UNIVERSITY of York

This is a repository copy of Circadian rhythms are associated with variation in photosystem II function and photoprotective mechanisms.

White Rose Research Online URL for this paper: <u>https://eprints.whiterose.ac.uk/id/eprint/129260/</u>

Version: Accepted Version

Article:

Yarkhunova, Yulia, Guadagno, Carmela R., Rubin, Matthew et al. (3 more authors) (2018) Circadian rhythms are associated with variation in photosystem II function and photoprotective mechanisms. Plant, Cell and Environment. ISSN 0140-7791

https://doi.org/10.1111/pce.13216

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk/ https://eprints.whiterose.ac.uk/

1	Circadian rhythms are associated with variation in photosystem II function and
2	photoprotective mechanisms
3	
4	Yulia Yarkhunova ¹ , Carmela R. Guadagno ¹ , Matthew J. Rubin ² , Seth J. Davis ⁴ , Brent E.
5	Ewers ¹ , Cynthia Weinig ^{1,3}
6	
7	¹ Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY
8	82071, USA
9	² Department of Biology, Syracuse University, Syracuse, NY 13244, USA
10	³ Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
11	⁴ Department of Biology, University of York, Heslington, York, YO10 5DD, UK
12	
13	
14	Author for correspondence:
15	Cynthia Weinig
16	<i>Tel:</i> +1307 7666378
17	Email: <u>cweinig@uwyo.edu</u>

19	Abstract. The circadian clock regulates many aspects of leaf gas supply and biochemical
20	demand for CO_2 , and is hypothesized to improve plant performance. Yet the extent to
21	which the clock may regulate the efficiency of photosystem II (PSII) and photoprotective
22	mechanisms such as heat dissipation remains largely unexplored. Based on measurements
23	of chlorophyll a fluorescence, we estimated the maximum efficiency of photosystem II in
24	light (Fv'/Fm') and heat dissipation by non-photochemical quenching (NPQ) . We further
25	dissected total NPQ into its main components, qE (pH-dependent quenching), qT (state-
26	transition quenching) and qI (quenching related to photoinhibition), in clock mutant
27	genotypes of Arabidopsis thaliana, the cognate wild-type genotypes, and a panel of
28	recombinant inbred lines (RILs) expressing quantitative variation in clock period.
29	Compared to mutants with altered clock function, we observed that wild-type genotypes
30	with clock period lengths of approximately 24 hr had both higher levels of Fv'/Fm' ,
31	indicative of improved PSII function, and reduced NPQ, suggestive of lower stress on
32	PSII light harvesting complexes. In the RILs, genetic variances were significant for
33	Fv'/Fm' and all three components of NPQ , with qE explaining the greatest proportion of
34	NPQ. Bivariate tests of association and structural equation models of hierarchical trait
35	relationships showed that quantitative clock variation was empirically associated with
36	Fv'/Fm' and NPQ , with qE mediating the relationship with gas exchange. The results
37	demonstrate significant segregating variation for all photoprotective components, and
38	suggest the adaptive significance of the clock may partly derive from its regulation of the
39	light reactions of photosynthesis and of photoprotective mechanisms.
40	Key words: Arabidopsis thaliana, circadian rhythms, chlorophyll a fluorescence,
41	maximum efficiency of PSII, non-photochemical quenching

42 Introduction

44	The circadian clock is a time-keeping mechanism that enables organisms to adaptively
45	match many transcriptomic, physiological, developmental, and biochemical processes to
46	natural diurnal cycles (McClung et al., 2013; Yerushalmi et al., 2009; Sanchez et al.,
47	2016; Resco de Dios and Gessler, 2017). By comparing the phenotypes of wild-type
48	plants to mutant genotypes with altered clock function, several studies have demonstrated
49	that diverse ecophysiological traits (e.g., total CO_2 assimilation rates and sugar status) are
50	affected by the circadian clock (Dodd et al., 2005; Graf et al., 2010). More specifically,
51	circadian rhythms that are closer to 24 hours and resonate with environmental cycles
52	likely optimize the diurnal timing of gas exchange (Dodd et al., 2005). Transcriptomic
53	studies on representative Arabidopsis genotypes also indicate that key gas-exchange
54	genes are regulated on a diel basis (Dodd et al., 2014; Pilgrim & McClung, 1993).
55	Further, quantitative variation in the circadian clock is associated with gas-exchange in
56	segregating progenies (Edwards et al., 2011; Lou et al., 2011) and in crop types of
57	Brassica rapa (Yarkhunova et al., 2016) as well as with timing of gas-exchange
58	responses to drought (Greenham et al., 2017). Thus, the circadian clock emerges as an
59	important regulator of gas-exchange. Yet, its influence on the biophysical activity of both
60	photosystems remains poorly characterized, leaving unresolved the mechanistic
61	connection between the circadian clock and leaf level gas-exchange as well as
62	photoprotection (Greenham & McClung, 2015; Guadagno et al., 2018).
63	Sunlight serves as the energy source for photosynthesis, and higher light
64	intensities typically correlate with increases in photosynthetic rates (A) (Björkman &

