f . And build a reactive policy

at = µa(st ,χ f ,ht) based on Algorithm 1 and 2 which takes

χ f as the initial trajectory. For a agent applying policy µa,

Fig. 8. branching tree

all the branchings are triggered by branching state s ∈ s◦.

Let sxhk−1
denote the state that the xth possible branching in

kth layer happens, given hk−1 which is the history of prior

branchings. h0 = φ denotes that there is no priori branching.

Let Nhk−1
denote the number of possible branchings given

hk−1. Assuming that there can only be at most M layers

of branchings within time horizon. The branching tree is

illustrated in Figure 8. Let txhk−1
and p(xhk−1

) denote the

time instant and conditional probability of xhk−1
to occur,

given hk−1. And p0hk−1
denote the conditional probability that

s ∈ s◦ does not happen given hk−1. Let Gh(ti, t f) denote the

hindsight objective value according to hindsight history from

time ti to t f , where no branching is made. Let G f (χ f ,sti , t f)=
G(µ f ,sti , t f) to be the expected objective value of applying

µ f , and let Ga(χ f ,sti , t f) = G(µa,sti , t f) to be the objective

value of applying µa. Thus Ga(χ f ,sti , t f) can be constructed

as follows, including all the possible branchings

Ga(χ f ,sti , t f) = p(0φ)Gh(ti, t f)+ p(1φ)(δ1φ
Gh(ti, t1φ

)

+(1−δ1φ
)Ga(χ

◦
1φ
,s1φ

, t f))+ ...+ p(Nφ)(δNφ
Gh(ti, tNφ

)

+(1−δNφ
)Ga(χ

◦
Nφ
,sNφ

, t f));

...

Ga(χ
◦
xhk−1

,sxhk−1
, t f) = p(0hk

)Gh(txhk−1
, t f)+ p(1hk

)(δ1hk

Gh(txhk−1
, t1hk

)+(1−δ1hk
)Ga(χ

◦
1hk

,s1hk
, t f))+ ...+ p(Nhk

)

(δNhk
Gh(txhk−1

, tNhk
)+(1−δNhk

)Ga(χ
◦
Nhk

,sNhk
, t f));

...k ∈ [1,M]

where δx′
hk

= (tx′
hk

− txhk−1
)/(t f − txhk−1

), χ◦
x′

hk

=

f (s◦
x′

hk

,χ◦
xhk−1

,hk), and hk = {xhk−1
,hk−1}.

As there will be no more branching after xhM−1
,

then Ga(χ
◦
xhM−1

,sxhM−1
, t f) = G f (χ

◦
xhM−1

,sxhM−1
, t f). Based

on the definition of f (s◦,χ,ht), Ga(χ
◦
xhM−1

,sxhM−1
, t f) =

G f (χ
◦
xhM−1

,sxhM−1
, t f)≥G f (χ

◦
x′

hM−2

,sxhM−1
, t f), where x′hM−2

∈

hM−1, thus

Ga(χ
◦
xhM−2

,sxhM−2
, t f) = p(0hM−1

)Gh(txhM−2
, t f)+ p(1hM−1

)

(δ1hM−1
Gh(txhM−2

, t1hM−1
)+(1−δ1hM−1

)Ga(χ
◦
1hM−1

,s1hM−1
, t f))

+ ...+ p(NhM−1
)(δNhM−1

Gh(txhM−2
, tNhM−1

)+(1−δNhM−1
)

Ga(χ
◦
NhM−1

,sNhM−1
, t f))≥ p(0hM−1

)Gh(txhM−2
, t f)+ p(1hM−1

)

(δ1hM−1
Gh(txhM−2

, t1hM−1
)+(1−δ1hM−1

)G f (χ
◦
xhM−2

,s1hM−1
, t f))

+ ...+ p(NhM−1
)(δNhM−1

Gh(txhM−2
, tNhM−1

)

+(1−δNhM−1
)G f (χ

◦
xhM−2

,sNhM−1
, t f))

= G f (χ
◦
xhM−2

,sxhM−2
, t f)≥ G f (χ

◦
x′

hM−3

,sxhM−2
, t f)

Applying the same process, it can be seen that

Ga(χ
◦
xhk−1

,sxhk−1
, t f)≥ G f (χ

◦
xhk−1

,sxhk−1
, t f)

≥ G f (χ
◦
x′

hk−2

,sxhk−1
, t f)

...

Ga(χ f ,sti , t f)≥ G f (χ f ,sti , t f)

Thus it proves that for arbitrary foresight optimal policy

µ f (st ,χ f ,ht), there will always be a reactive policy to achieve

better estimated objective value, which proves the theorem.

REFERENCES

[1] Timothy H Chung, Geoffrey A Hollinger, and Volkan Isler. Search
and pursuit-evasion in mobile robotics. Autonomous robots, 31(4):299–
316, 2011.

