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ABSTRACT 9 

This study presents a hybrid numerical weather prediction model (NWP) and a Gaussian process regression (GPR) model 10 

for near surface wind speed prediction up to 72 hours ahead using data partitioned on atmospheric stability class to 11 

improve model performance. NWP wind speed data from the UK meteorological office was corrected using a GPR 12 

model, where the data was subdivided using the atmospheric stability class calculated using the Pasquill-Gifford-Turner 13 

method based on observations at the time of prediction. The method was validated using data from 15 UK MIDAS (Met 14 

office Integrated Data Archive System) sites with a 9 month training and 3 month test period. Results are also shown for 15 

hub height wind speed prediction at one turbine. Additionally, power output is predicted for this turbine by translating 16 

hub height wind speed to power using a turbine power curve. While various forecasting methods exist, limited methods 17 

consider the impact of atmospheric stability on prediction accuracy. Therefore the method presented in this study gives a 18 

new way to improve wind speed predictions. Outputs show the GPR model improves forecast accuracy over the original 19 

NWP data, and consideration of atmospheric stability further reduces prediction errors. Comparing predicted power 20 

output to measured output reveals power predictions are also enhanced, demonstrating the potential of this novel wind 21 

speed prediction technique. 22 

Keywords:  23 

Gaussian process regression; Wind speed prediction; Atmospheric stability;  24 

1. INTRODUCTION 25 

An increasing awareness of the environmental impacts of anthropogenic greenhouse gas emissions has motivated a 26 

dramatic increase in renewable energy, a significant proportion of which is produced by wind turbines. As of October 27 

2016 there is over 14 GW of installed wind capacity in the UK [1], although this is set to rise further as the UK 28 

government continues towards the target of 15% renewable energy by 2020. While the wind resource in the UK is 29 

abundant, its variable and intermittent nature can cause issues with maintaining a secure and constant supply of 30 

electricity. Wind power predictions allow supply and demand of electricity to be carefully managed, reducing the cost 31 

impact on power system operators and aiding the integration of wind energy in the electricity system [2]. However, their 32 

accuracy has a direct impact on grid reliability and profitability. Barthelmie et al. [3] show that short term forecasting can 33 

increase the price obtained for electricity sold by around 14% but that the value was dependent on the forecast accuracy. 34 

Wind power is highly sensitive to terrain, local and regional weather systems and obstacles such as buildings. Wind 35 

exhibits seasonal and diurnal patterns alongside stochastic high frequency variability [4]. Consequently, it is complex to 36 
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accurately predict in advance. Forecasting wind power output intrinsically relies on estimates of wind speed. Whilst 37 

methods for predicting wind power exist, improvements in accuracy could still be made. Current methods cover various 38 

time scales, from less than a minute to days or weeks in advance. Reviews of currently available techniques are given by 39 

[5] and [6]. Methods can be broadly categorised as statistical, numerical weather prediction (NWP) or hybrid models.  40 

Statistical methods predict wind speed by analysing patterns in observed time series. Examples include a seasonally 41 

adjusted ARMA (auto-regressive moving average) model presented by Torres et al. [7] which is used to predict wind 42 

speeds up to 10 hours in advance. The study showed improvements over a persistence model but noted that the model 43 

was only valid over short time periods. Other examples of statistical methods include an f-ARIMA (fractional auto-44 

regressive integrated moving average) model presented by Kavasseri and Seetharaman [8]. In this model, results are 45 

shown to be superior to a persistence model up to 48 hours. Statistical prediction methods can be effective over short 46 

time scales (up to a few hours) but cannot usually predict accurately further in advance.  47 

NWP models aim to resolve complex numerical systems to establish global and local weather patterns based on observed 48 

initial conditions. While these are more accurate than statistical models over longer time periods, some difficulty is 49 

encountered in solving numerical systems at a high resolution due to the complexity of atmospheric conditions and high 50 

computational costs. NWP models are expensive to run and usually only available from large organisations such as 51 

government meteorological departments.  A high quality NWP is provided by the UK meteorological office (the Met 52 

Office), which employs a 1.5 km resolution model across the UK nested within a lower resolution global model [9]. 53 

Other NWP models exist, such as MM5, Prediktor and HIRLAM [5]. NWP models can resolve complex systems of 54 

equations defining global and local weather systems. However, they can be limited by their horizontal resolution. At 55 

some sites, complex terrain can affect wind conditions within the 1.5 km in which they are resolved. Furthermore, 56 

different site characteristics can affect how predictions are adjusted to hub height wind speed predictions.  57 

Hybrid systems combine a number of models, such as statistical and physical models. Of particular interest is the 58 

combination of NWP and statistical methods which allows reduced prediction errors compared to an NWP or statistical 59 

model used in isolation. For example, Larson and Westrick [10] use an NWP model in conjunction with statistical 60 

models such as artificial neural networks (ANN), support vector machines or conditional neural networks to predict wind 61 

speeds up to 2 hours ahead. The study looks at the use of off-site weather prediction data and shows an improvement 62 

over persistence forecasting. More recently, Wang et al. [11] presented an ANN model incorporating wavelet transform, 63 

variational mode decomposition and phase space reconstruction. Hybrid models incorporating GPR have not been 64 

extensively applied for wind speed prediction but there are a small number of previous studies. Zhang et al. [12] combine 65 

an autoregressive model with GPR for probabilistic wind speed forecasting. The model was used to predict mean hourly 66 

wind speed one hour ahead for wind speeds at 3 wind farms in China. Furthermore, Hu et al. [13] combine empirical 67 

wavelet transform, partial auto correlation function and GPR to predict wind speeds at one wind warm in China. The 68 

results are shown for both half hourly wind speed prediction (up to 2 hours ahead) and hourly wind speed prediction (up 69 

to 4 hours ahead). The model presented in this paper focuses on wind speed forecasts further in advance, presenting a 70 

hybrid NWP and GPR model for wind speed predictions up to 72 hours ahead and shows the impact of subdividing input 71 

data by atmospheric stability class. This study thus presents a novel contribution to the literature on GPR methods for 72 

wind speed forecasting. 73 
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 Table 1 provides a summary of some of the currently available forecasting methods, and the results of applying these 74 

methods. The methods listed cover both wind speed and power forecasting methods and both hybrid and statistical 75 

forecasting techniques. The error metrics used to present results vary across the literature but an attempt is made to 76 

consolidate the results in a comparable way.  For wind speed forecasting methods root mean squared error (RMSE), 77 

mean absolute error (MAE) and mean absolute percentage error (MAPE) are shown where possible. For wind power 78 

forecasting RMSE and MAE are normalised by capacity to allow comparison between installations of different sizes, 79 

giving NRMSE, NMAE and MAPE as comparison statistics for power forecasts. Definitions for RMSE, MAE and 80 