65 Demmig-Adams, 1995; McDonald, 2003). Further, the efficiency of photosystem II 66 (PSII) in utilizing light energy (Fv'/Fm') correlates with gas-exchange rates and plant 67 performance under various experimental conditions at a given light level (Maxwell & 68 Johnson, 2000). However, the absorbed light energy may exceed the demand for energy 69 and the reducing capacity of the light-independent reactions of photosynthesis, 70 potentially leading to photodamage through formation of reactive oxygen species (ROS). 71 In response to light stress, plants have evolved several photoprotective mechanisms. A 72 large number of enzymes take part in scavenging activities (Asada, 2006; Das & 73 Roychoudhury, 2014); some carotenoids have been shown to be highly efficient in 74 scrubbing excited chlorophyll molecules (Bassi & Caffarri, 2000), and ascorbate is also 75 an efficient antioxidant in various organisms (Fukumura et al., 2012). However, when 76 excitation energy exceeds demand, the first line of defense to avoid damage to PSII is 77 heat dissipation. Thermal dissipation is a protective strategy to reduce photoinhibition, 78 and is ubiquitous to photosynthetic organisms (Müller et al., 2001). This mechanism 79 competes with photochemistry and chlorophyll *a* fluorescence for the use of excitation 80 energy (Baker, 2008), and it is commonly referred to as non-photochemical quenching of 81 chlorophyll *a* fluorescence (*NPQ*).

82 *NPQ* comprises at least three major components: qE (pH-dependent quenching), 83 qT (state-transition quenching) and qI (quenching related to photoinhibition). The onset 84 of qE occurs quickly, within seconds to a few minutes, and is triggered through the 85 synergistic action of thylakoid lumen pH and the formation of an energy quenching 86 complex between the protein PsbS and the pool of xanthophyll and zeaxanthin (Horton *et* 87 *al.*, 2000; Li *et al.*, 2002). The qT component can occur following 2-15 minutes of

illumination and reflects the balance of excitation between the two photosystems, which
depends upon reversible photophosphorylation activity and ensuing relocation of light
harvesting complexes (Niyogi, 2000). *qI* has slow relaxation kinetics and is related
directly to photoinhibition, including down-regulation and complete deactivation of PSII
(Li *et al.*, 2002).

93 In the past two decades, the development of pulse amplitude modulated (PAM) 94 fluorometry has provided a sensitive and non-destructive method to estimate the 95 efficiency of PSII and the importance of NPQ and the variability of each component in 96 different environmental conditions (Baker, 2008; Schreiber, 2004). Among several 97 applications, the PAM method has made it possible to partition variance among 98 environmental and genetic sources. Prior studies have focused on partitioning sources of 99 variance in total NPQ (Fujiwara et al., 2014; Jung & Niyogi, 2009; Kasajima et al., 100 2011; van Rooijen et al., 2015) and in PSII photoinhibition (Jansen et al., 2010). Genetic 101 variances for total NPQ were highly significant in four A. thaliana accessions across an 102 extensive range of incident light (varying from 100 to 1800 μ mol photons m⁻²s⁻¹; (Jung & 103 Niyogi, 2009). However, the magnitude of genetic variances of all individual components 104 of NPQ have not been estimated, although such knowledge is important to understanding 105 possible regulatory paths and ultimately to breeding opportunities for crop improvement. 106 Light availability and light stress vary in predictable ways over the course of the 107 day. Quantitative clock variation is correspondingly associated with gas-exchange in 108 various species under field and controlled environmental conditions (Burstin et al., 2007; 109 de Dios et al., 2016; Edwards et al., 2012; Edwards et al., 2011; Yarkhunova et al., 110 2016), and might contribute to the regulation of thermal dissipation of excess energy.

