This is a repository copy of *PI3Kδ and primary immunodeficiencies*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/129348/

Version: Supplemental Material

Article:

https://doi.org/10.1038/nri.2016.93

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Chronic loss of PI3Kδ activity

- Reduced magnitude T cell responses.
- Reduced cytokine production by T cells.
- Impaired Treg numbers and function.
- Complete block in B cell development in humans
- No IgG, IgM
- Lack of MZ and B1 cells in mice

↑ Naive T
↑ Tmem
↑ Follicular B
↑ GC B cells in dark zone
↑ CSR and SHM

↑ Teff
↑ Tfh
↑ Treg
↑ TI B cell response
↑ GC B cells in light zone

Chronic elevated PI3Kδ activity

- T cell senescence associated with increased apoptosis and failure to response to stimuli.
- Partial block in B cell development at transitional stage in humans
- Impaired CSR. High IgM, low IgG.
- B cell lymphoma