MAPE are given within the methodology section in equations 9, 10 and 11 whilst NRMSE and NMAE are defined in 81 

equations 13 and 14, all of which are given in section 3. Where sufficient detail is given in the literature, the results are 82 

shown in comparison to the persistence model. The persistence model forecasts wind speed or power by assuming the 83 

forecasted value is equal to that of the prior time period. It relies upon the auto correlation seen in wind speed and power 84 

time series and is commonly used as a benchmark for model performance to allow a comparison between forecasts when 85 

different datasets are used.   86 

The wind speed prediction methods reviewed in Table 1 comprise of 4 statistical methods and 6 hybrid methods and 87 

cover a variety of timescales, from 1 hour ahead to 120 hours ahead. Firstly comparing short term predictions, Chen et al. 88 

[14],  Wang et al. [11], Cadenas et al. [15], Hu et al.[13], Zhang et al. [12] and Torres at al [7] all present results for 89 

prediction up to 4 hours in advance. The method presented by Torres et al. [7] is a statistical method, whilst the other are 90 

hybrid methods. For these methods MAE varies between 0.18 and 1.14  ms-1 for a forecast 1 hour ahead and RMSE 91 

varies between 0.26 and 1.5  ms-1 for a forecast 1 hour ahead. For all these prediction methods except that presented by 92 

Wang et al. [11] the difference between MAE and RMSE for the different models is small. However, Wang et al. [11] 93 

show much lower errors. MAPE has a large variation for forecasts 1 hour ahead with the largest (21%) reported by 94 

Zhang et al. [12] and the smallest (8.5%) reported by Wang et al. [11]. The statistical model presented by Torres et al. [7] 95 

shows very similar results to the hybrid models presented by other authors at this timescale. 96 

 Kavasseri and Seetharaman  [8], Torres et al. [7], Chen et al. [14] and Louka et al. [16] show results for forecasting 97 

methods further in advance, (5-120 hours ahead). The methods discussed by Kavasseri and Seetharaman  [8] and Torres 98 

et al. [7] are statistical, whilst Chen et al. [14] and Louka et al. [16] present hybrid methods. The results from Kavasseri 99 

and Seetharaman are difficult to compare to the other methods due to how the results are aggregated. Of the other 100 

methods, Torres et al. [7] only show results for forecasts up to 10 hours ahead whilst Louka et al. [16]  presents results up 101 

to 120 hours ahead and Chen et al. [14] up to 72 hours ahead. The hybrid methods presented by Louka et al. [16] and 102 

Chen et al. [14] perform much better than the statistical method presented by Torres et al. The hybrid method by Louka 103 

et al. [16] has an MAE of 2.04 ms-1 and an RMSE of 2.88 ms-1 as far ahead as 120 hours in advance, whilst the statistical 104 

method has an MAE of 2.5 ms-1 and an RMSE of 3 ms-1 at just 10 hours ahead. MAPE is only given by Chen et al. [14] 105 

hence this is not comparable. This indicates, as other literature suggests, that hybrid methods can perform well in the 106 

short term and frequently outperform statistical methods further in advance. 107 

Five wind power prediction methods are compared in Table 1, including 3 hybrid methods and 2 statistical methods. The 108 

first statistical method, presented by Catalão et al. [17], is difficult to compare to the other techniques due to the errors 109 

shown. The only other statistical method is that presented by Ramirez-Rosado et al. [18] which reports results for 110 

forecasts up to 72 hours in advance. However, RMSE averaged over 3 time periods is shown (12-24 hrs ahead, 24-48 hrs 111 
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ahead and 48-72 hrs ahead), again making it difficult to compare to other methods. For the remaining three hybrid 112 

methods only NMAE and NRMSE are compared as MAPE is only given in one case. The hybrid methods presented by 113 

Chen et al. [19] and Shu et al. [20] report very similar results. The model presented by Chen et al. [19] reports results for 114 

forecasts from 1 – 24 hours ahead, with an NMAE of between 7.5 and 11.1% and an NRMSE of between 11 and 16%. 115 

The model given by Shu et al. [20] gives results for forecasts from 1 – 48 hours ahead, with an NMAE of between 7 and 116 

15% and an NRMSE of between 11 and 21%. The model presented by Louka et al. [16] shows results for forecasts 117 

between 24 and 120 hours ahead. This model seems to outperform others with an NMAE of between 11 and 15.5% and 118 

an NRMSE of between 15 and 21%.  119 

Whilst some comparisons are drawn between the methods presented in literature, it is important to note that the results 120 

presented for these different methods use different datasets. Because of this direct comparisons are difficult. However, it 121 

is still important to consider the range of errors reported by authors in other literature. This allows a consideration of the 122 

range of errors which would be expected for a good forecast at different forecast horizons. In addition to this, in Table 1 123 

the results presented by different authors are listed in comparison to the persistence forecast where this is possible. This 124 

allows the improvement over a common benchmark model to be considered. 125 

 126 
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 127 

Table 1: Examples of the currently available forecasting techniques 128 

Authors Year 

Speed 
or 
power 

Method 
type 

Method 
summary Data 

Forecast 
period Results 

Cadenas et 
al. [15] 2016 Speed Hybrid 

Nonlinear 
autoregressive 
exogenous 
model (NARX). 

Wind speed data from La 
Mata, Mexico 1 hour ahead 

MAE: 0.86 ms-1 (Persistence: 0.91-1) 
MSE: 1.38 ms-1 (Persistence: 1.55 ms-1) 
MAPE: 1.44% (Persistence: 11.96%) 

Catalão, et 
al. [17] 2011 Power Statistical 

ANN + wavelet 
transform 

All wind farms in Portugal 
that connect with the 
national electric grid.  3hours ahead. 

MAE not given 
RMSE: 392.3 MW (Persistence not given) 
MAPE: 7% (Persistence 19%).  
Total capacity forecasted not given so cannot compare 
NRMSE.  

Chen, et al. 
[14] 2013 Speed Hybrid 

Wavelet and 
Gaussian 
process 

Wind farm in southern 
China. 15 turbines, installed 
capacity 2000kW 

1-4 hours 
ahead and 1-3 
days ahead 
daily mean 
wind speed 

MAE: 0.72-1.6 ms-1 (Persistence: 0.74 – 1.83ms-1) 
RMSE: 0.96 -2.04 ms-1 (Persistence: 1.0 – 2.23 ms-1) 
MAPE: 11.24 -44% (Persistence: 11.1 – 42%) 

Chen, et al. 
[19] 2014 Power Hybrid 

Gaussian 
process and 
NWP 

3 wind farms in China. 3 
years for 2 wind farms and 
2.5 months for one.  

1-24 hours. 
Results not 
shown 
separately 

Results given for 4 wind farms: 
NMAE: 7.5-11.1% (Persistence 9.8 – 18.6%) 
NRMSE: 11.69 – 15.96% (Persistence 15.7 – 26.3%) 
MAPE: 7.6 – 11.12% (Persistence 10.1 – 18.4%) 
Best results for the largest wind farm.  

Hu et al. 
[13] 2015 Speed Hybrid 

Empirical 
wavelet 
transform, 
partial 
autocorrelation 
function and 
GPR. 