[2] Rene Vidal, Omid Shakernia, H Jin Kim, David Hyunchul Shim, and
Shankar Sastry. Probabilistic pursuit-evasion games: theory, imple-
mentation, and experimental evaluation. Robotics and Automation,

IEEE Transactions on, 18(5):662–669, 2002.
[3] Zhijun Tang and Umit Ozguner. Motion planning for multitarget

surveillance with mobile sensor agents. IEEE Transactions on

Robotics, 21(5):898–908, 2005.
[4] Scott A Miller, Zachary A Harris, and Edwin KP Chong. A pomdp

framework for coordinated guidance of autonomous uavs for multi-
target tracking. EURASIP Journal on Advances in Signal Processing,
2009(1):1–17, 2009.

[5] Mac Schwager, Daniela Rus, and Jean-Jacques Slotine. Decentralized,
adaptive coverage control for networked robots. The International

Journal of Robotics Research, 28(3):357–375, 2009.
[6] Timothy G McGee and J Karl Hedrick. Guaranteed strategies to search

for mobile evaders in the plane. In American Control Conference,

2006, pages 6–pp. IEEE, 2006.
[7] Sonia Martı́nez and Francesco Bullo. Optimal sensor placement and

motion coordination for target tracking. Automatica, 42(4):661–668,
2006.

[8] Andreas Kolling and Stefano Carpin. Cooperative observation of
multiple moving targets: an algorithm and its formalization. The

International Journal of Robotics Research, 26(9):935–953, 2007.
[9] Yan Jin, Yan Liao, Ali A Minai, and Marios M Polycarpou. Balancing

search and target response in cooperative unmanned aerial vehicle
(uav) teams. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 36(3):571–587, 2005.
[10] Hiroyuki Sato and Johannes O Royset. Path optimization for the

resource-constrained searcher. Naval Research Logistics (NRL),
57(5):422–440, 2010.

[11] Dimitris J Bertsimas and Garrett Van Ryzin. A stochastic and dynamic
vehicle routing problem in the euclidean plane. Operations Research,
39(4):601–615, 1991.

[12] Cheng Song, Lu Liu, Gang Feng, Yong Wang, and Qing Gao.
Persistent awareness coverage control for mobile sensor networks.
Automatica, 49(6):1867–1873, 2013.

[13] Ben Grocholsky, James Keller, Vijay Kumar, and George Pappas.
Cooperative air and ground surveillance. Robotics & Automation

Magazine, IEEE, 13(3):16–25, 2006.
[14] KE Trummel and JR Weisinger. Technical note-the complexity of the

optimal searcher path problem. Operations Research, 34(2):324–327,
1986.

[15] Richard D Smallwood and Edward J Sondik. The optimal control of
partially observable markov processes over a finite horizon. Operations

research, 21(5):1071–1088, 1973.
[16] Matthijs T J Spaan, Tiago S. Veiga, and Pedro U. Lima. Decision-

theoretic planning under uncertainty with information rewards for
active cooperative perception. Autonomous Agents and Multi-Agent

Systems, 29(6):1157–1185, 2014.
[17] Stéphane Ross, Joëlle Pineau, Sébastien Paquet, and Brahim Chaib-

draa. Online planning algorithms for POMDPs. Journal of Artificial

Intelligence Research, 32:663–704, 2008.
[18] Kamil Dedecius. Diffusion estimation of state-space models: Bayesian

formulation. In Machine Learning for Signal Processing (MLSP), 2014

IEEE International Workshop on, pages 1–6. IEEE, 2014.
[19] Zhijun Tang and Ümit Özgüner. Sensor fusion for target track

maintenance with multiple uavs based on bayesian filtering method
and hospitability map. In Decision and Control, 2003. Proceedings.

42nd IEEE Conference on, volume 1, pages 19–24. IEEE, 2003.
[20] Martin L Puterman. Markov decision processes. discrete stochastic

dynamic programming mvspa. 2005.
[21] EKP Chong, C Kreucher, and AO Hero III. Pomdp approximation

methods based on heuristics and simulation. Foundations and Appli-

cations of Sensor Management, 8:95–120, 2007.
[22] Songhwai Oh, Shankar Sastry, and Luca Schenato. A hierarchical

multiple-target tracking algorithm for sensor networks. In Robotics

and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE

International Conference on, pages 2197–2202. IEEE, 2005.
[23] Przemek. ANNEAL.M. https://github.com/adgon92/optimalization-

project/blob/dd04eafd18d8cc0adb87f880e2421947c2f053e0/
examples/anneal.m, 2015.

[24] PJ van Laarhoven and EH Aarts. Simulated Annealing: Theory and

Applications, volume 37. Springer Science & Business Media, 2013.