111	Further, although thermal dissipation is a photoprotective mechanism, it is metabolically
112	regulated and impacts the operational state of photosynthesis (Murchie & Harbinson,
113	2014), again consistent with the hypothesis that NPQ might be clock regulated.
114	Here, we first compared the maximum efficiency of PSII in light (Fv'/Fm') and
115	NPQ between wild-type genotypes of Arabidopsis thaliana and mutants with altered
116	clock function to empirically test for a possible role of the circadian clock in PSII
117	function and photoprotection. We then used recombinant inbred lines (RILs) that vary in
118	circadian periodicity to characterize the expression of genetic variation in leaf gas
119	exchange, chlorophyll a fluorescence traits, and NPQ across environments with high vs.
120	low light intensity. Finally, we used structural equation modeling to investigate
121	hypothesized causal relationships between quantitative variation in circadian rhythms,
122	leaf gas exchange, NPQ , and the components of NPQ .
123	
124	Materials and Methods
125	
126	Plant material and growth
127	
128	We first compared Fv'/Fm' and total NPQ between mutant genotypes with altered
129	clock function and the cognate wild-type plants, in order to test the relationship between
130	clock (mis)function and efficiency of PSII function and photoprotection. We included
131	replicates harboring alleles of the clock mutant genotype, zeitlupe (ztl-24, ztl-25); (Kevei
132	et al., 2006), that express a long clock period (28 hr) phenotype, the clock mutant, timing
133	of cab expression 1 (toc1-21) (Ding et al., 2007; Fujiwara et al., 2008) that express a

short clock period (20 hr), and the cognate, Ws-2, wild-type genotype in which thesemutations reside.

136	Seeds of both mutant and wild type genotypes were placed in microcentrifuge
137	tubes stratified in water at 4°C for 1 week. Seeds were then planted into $6 \times 6 \times 9$ cm
138	plastic pots filled with Sunshine #5 potting mix (Sunshine Redi-Earth Professional
139	Growing Mix, Sun Gro Horticulture, Bellevue, WA). Pots were placed in Percival PGC-
140	9/2 growth chambers (Percival Scientific, Perry, Indiana, USA) with the following
141	conditions: photoperiod 10/14 hours (light/dark), temperatures of 22 ± 1 °C during the
142	daytime and 19 ± 1 °C during nighttime, and PPFD = 350 μ mol photons m ⁻² s ⁻¹ . Short
143	days were used to allow for greater growth before the onset of flowering. Measurements
144	of Fv'/Fm' and NPQ were taken at the ambient light level of 350 μ mol photons m ⁻² s ⁻¹ on
145	at least seven replicates per genotype using a portable PAR-FluorPen FP 100-MAX-LM
146	fluorometer (Photon System Instruments, Brno, Czech Republic).
147	To characterize genetic and environmental sources of variation in Fv'/Fm' ,
148	components of NPQ, and associations between these two traits and clock period, we used
149	recombinant inbred lines (RILs) of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). The
150	RILs were developed from a cross between Ler (Landsberg erecta, Germany) and Ws-2
151	(Wassilewskaja, Belarus), in which the Ws-2 parent harbors the reporter gene
152	LUCIFERASE (LUC) linked to the promoter of COLD-CIRCADIAN RHYTHM-RNA
153	BINDING 2 (CCR2), allowing for quantification of circadian parameters (Millar, Short,
154	Chua & Kay, 1992). Details of the crossing design are provided in Boikoglou & Davis
155	(2009) and Rubin et al (2017). In brief, the two parents were crossed to create a

156	heterozygous F_1 . The F_1 was then backcrossed to the maternal parent, and the resulting
157	BC_1F_2 genotypes were selfed to the BC_1F_6 generation through single seed descent.
158	An initial experiment quantifying Fv'/Fm' associations with clock period was
159	conducted using 32 lines, following the same planting protocol and growth conditions as
160	the mutants. Due to the time-consuming nature of NPQ relaxation curve measurements
161	and limited space in the growth chambers, eleven RILs (8-10 replicates per RIL) were
162	chosen at random to conduct the leaf chlorophyll a fluorescence measurements and to
163	dissect the components of NPQ.
164	
165	Circadian measures
166	
167	For circadian measures, seeds of each RIL were surface-sterilized and cold-stratified. Six
168	to eight replicates of each RIL were planted into white 96-well microliter plates
169	containing Murashige and Skoog mineral plant growth media supplemented with 30g/L
170	sucrose. Plates were then moved to the growth chambers with the following conditions:
171	10/14 hours (light/dark) photoperiod, temperature of 22 ± 1 °C and relative humidity of
172	50 ± 1 % for five days, a period of time sufficient for clock entrainment. After
173	entrainment, 20μ l of a 100 mM D-luciferin monopotassium salt and 0.01% Triton X-100
174	solution was added to each well, and plates were resealed and placed under an ORCA-II
175	ER digital camera (Hamamatsu Photonics C4742-98-24ER). Circadian parameters were
176	estimated from bioluminescence using fast Fourier transform nonlinear least-square
177	analysis (FFT-NLLS) (Hicks et al., 1996).
178	