Wind speeds for 1 wind 
farm in China.  

Up to 2 hours 
ahead for a 
half hourly 
model and 4 
hours ahead 
for an hourly 
model. 

Hourly model: 
MAE: 1.13 – 1.43 ms-1 (Persistence: 1.35 – 1.65 ms-1) 
RMSE: 1.22 – 1.6 ms-1 (Persistence: 1.45 – 1.88 ms-1) 
MAPE: 1.18-18.39% (Persistence: 12.84 – 21.76%) 

Kavasseri 
and 
Seetharam
an [8] 2009 Speed Statistical f-ARIMA 

Wind speed from 4 potential 
wind farm sites in North 
Dakota 

24 and 48 
hours ahead 

MAE not given  
RMSE: 5.35% (Persistence: 8.43%) 
MAPE (24hrs): 33.18% (Persistence 45.2%). 

Louka, et 
al. [16] 2008 

Speed 
and 
Power Hybrid 

Kalman filtering 
to post process 
NWP 

1 year wind speed and 
power data at Rokas wind 
farm 

24, 48, 72, 96 
and 120 hours 
ahead 

Speed:  
MAE: 1.75 - 2.04 ms-1  
RMSE: 2.38 – 2.88 ms-1 
Power:  
NMAE: 11 - 15.5%; 
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NRMSE: 15 - 20.5% 
MAPE not given, comparison to persistence not given. 

Ramirez-
Rosado, et 
al. [18] 2009 Power Statistical 

Two ANN 
methods 
(FORECAS and 
SGP) 

Wind farm with rated power 
of 21,600kW, 12 turbines of 
1.8MW. 

0.5 - 72 hours, 
time step 0.5 
hours. 

Average RMSE given 3 time periods: 12-24h, 24-48h 
and 48-72h.  
FORECAS: 14-19.7%,  
SGP: 14-18.8%, 
Persistence: 31.2- 37.5%. 
MAE and MAPE not given 

Shu et al. 
[20] 2009 Power Hybrid 

Two stage 
hybrid network 
with Bayesian 
clustering and 
SVR. 

74 MW wind farm in 
Oklahoma, US.  

1-48 hours 
ahead 

Errors given for 1, 24 and 48hrs.  
NMAE: 7-15% (Persistence 8-25%),  
NRMSE: 11-21% (Persistence 11-34%) 
MAPE not given 

Torres, et 
al. [7] 2005 Speed Statistical ARMA  

5 locations, 9 years. Wind 
measured every 10 mins at 
10m and averaged over 1 
hour.  

up to 10 hours 
ahead 

MAE: 0.9 - 2.5  ms-1  (Persistence  0.9 - 2.9 ms-1) 
RMSE: 1.2 - 3 ms-1 (Persistence 1.25 - 3.7 ms-1).   
MAPE not given 

Wang et al. 
[11] 2017 Speed Hybrid 

Hybrid wavelet 
neural network 
optimised by 
genetic 
algorithm 

Hourly wind speed for 
spring and autumn at one 
site in China 

1,2,4,6 hours 
ahead 

MAE: 0.187-0.269 ms-1  (Persistence 0.74-1.38 ms-1) 
RMSE: 0.235-0.34 ms-1  (Persistence 0.95-1.72 ms-1) 
MAPE: 8.44 – 12.02% (Persistence 31.4 – 58.5%) 

Zhang et 
al. [12] 2016 Speed Hybrid 

Hybrid auto 
regressive and 
GPR model 

Mean hourly wind speed at 3 
wind farms in China 1 hour ahead 

MAE: 0.79 – 0.87  ms-1  (Persistence  0.85 – 1.1 ms-1) 
RMSE: 1.05- 1.13 ms-1 (Persistence 1.12 – 1.52 ms-1).   
MAPE: 10.03 – 21.1% (Persistence 10.44 – 19.97%) 

129 
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The results shown indicate that hybrid methods can outperform statistical methods, particularly for longer term forecast 130 

periods.  The combination of NWP models and statistical methods results in better predictions. Hence this paper develops 131 

a hybrid NWP and Gaussian process regression (GPR) model to predict near surface wind speeds up to 72 hours ahead. It 132 

also considers whether including information on stability conditions can aid model performance. In summary, a three 133 

hourly wind speed forecast from an NWP is corrected using a GPR model. The simple GPR model results are compared 134 

to a model where the data is divided using the atmospheric stability class calculated from observations at the time of 135 

prediction. The key innovation in this paper is the use of atmospheric stability class to partition data in the hybrid NWP 136 

and GPR model. Atmospheric stability is a measure of the atmosphere’s tendency to encourage or reduce vertical motion 137 

[21]. Under stable conditions, vertical motion is suppressed and under unstable conditions, vertical motion is encouraged. 138 

Both stable and unstable conditions are usually associated with low mean wind speeds. In the absence of heat flux at the 139 

surface, the atmosphere is said to be neutral, with neutral conditions usually associated with higher mean wind speeds. 140 

Atmospheric stability is an important component in modelling wind characteristics as it can affect atmospheric 141 

circulation and momentum transfer [22]. Because of this, it is interesting to investigate the impact of atmospheric 142 

stability on NWP accuracy of wind speed forecasts and whether partitioning data can improve forecast accuracy. 143 

In this paper, the model is introduced, and the results are shown for a selection of 15 weather observation sites across the 144 

UK. The model is also tested for the prediction of hub height wind speeds for one turbine in the UK. At this site, 145 

predicted wind speeds are compared to measured wind speed. Finally, the impact of improved wind speed forecast on 146 

power forecasting is considered. Section 2.1 introduces the GPR model, giving an overview of the mathematical 147 

concepts. Section 2.3 gives the definition of atmospheric stability used in the current work, its potential role in wind 148 

forecasting, and methods for calculation. Sections 2.2 and 2.4 give details of the model formulation and data used to test 149 

the model, section 3 presents the results and section 4 gives conclusions and outlines the potential for further work. 150 

2. METHODOLOGY 151 

2.1 Gaussian process regression 152 

GPR is a supervised learning method where an input-output mapping is learnt from empirical data [23]. It is a regression 153 

technique which does not initially restrict the relationship between the target and input variables to a specific form. It is a 154 

non-parametric Bayesian modelling technique, allowing a flexible model. Prior knowledge is combined with observed 155 

data to determine posterior predictive distributions for further test inputs. 156 

GPR has been used for prediction in a number of applications, for example spectroscopic calibration [24], robot control 157 

[25] and image processing [26]. Through these applications, GPR has shown an ability to predict well in situations where 158 

complex nonlinear relationships exist between variables. Because of this, it could prove to be a good method for wind 159 

speed prediction, given the typically complex patterns and relationships between wind and other weather variables. Chen 160 

et al. [19] describe a method in which an NWP model is combined with a GPR model to predict wind speeds up to 1 day 161 

ahead. The corrected wind speeds are used to predict wind power using another GPR model. In this example, three data 162 

sets from different wind farms in China are used to validate the method, reporting reductions in mean absolute error 163 

compared to an Artificial Neural Network (ANN) model. In a different study Chen et al. [14] present the potential for a 164 

composite wavelet analysis and GPR forecasting technique. Small improvements over a simple GPR model were noted, 165 

demonstrating that the concept merits further investigation. 166 
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GPR aims to identify a relationship between input variables and target variables, based on the observational data 167 

available. The aim is to create a function that satisfies ݕ ൌ ݂ሺݔሻ  ߝ  where y is the target variable, x are the input 168 

variables and ߝ is normally distributed additive noise. Rasmussen and Williams [23] provide an extensive mathematical 169 

background of GPR, of which a summary is provided here. The Gaussian process ݂ሺܠሻ is completely specified by its 170 

mean and covariance function,݂ሺܠሻ ̱ܲܩሺ݉ሺܠሻǡ ݇ሺܠǡ  ᇱሻሻ, where the mean and covariance functions are given by 171ܠ

equations (1) and (2). 172 

 ݉ሺܠሻ ൌ  ሻሿ (1)ܠሾ݂ሺܧ

 ݇ሺܠǡ ᇱሻܠ ൌ ሻܠሾ൫݂ሺܧ െ ݉ሺܠሻ൯൫݂ሺܠᇱሻ െ ݉ሺܠᇱሻ൯ሿ (2) 

This is used to define a distribution over functions which can be updated using training data. The prior distribution is the 173 

initial specification of the distribution which gives information on the mean and covariance functions used. Given a 174 

training set D ൌ ሺ܆ǡ  Being a linear combination of 175 .כ܆ given inputs כ݂ ሻ the target is to predict the function valuesܡ

Gaussian variables, ܡ is also Gaussian, with distribution ܡ ̱ ܰሺ݉ሺܠሻǡ ǡ܆ሺܭ ሻ܆  ଶ۷ where K୧ǡ୨ߪ  ൌ ݇ሺܑܠǡ  ሻ. The joint 176ܒܠ

distribution of the training data and the predicted output is given by equation (3) [27]. 177 

 ቂ ቃ ̱ ܰ ൬כܡ ݉ሺ܆ሻ݉ሺכ܆ሻǡ ܭሺ܆ǡ ሻ܆  ଶ۷ߪ ǡ܆ሺܭ ǡכ܆ሺܭሻכ܆ ሻ܆ ǡכ܆ሺܭ  ሻ൨൰כ܆
(3) 

The principle of joint Gaussian distributions allows the prediction results for the target to be inferred from the mean 178 

function כഥand the covariance function ܿݒሺכሻ given by equations (4) and (5). 179 

ഥכ  ൌ ݉ሺכ܆ሻ  ǡכ܆ሺܭ ǡ܆ሺܭሻሾ܆ ሻ܆  ܡଶ۷ሿିଵሺߪ െ ݉ሺ܆ሻሻ (4) 

ሻܠሺݒܿ  ൌ ǡכ܆ሺܭ ሻכ܆ െ ǡ܆ሺܭ൯ሾ܆ǡכ܆൫ܭ ሻ܆  ǡ܆ሺܭଶ۷ሿିଵߪ ሻכ܆   ଶ۷ (5)ߪ

The covariance is a crucial part of the model specification, as it includes assumption about the functional relationship. 180 

Despite this establishing the correct covariance function for a regression problem is a significant issue in the inference 181 

process. The squared exponential (SE) covariance function is a commonly used covariance function due to its ease of 182 

interpretation and flexibility [28] and hence is used in this work. The squared exponential covariance function is given by 183 

equation (6), 184 

ǡ܆ௌாሺݒܿ  ᇱሻ܆ ൌ ݔଶ݁ߪ ቆെ ሺ܆ െ ᇱሻଶʹ݈ଶ܆ ቇ 
(6) 

where ߪଶǡ ݈ are the signal variance and length scale respectively. In order to maximise the flexibility of the model, 185 

parametric covariance functions are used and the hyperparameters are inferred from observed data. The process of 186 

learning the hyperparameters, ߠ ൌ ሺ݈ǡ  ଶሻ், from data is achieved by maximising the log likelihood function [19], given 187ߪ

by equation (7). 188 

 ln ܲሺܡȁߠሻ ൌ ͳʹ ݈݊ȁ۹ȁ െ ͳʹ ܡ۹ିܡ െ ݊ʹ ln ሺʹߨሻ 
(7) 

 189 

For a multidimensional input variable a separate length scale is calculated for each model variable, and the relative 190 

importance of different inputs can be inferred from the observed data, a process which is known as automatic relevance 191 

determination (ARD).  192 
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2.2 Data 193 

The predicted wind speeds which are used to inform the hybrid model are taken from an NWP model developed by the 194 

Met Office. This NWP model provides three hourly forecasts up to 5 days in advance, employing a global forecast model 195 

to predict longer range weather forecasts (48+ hours ahead) combined with a mesoscale model to generate a more 196 

accurate short range forecast. The forecast data used in this work are a weighted combination of the Met office UKV and 197 

Euro4 models. UKV is a variable resolution deterministic model, with a resolution of 1.5 km over the UK and decreased 198 

resolution at the model boundaries to aid integration in a nested model. Euro4 is a 4 km resolution deterministic model 199 

covering Europe. UKV runs up to 36 hours in advance and Euro4 up to 120 hours. The forecast data is available from the 200 

UK governmental public data website [29] for over 6000 sites. The meteorological observations which have been used 201 

for reference have been taken from the Met Office Integrated Data Archive System (MIDAS), available from the British 202 

Atmospheric Data Centre (BADC) [30]. The archive consists of UK land surface observations, global marine 203 

observations, and a selection of radiosonde observations both in the UK and at international stations operated by the Met 204 

Office. This data provides hourly observations of a selection of meteorological variables including wind speed and 205 

direction, cloud cover, temperature, air pressure and humidity amongst others. The MIDAS stations are set up so that the 206 

observation data can be the best quality possible with details given by the BADC [30]. Cup anemometers are used to 207 

measure wind speed, at a height of 10 m above ground level. The site must be free from obstructions to avoid 208 

measurements in the wake of obstructions and quality control is performed to avoid inclusion of spurious data where 209 

possible. For example, automatic algorithms are applied to ensure consistency of wind measurements with other local 210 

stations.  Not all weather variables are available at every MIDAS site and data coverage is variable, dependent on factors 211 

such as equipment failure. Because of this, 15 sites were chosen across the UK where sufficient data was available for 212 

analysis. The MIDAS datasets are taken from various locations across the UK, with different weather conditions and site 213 

characteristics across the selection. The sites were categorised into 4 types; rural, urban, mountain and coastal. Categories 214 

were chosen for the sites based on visual inspection of the site itself and the local area, considering the proximity to 215 

coastline, building density, elevation and terrain complexity. The model performance was considered within the different 216 

categories as well as overall. The locations and classification of these sites are shown in Figure 1.  217 