181	Leaf gas-exchange measurements, including photosynthetic rate (A), stomatal
182	conductance (g_s) , and chlorophyll <i>a</i> fluorescence emissions, were measured
183	simultaneously using a leaf chamber fluorometer LICOR LI-6400-40 (Open System
184	Vers. 4.0, Li-Cor, Inc., Lincoln, NE). Measurements were taken from a fully developed
185	rosette leaf at least 1 h after subjective dawn under the following chamber conditions:
186	PPFD= 500 (low light, LL) or 1500 (high light, HL) μ mol m ⁻² s ⁻¹ , flow rate= 300 m ⁻² s ⁻¹ ,
187	ref $[CO_2] = 400 \ \mu mol \ m^{-2} \ s^{-1}$, $T_{leaf} = 22^{\circ}C$ and VPD_L (Vapor pressure deficit based on leaf
188	temp, kPa) was kept between 1.3-1.7 kPa, fan mode set on FAST (Long & Bernacchi,
189	2003). After a dark acclimation period (30 min), the maximum fluorescence in darkness
190	(F_m) was determined by applying a saturating pulse (0.8 s) with intensity of ~5000 µmol
191	photons $m^{-2} s^{-1}$. The leaves were then exposed for 10 min to different actinic light levels
192	to obtain the maximum fluorescence in light conditions, Fm' . Calculations of Fo' used the
193	equation from Oxborough and Baker (1997), $Fo'=Fo/(Fv/Fm+Fo/Fm')$. After induction
194	of NPQ, recovery of the fluorescence signal was monitored in darkness for 40 min,
195	through the application of seven saturating pulses (0.8 s; intensity of ~5000 μ mol photons
196	$m^{-2} s^{-1}$) at different times (2, 5, 10, 15, 20, 30, 40 min). <i>NPQ</i> data were expressed as
197	$NPQ = (F_m - F_m')/F_m'$ (Bilger & Schreiber, 1987), and the three NPQ components (qE,
198	qT and qI) were quantified following a modified method of Walters and Horton (Walters
199	& Horton, 1990, Walters & Horton, 1991). For each recorded fluorescence curve and
200	each measured leaf, NPQ data were reported in a semi-logarithmic plot versus recovery
201	time. The components of NPQ were calculated by linear regression of three exponential

202 decays. The half-times for each component were reported as qI = A, qT = (B - A), qE =

203 (C – B), with A, B and C intercepts on the y axis (D'Ambrosio *et al.*, 2008).

204

205 Data analysis

206

207 Statistical approach and data treatments

208

209 All analyses were conducted in R version 3.2.4 (Team, 2014), http://www.r-project.org. 210 Analysis of variance (ANOVA) was used to test for differences in Fv'/Fm' and total NPO 211 between wild-type and clock mutant genotypes in the first experiment. ANOVA was also 212 used to test the influence of light treatments and genotypic effect on physiological traits 213 (including circadian period, Fv'/Fm', total NPQ, A, g_s , qE, qT, qI) measured in the RILs 214 ('lm' and 'anova' functions of R). Further, we estimated the fold difference in NPQ or its 215 components by dividing the trait value in one light treatment by its value in the other 216 treatment (low light / high light treatment). Principal components analysis (PCA) was 217 performed using the 'prcomp' procedure in R, and scores were tested for the effect of 218 genotype.

We were further interested in testing the relative contribution of individual physiological traits and circadian period to the expression of A_{max} . First, we determined how clusters of traits related to genetic variation in the RILs using Principal Components Analysis (PCA) as an approach to address collinearity between fluorescence variables. Second, to quantify hypothesized causal relationships between traits, we used structural equation modeling with observed variables. We developed an initial (saturated) model