To demonstrate the potential for wind power prediction, the model was also tested for one location in the UK where hub 218 

height wind speed and power was available. The data comprised of measured wind speed data at approximately 65 m 219 

above ground level and power output from a 1.5 MW turbine in a suburban location.  220 
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F൴gure 1: Map of 15 MIDAS locat൴ons across the UK, ൴nclud൴ng s൴te class൴f൴cat൴on 

 

 221 

2.3 Treatment of Atmospheric Stability 222 

Atmospheric stability is a measure of the atmosphere’s tendency to encourage or deter vertical motion [21]. Neutral 223 

conditions occur during high winds and when cloud cover prevents strong heating or cooling of the earth’s surface. 224 

Unstable conditions occur when strong surface heating and low wind speed conditions occur, encouraging vertical 225 

motion of air. Stable conditions usually occur as a result of a cool surface, either the earth at night or over cool oceans. 226 

The flow of air is affected by atmospheric stability and consequently a number of different aspects of wind power 227 

forecasting can be affected. For example, Peterson et al. [31] document the difference in vertical wind profiles under 228 

different stability conditions. The difference in the power law under different stability conditions is also explored by 229 

Irwin [32]. This was further investigated empirically by Focken and Heinemann [33], using data from a meteorological 230 

observation mast at Cabouw in the Netherlands. 231 

Numerous methods exist for classifying stability, each requiring a range of meteorological parameters for calculation. 232 

Some examples include the Obukhov length, Richardson number, temperature gradient, wind speed ratio and Pasquill-233 

Gifford stability class. The main issue surrounding calculation of some stability parameters is that they require estimates 234 

of variables such as frictional velocity and heat flux which are not commonly available from either forecasts or 235 

meteorological observations. The Pasquill-Gifford method was developed to categorise the stability class based upon 236 

variables that are commonly measured at meteorological stations. The method uses solar insolation as an indication of 237 

convective turbulence and wind speed as an indication of mechanical turbulence [21]. This method for calculating 238 

stability was developed predominantly for the purpose of pollutant dispersion models, however has become a commonly 239 

used classification scheme. It requires wind speed at one height, daytime solar insolation or night time cloud cover. This 240 

was further modified by Turner by using net radiation index (NRI) to estimate solar insolation based on cloud cover and 241 
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cloud ceiling height, resulting in the Pasquill-Gifford-Turner (PGT) method for stability condition classification.  The 242 

PGT method classifies 7 different stability conditions as given in Table 2.  243 

 244 

Table 2: Stability categories for PG and PGT stability methods 245 

PGT class Stab൴l൴ty cond൴t൴on 
1 H൴ghly unstable or convect൴ve 
2 Moderately unstable 
3 Sl൴ghtly unstable 
4 Neutral 
5 sl൴ghtly stable 
6 Stable 
7 Extremely stable 

The first step in obtaining the stability classification is to calculate the insolation class number. This is obtained based on 246 

solar altitude as outlined in Table 3. NRI is calculated using the algorithm given in Figure 2, where cloud cover is given 247 

in tenths, with 1/10 indicating low cloud cover and 10/10 indicating opaque cloud. Finally, using NRI and wind speed, 248 

the stability classification is obtained from Table 4.  249 

Table 3: Insolation class number 250 

Solar Alt൴tude (ĳ) Insolat൴on Insolat൴on class number 
60 < ĳ Strong 4 

35 < ĳ ≤ 60 Moderate 3 
15 < ĳ ≤ 35 Sl൴ght 2 

ĳ ≤ 15 Weak 1 
 251 

F൴gure 2: Algor൴thm for calculat൴ng net rad൴at൴on ൴ndex [34] 
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 252 
Table 4: PGT stability classes 253 

W൴nd speed (ms-1) Net rad൴at൴on ൴ndex (NRI) 
4 3 2 1 0 -1 -2 

0-0.7 1 1 2 3 4 6 7 
0.8-1.8 1 2 2 3 4 6 7 
1.9-2.8 1 2 3 4 4 5 6 
2.9-3.3 2 2 3 4 4 5 6 
3.4-3.8 2 2 3 4 4 4 5 
3.9-4.8 2 3 3 4 4 4 5 
4.9-5.4 3 3 4 4 4 4 5 
5.5-5.9 3 3 4 4 4 4 4 

≥6 3 4 4 4 4 4 4 

The PGT method allowed stability conditions to be estimated based on MIDAS observations. However, the forecasted 254 

variables available from the Met office forecast data do not include sufficient details of cloud conditions to allow the use 255 

of the PGT method. Because of this stability conditions used in this work have been based on MIDAS observations at the 256 

time of the prediction. In future, if further forecasted variables were available, the work could be extended to explore the 257 

impacts of using predicted stability conditions.  258 

2.4 Model Set-up 259 

An introduction to the method is given above, however, the model inputs and outputs require further definition.  Due to 260 

the variables required to estimate stability conditions, only sites where information on wind, cloud depth and coverage 261 

was available were considered. From the MIDAS sites across the UK with sufficient data, 15 sites were investigated. The 262 

location of these sites was shown in Figure 1. Further to this, for one turbine in the UK hub height wind speed and power 263 

output data was available. Results are shown for the prediction of hub height wind speed at this site.  264 

As detailed in section 2.1 the model develops a relationship between target variable y and input variables x of the form 265 ݕ୧ ൌ ݂ሺܠሻ   . The model is a multivariate regression model with 4 predictor variables, the Met Office forecast and 3 266ߝ

hours of observed data prior to the beginning of the forecast. Forecasts up to 72 hours in advance were considered, at 3 267 

hour intervals. Hence the predictor variables are given by equation (8). 268 

௧܆  ൌ ሾܕ௧ ǡ ௧ିିଵǡܡ ௧ିିଶǡܡ ݐ ௧ିିଷሿ forܡ ൌ Ͷǡ ǥ ǡ ݊ (8) 

Where:  269 ݐ ൌ time of observation ܕ௧ ൌ Met Office forecast at time (ms-1) ܡ௧ ൌ observed wind speed at time t (ms-1) ݄ ൌ hour of forecast 

Section 3.1 presents the results of the forecast model for predicting wind speed at 10 m above ground level for 15 270 

MIDAS sites across the UK. In this case, the target variables, y, are the MIDAS observations at the site. Section 3.2 271 

presents results of the forecast model for wind speed prediction at hub height for a suburban location in the UK. Finally, 272 

section 3.3 explores the potential impact of improved hub height wind speed forecasting on wind power forecasting. To 273 

ensure an independent forecast, the data was split into a training dataset and a test dataset. The training dataset was used 274 

to train model hyperparameters and the test dataset to assess the model performance. The training data are defined as the 275 

concurrent observations and Met Office forecast data for the first 9 months of 2014 and the test data are same data from 276 
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the final 3 months of 2014. The observation data was available at hourly intervals and the forecast data at 3 hourly 277 

intervals. This describes the formulation of the GPR model with no stability data. To test the impact of using atmospheric 278 

stability to improve the model, the data was spli t into 7 stability classes and the model trained separately for each class. 279 

From the variables available in the Met Office forecast an indication of forecasted stability conditions is difficult to 280 

obtain, therefore currently this study uses the stability conditions at the time of the observation, as calculated from the 281 

MIDAS data. Whilst in the case of an actual forecast scenario this information would not be available it gives an 282 

indication of the potential improvements possible using stability information in a GPR model.  283 

1. RESULTS 284 

3.1 MIDAS site wind speed prediction 285 

The GPR model was first used to show potential improvement on predicted 10 m wind speeds at 15 MIDAS locations.  9 286 

months of data was used to train the model and learn the hyperparameters, and a further 3 months of data was used to test 287 

the results. 288 

Wind speeds predicted by the GPR model are compared to the MIDAS observations with several criteria used to assess 289 

performance. Here three criteria are shown, mean absolute error (MAE), mean absolute percentage error (MAPE) and 290 

root mean squared error (RMSE), calculated using equations (9), (10) and (11). 291 

 MAE ൌ  ͳ݊ ȁݕ௧ െ ௧ෝݕ ȁ
ୀଵ  

(9) 

 MAPE ൌ  ͳ݊  ȁݕ௧ െ ௧ෝݕ ȁݕ௧


ୀଵ ൈ ͳͲͲ 
(10) 

 RMSE ൌ  ඩͳ݊ ሺݕ௧ െ ௧ෝݕ ሻଶ
ୀଵ  

(11) 

where ݕ௧ is the observed wind speed at time ݕ ,ݐ௧ෝ  is the forecasted wind speed for the same time period and ݊  is the 292 

number of forecasts made. The comparison of different error metrics allows a full overview of the model performance. 293 

The model errors are shown for a GPR model in which the datasets were split by stability class and a GPR model using 294 

the full dataset. The results are shown alongside model errors for the wind speeds predicted by the simple GPR model 295 

and the NWP prediction made by the Met Office. In order to fully illustrate the model results, detailed results are shown 296 

for 4 of the 15 MIDAS sites tested, and summary results are shown for the 15 sites. In Figures 3 and 4 MAE and MAPE 297 

are shown for 4 of the 15 MIDAS sites. This shows how the errors increase as the forecast period increases, and also how 298 

the model error is reduced by using the GPR model with information on stability included. Overall, the simple GPR with 299 

no information on stability reduces the error in predicted wind speed compared with predictions made by the NWP. The 300 

improvement is site specific, with greatest error reduction seen at a forecast period 3 hours ahead for some sites, and 301 

further ahead for others. Figure 5 shows a summary of errors over the 15 sites. This shows an average reduction in 302 
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MAPE of approximately 2% for the simple GPR model in comparison to wind speeds predicted by the NWP. For the 303 

GPR model with stability information, there is a reduction in MAPE of 5% for a 3 hour forecast period, rising to 9% for a 304 

72 hour forecast period. The simple GPR model also shows an average of 2% improvement in MAE and RMSE for all 305 

forecast periods, whilst the GPR model with stability information shows a 10% improvement in MAE and a 7% 306 

improvement in RMSE. 307 

In Figure 6 MAE and MAPE for the simple GPR model and the GPR with data subdivided by stability are shown in 308 

comparison to the persistence model. In addition to this, in Table 5, improvement over persistence is shown for MAE, 309 

RMSE and MAPE. It can be seen from this that there is a significant reduction in error in comparison to the persistence 310 

method for MAE, RMSE and MAPE. For the GPR model with stability, the reduction in MAPE over the persistence 311 

model is 14.5% at 3 hours ahead, increasing to 57.6% at 72 hours ahead.  312 

In order to assess whether the errors seen for the GPR model are similar to other state of the art methods, some of the 313 

results seen in Table 1 are discussed. Figure 5 shows the average RMSE across the 15 sites for the GPR model with 314 

stability is 1.1 ms-1 at 3 hours ahead. At 1 hour ahead Li and Shi [35], Chen et al. [14] and Li et al.[36] give an RMSE of 315 

between 0.96 ms-1 and 1.5 ms-1. Hence a RMSE of 1.1 ms-1 at 3 hours ahead is within the range of a good forecast. For 316 

the same three studies an MAE of between 0.72 ms-1 and 1.13 ms-1 is reported for a forecast 1 hour ahead. Figure 5 317 

shows an average MAE of 0.82 ms-1 at 3 hours ahead for the GPR model with stability, again falling within the range 318 

shown by other studies.  319 

At 72 hours the average RMSE for all 15 sites for the GPR model with stability is 1.54 ms-1 which is smaller than the 320 

RMSE reported by Louka et al. [16] of 2.38 – 2.88 ms-1 and Chen et al. [14] of 2.04 ms-1. Similarly the average MAE 321 

over 15 sites for the same model at 72 hours ahead is 1.17 ms-1 compared to 1.75 – 2.04 ms-1 reported by Louka et al. 322 

[16] and 1.6 ms-1 reported by Chen et al. Furthermore the MAPE shown in Figure 5 for the GPR model with stability at 323 

72 hours is 42%, slightly lower than the 44% reported by Chen et al. [14]. As different datasets are used to those in the 324 

literature discussed it is not possible to suggest that this model outperforms other model considered. However, the range 325 

of errors seen for the hybrid NWP and GPR model presented here are similar to those presented in literature, indicating 326 

some potential for this model for near surface wind speed prediction.  In future, a comparison of other methods such as 327 

those summarised in Table 1 to the GPR model with atmospheric stability where the same dataset is used would be 328 

valuable.  329 
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Figure 3: MAE (with 95% confidence interval) for 4 sample MIDAS sites shown for GPR models both with and 

without stability, and the NWP.  

 

 

 330 

Figure 4: MAPE (with 95% confidence interval) for 4 sample MIDAS sites shown for GPR models both with and 

without stability, and the NWP. 

 

 331 

 332 
 333 
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F൴gure 5: Average RMSE, MAE and MAPE for all 15 MIDAS s൴tes. Error bars are not shown here to allow clar൴ty. 

 

 334 

Figure 6: Average MAE and MAPE for all 15 MIDAS sites shown in comparison to the persistence method. 

 

 335 
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Table 5: Improvement over the persistence method for both hybrid NWP and GPR models 336 

  Hours ahead forecast 
Model Error metric 3 6 12 24 48 72 

GPR  

MAE (ms-1) 0.38 0.73 1.16 1.42 1.52 1.45 
RMSE (ms-1) 0.43 0.83 1.29 1.45 1.25 0.63 
MAPE (%) 11.39 24.38 41.61 52.06 53.65 50.86 

GPR with 
stability 

MAE (ms-1) 0.43 0.79 1.22 1.48 1.65 1.57 
RMSE (ms-1) 0.58 0.98 1.45 1.65 1.54 1.07 
MAPE (%) 14.49 27.71 44.99 55.85 58.81 57.63 

 337 

The model performance was also considered for the 4 different site categories observed; rural, urban, mountain and 338 

coastal. Differing meteorological effects present different forecasting issues dependent on site characteristics. For 339 

example at coastal sites wind speed is affected by changes in surface roughness, and availability of heat and moisture 340 

[22]. In mountainous areas, complex orography and changes in temperature drive wind speed, and within urban areas 341 

high densities of buildings can interfere with expected wind patterns. Taking this into account one might expect the 342 

model results to vary with different site characteristics. Within the 15 MIDAS sites considered there was 1 mountain site, 343 

3 coastal sites, 4 urban sites and 7 rural sites observed. Figure 7 shows how the Met Office NWP error varies within 344 

different classifications. Average NWP error is shown for each site, calculated as an average over the time periods 345 

considered (3 hours ahead, 6 hours ahead, up to 72 hours ahead). For the three coastal sites in the dataset, the average 346 

model error is higher than for the rural and urban classifications. Only one mountain site is identified within the set, 347 

hence it is difficult to suggest whether the results seen at this site are representative of all mountain sites however the 348 

NWP error observed for this site is also higher than the rural and urban sites. The difference between errors in rural and 349 

urban sites seems to be small, however, marginally higher errors are seen at the urban sites.  350 
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F൴gure 7: Average mean absolute error of the NWP forecast across all t൴me per൴ods cons൴dered (3 hours ahead – 72 
hours ahead). A s൴ngle average ൴s shown for each s൴te, w൴th the s൴tes spl൴t by s൴te class൴f൴cat൴on.  

 

Having examined the NWP prediction error for different site classes, the reduction in error achieved using both GPR 351 

models is considered. This is calculated using equation 12. 352 

Reduction in average MAE ൌ  ൫ܧܣܯ௧ǡேௐ െ ௧ǡீோ൯ଶܧܣܯ
௧ୀଷ  (12) 

where t is the time ahead forecasted. This reduction in error is shown in Figure 8 for both the simple GPR model and the 353 

GPR model with data subdivided by PGT stability class. It can be seen that for the simple GPR model lower errors are 354 

seen at all but one site. The site which did not achieve an improvement over the NWP was a rural site at which the NWP 355 

prediction error was the lowest of any sites considered, making it difficult to make enhanced predictions. Despite this, an 356 

improvement was seen when using GPR with stability at this site. Figure 8 shows that for the simple GPR the reduction 357 

in model error is not significantly different between site classes. However, for the GPR model subdivided by stability 358 

class a larger improvement is seen at coastal sites and at the mountain site. Given that in Figure 7 it was observed that 359 

coastal and mountain sites had the highest prediction errors from the NWP model this shows that the method improves 360 

upon sites where prediction accuracy is lower, which may be useful for wind farms located in regions with highly 361 

variable wind regimes. An improvement is also seen when using the GPR model with stability for prediction over both 362 

the simple GPR and the original NWP model in urban and rural areas, however, the achievement of the GPR model with 363 

stability is slightly less pronounced than for the coastal and mountain sites.  364 
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F൴gure 8: Reduct൴on ൴n error ach൴eved by apply൴ng the GPR model compared to Met Off൴ce NWP model (A larger 
reduct൴on ൴nd൴cates better model performance). (a) Shows results for s൴mple GPR model, wh൴lst (b) shows results for 
GPR model w൴th data subd൴v൴ded by PGT stab൴l൴ty class. 

 
(a) 

 
(b) 

 365 
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3.2 Hub Height Wind Speed Prediction 366 

Whilst looking at predictions of 10 m wind speeds shows the potential of the GPR model and the importance of stability 367 

in reduction of model error, for wind power prediction hub height wind speed prediction is more important. Hub height 368 

wind speeds were obtained from the wind farm operator at one site in the UK for a 1.5 MW turbine. Power output and 369 

hub height wind speed data for wind turbines is generally difficult to obtain due to commercial sensitivity, hence only 370 

one dataset is used to show results for this work. Wind speed was measured at approximately 65 m above ground level. 371 

MIDAS data from an observation site located approximately 8 km from the turbine is used to calculate the stability class 372 

at the time of forecast, and the met office forecast data is taken from the same location as the MIDAS data. In Figure 9 373 

MAPE and MAE are shown for hub height wind speed for both the simple GPR model and the GPR with data subdivided 374 

using PGT stability class. It shows a reduction on MAPE of between 1 and 2% and between 3 and 5% reduction in MAE 375 

using a GPR model with data subset by stability class. In Figure 9 the persistence results are omitted in order to show 376 

more clearly the difference between the two models, In Figure 10, the MAE, MAPE and RMSE for both GPR models are 377 

shown in comparison with a persistence model. It can be seen from Figure 10 that the GPR model shows significant 378 

improvements over the persistence model. In addition to this, in Table 6 the improvement in MAE, RMSE and MAPE 379 

over the persistence is displayed. This indicates that for the GPR model with stability there is a 7.5% reduction in MAPE 380 

at 3 hours ahead, rising to 31% at 72 hours ahead.  381 

Taking the results for the GPR model with stability, a discussion of other methods seen in Table 1 allows the potential of 382 

this method to be considered. The GPR model with stability has an MAE of 0.95 ms-1 at 3 hours ahead, as shown in 383 

Figures 9 and 10. This is lower than some of the results shown in Table 1. For example, Chen et al. [14] report an MAE 384 

of between 0.72 and 1.1 ms-1 for a forecast between 1 and 4 hours ahead, Li and Shi [35] between 0.9 and 1.05 ms-1 for a 385 

forecast 1 hour ahead and Li et al. [36] 1.137 ms-1 at 1 hour ahead. Similarly the GPR model with stability has an RMSE 386 

of 1.2 ms-1 at 3 hours ahead, compared to Chen et al. [14] who reported between 0.96 and 1.95 for a forecast between 1 387 

and 4 hours ahead, Li and Shi [35] who reported between 1.2 and 1.4 ms-1 for a forecast 1 hour ahead, and Li et al. [36] 388 

1.5 ms-1 at 1 hour ahead. MAPE is only reported by Chen et al. [14] at between 11 and 17% for a forecast between 1 and 389 

4 hours ahead. Figures 9 and 10 show MAPE from the current work as 17.5% at 3 hours ahead, which is slightly higher 390 

than Chen. However, the MAPE for the persistence model is also higher in the data shown in Figure 10 than for the 391 

results shown by Chen et al.  At 72 hours ahead MAE for the GPR model with stability rises to 1.36 ms-1. However, this 392 

is still lower than the results presented by Louka et al. and Chen et al. for this timescale in Table 1. Similarly, RMSE 393 

rises to 1.7 ms-1, again lower than the results from Louka et al. and Chen et al. Figure 10 shows MAPE at 72 hours ahead 394 

for this model is 24%, which is 1% lower than for a GPR model without using stability, and 31% lower than the 395 

persistence method. MAPE is not given for predictions 72 hours ahead for any other model shown in Table 1. It is not 396 

possible to suggest overall superiority of one model whilst different datasets are used for different models presented in 397 

literature. However, considering the range of errors that a good forecast might achieve suggests that this model could 398 

provide good results for the prediction of hub height wind speed.  399 
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Figure 9: MAPE and MAE (with 95% confidence interval) for hub height wind speeds predicted with a simple GPR 

model and a GPR model with stability 

 

 400 

F൴gure 10: RMSE, MAE and MAPE for hub he൴ght w൴nd speed pred൴cted us൴ng GPR model w൴th and w൴thout stab൴l൴ty 
൴nformat൴on. Pers൴stence model ൴s shown for compar൴son. Error bars are not shown here to allow clar൴ty. Error bars for 
the GPR models can be seen ൴n F൴gure 9. 

 

 401 



 
  

22                                                      
  

Table 6: Improvement in hub height wind speed predictions over persistence model. 402 

  Hours ahead forecast 
Model Error metric 3 6 12 24 48 72 

GPR with 
stability 

MAE (ms-1) 0.3 0.6 0.9 1.1 1.3 1.1 
RMSE (ms-1) 0.3 1.6 1.2 1.5 1.7 1.4 
MAPE (%) 7.5 14.7 21.9 27.6 32.2 31.1 

GPR  
MAE (ms-1) 0.3 0.6 1.0 1.2 1.3 1.3 
RMSE (ms-1) 0.4 1.7 1.3 1.6 1.8 1.6 
MAPE (%) 5.9 12.6 19.8 25.7 30.4 30.0 

 403 
 404 

3.3 Significance of Results in Power Output Forecasting 405 

In section 3.2, it can be seen that using a GPR to predict hub height wind speed leads to a reduction in prediction error in 406 

comparison to using the persistence method. Additionally, a further reduction is seen when the data is split using PGT 407 

stability class at the time of observation. In order to establish whether the reduction in error seen in hub height wind 408 

speed prediction is sufficient to suggest a reduction in power output prediction error, predicted power output is calculated 409 

from the predicted wind speed using a wind turbine power curve. A power curve is a relationship between wind speed 410 

and power output, which is specific to a turbine. They are usually provided by wind turbine manufacturers based on 411 

experimental data. Whilst they are not completely accurate for real data, they can give a crude estimate of predicted 412 

power output. In this case, the power curve is used to see whether the improved wind speed prediction offers any 413 

improvement in power output prediction. The turbine in use at the location in question is an old model, for which the 414 

manufacturer’s power curve is not available. Hence the power curve used has been chosen from a database of available 415 

power curves and has been chosen such that the curve reflects the relationship between wind speed and power output 416 

data at the site as closely as possible.  417 

In this section the model errors are shown as a percentage of turbine capacity, giving normalised MAE (NMAE) and 418 

normalised RMSE (NRMSE). This allows model results from larger or smaller turbines to be compared in a meaningful 419 

way. Hence the error metrics shown are given by equations 13 and 14. 420 

 �MAE ൌ  ͳ݊ ȁݕ௧ െ ௧ෝݕ ȁ ൈ ͳͲͲܥ
ୀଵ  

(13) 

 �RMSE ൌ  ඩͳ݊ ሺݕ௧ െ ௧ෝݕ ሻଶ
ୀଵ ൈ ͳͲͲܥ  

( 14) 

Where ݕ௧ is the observed wind speed at time ݕ ,ݐ௧ෝ  is the forecasted wind speed for the same time period, ݊ is the number 421 

of forecasts made and C is the installed capacity of the turbine. 422 

Figure 11 shows the difference in NMAE and NRMSE between power output predicted from wind speeds using a 423 

persistence model, a simple GPR model and a GPR model with stability classification. It shows a reduction in normalised 424 

MAE of between 2 and 12% for the power output predicted using wind speeds from the simple GPR model over a 425 

persistence model, and a further 0.5% for the GPR model split by stability class. Additionally, a reduction of between 4 426 
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and 16% in normalised RMSE for the simple GPR model compared to the persistence model with a further 0.5% 427 

improvement using the GPR model with stability classes. 428 

Due to the power curve for this turbine not being available the method for predicting power output could be improved 429 

upon significantly however it shows that there may be some potential for improvement in power output forecast using the 430 

GPR model with stability classes.  431 

F൴gure 11: MAE and RMSE normal൴sed by turb൴ne capac൴ty, shown for s൴mple GPR and GPR w൴th stab൴l൴ty ൴nformat൴on 

 
 432 
 433 

4. CONCLUSIONS AND FURTHER WORK 434 

The motivation for this study has been to assess the performance of a hybrid numerical weather prediction model (NWP) 435 

and Gaussian process regression (GPR) model in predicting near-surface wind speeds up to 72 hours ahead, and show 436 

how subdividing data using the PGT atmospheric stability class can improve model performance. The results show that 437 

when the simple GPR model is used for 10 m wind predictions there is a reduction in MAPE for all forecast periods of 438 

2% over the NWP wind speed predictions. When the GPR model is used with data partitioned by atmospheric stability 439 

there is a reduction in MAPE of 5% for forecasts made 3 hours ahead and 9% for forecasts made 72 hours ahead. This 440 

indicates that the GPR model with data partitioned by stability class leads to improved wind speed predictions over the 441 

NWP model. Particular improvements are seen at mountainous and coastal sites. Furthermore, using the GPR model 442 

using data partitioned by stability class for the prediction of hub height wind speeds lead to a reduction in MAPE of 443 

between 1 and 2% over the simple GPR model. It can also be seen that the improvements achieved using this model have 444 

a positive impact on wind power output predictions. Implementing the GPR model with data partitioned by stability class 445 

leads to a reduction in NMAE of 0.5% over the simple GPR model, and a reduction of between 2% and 12% in 446 

comparison to the persistence methods.  In general, the results seen for wind speed prediction are of comparable 447 

magnitude to those observed in other methods listed in Table 1, as discussed in section 3.  448 
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The work so far demonstrates the potential of the method. With additional data improvements could be made to the 449 

method shown. For example, due to the availability of forecasted weather variables, this work has so far relied upon the 450 

use of stability class as calculated from observed weather variable rather than predicted stability class. Further work is 451 

required to show a full predictive model with stability classes. To calculate the predicted stability conditions estimates of 452 

other meteorological variables such as heat flux and frictional velocity are required, which are not routinely available. In 453 

addition, the PGT stability class method is known to over-estimate the existence of neutral stability conditions. Other 454 

methods could be used to calculate stability, potentially providing a more accurate representation of conditions. This may 455 

increase the accuracy of this model further and provides an avenue for additional investigation in the future. 456 

Whilst many methods for wind speed and power prediction exist, GPR has not been used widely for wind speed 457 

prediction. Furthermore, despite the numerous methods that exist, the impact of atmospheric stability on predictions is 458 

rarely considered. Because of this, the method provides a novel approach to forecasting and indicates promising results.  459 
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