225	based on observed bivariate correlations and known relationships among physiological
226	traits and between circadian and physiological traits. The fit of alternative structural
227	equation models to the observed data was tested with the sem() function of the 'lavaan'
228	package (Rosseel, 2012) in R version 3.2.4 (Team, 2014). To identify a model with good
229	fit, a proposed model was evaluated through Confirmatory Factor Analysis within the
230	lavaan package and the fit indices that rank parsimony (Akaike's Information Criterion;
231	AIC). If the fit criteria (described below) were not met for the proposed model, then
232	modification indices were used to adjust the model; specifically, variables were excluded
233	from the model with the highest AIC, and fit indices for the reduced model were again
234	evaluated. Model fit was assessed with a chi-square test, root mean square error of
235	approximation (RMSEA), and comparative fit index (CFI). Chi-square values associated
236	with a P-value > 0.05 and a RMSEA < 0.05 and CFI > 0.95 indicate a good fit of the
237	model to the data (Kline, 2015).
238	Once the model with the best fit was identified, structural equation modeling was
239	used to partition variation in a response variable among multiple predictor variables.
240	Specifically, the multivariate regression model that is the basis for structural equation
241	modeling statistically accounts for variation in multiple predictor variables (in this case,
242	traits) simultaneously and tests their relationship to a response variable. We were
243	interested in the hierarchical relationships among measured traits (e.g., circadian period,
244	gas-exchange traits, NPQ). This approach reveals the extent to which a given trait
245	directly vs. indirectly affects the response variable (e.g., circadian period could affect A_{max}
246	directly or act indirectly through NPQ) (e.g., Fournier-Level et al, 2013).
247	

- 248 **Results**
- 249

250 To test for a clock effect on chlorophyll fluorescence, we compared Fv'/Fm' and total 251 *NPQ* between wild-type plants that express a circadian period near 24 hrs to clock mutant 252 genotypes with short 20-hr (toc1) or long 28-hr (ztl) circadian cycles (Fig. 1). Analysis of 253 variance revealed a significant genotype effect on maximum efficiency of PSII in light 254 (Fv'/Fm') (Table 1a). Specifically, wild type Ws-2 plants had higher values of Fv'/Fm'255 compared to short and long circadian period mutants, indicating that light absorbed by 256 PSII is converted more efficiently to photochemistry in the wild-type plants (Fig. 1a). 257 Furthermore, ANOVA showed that circadian clock mutants had higher values of NPQ 258 than the wild type (Fig. 1b), indicating potentially greater light stress and the need for 259 higher thermal dissipation in the mutant genotypes even under the comparatively low 260 light treatment conditions. In sum, the results suggest that significant deviations $(\pm 4 \text{ h})$ 261 from a wild-type circadian period of approximately 24 hrs may lead to reduced PSII 262 efficiency and to a surplus of excitation energy for PSII. 263 264 Genetic variation in RILs, light treatment effects, and bivariate correlations 265 266 We first surveyed circadian period and other physiological parameters, including 267 photosynthetic rate (A), stomatal conductance (g_s) and maximum efficiency of PSII in light (Fv'/Fm') in 32 RILs. Analysis of variance showed significant variation among RILs 268 269 in circadian period and all physiological traits (Table 1). Among the RILs, we observed a

270 significant association between Fv'/Fm' and circadian period, such that RILs with

271	circadian cycles closer to 24 hrs had higher quantum yield of PSII (Fig. 2a).
272	We then chose a subset of eleven genotypes to estimate genetic and
273	environmental variances in the underlying fluorescence and non-photochemical
274	quenching parameters under our two experimental light conditions (low light, LL, 500
275	μ mol photons m ⁻² s ⁻¹ and high light, HL, 1500 μ mol photons m ⁻² s ⁻¹) and to further explore
276	the relationship between the circadian clock and chlorophyll a fluorescence. We observed
277	significant light treatment effects for A, Fm' , F_{v}'/F_{m}' , NPQ , qE , qT , and qI (p<0.001;
278	Table 1). As expected, A decreased in low light conditions, while F_v'/F_m' decreased in
279	response to the high light conditions (Table 1c). NPQ typically rises with increasing light
280	intensity and light stress, and we correspondingly observed a significant increase in total
281	<i>NPQ</i> under the HL relative to LL treatment (p<0.0001; Fig. 3a). The partitioning of
282	individual components of NPQ also varied across light treatments (Fig. 3b, c). Within
283	total NPQ , qE and qT were higher on average in the LL treatment, while qI was higher in
284	the HL treatment (Fig. 3b, c). Overall, in both treatments qE was the primary determinant
285	of total NPQ (Fig. 3b, c).

286 The subset of 11 RILs also differed significantly in the expression of all measured 287 physiological parameters (Table 1; Fig. 3). Specifically, $A, g_s, Fm', F_{v'}/F_{m'}, NPQ, qE, qT$ 288 and qI showed a significant genotype effect (p < 0.001; Table 1). Total NPQ differed by 289 60% between RILs with the highest vs. lowest values under HL and 59% under LL (Fig. 290 3a). Using LL for further comparison of the NPQ components, qI and qT differed by 291 more than 100% between RILs with the highest vs. lowest values of these two traits; in 292 particular, qT differed by 166% between RIL113 and Ws-2 under the LL treatment, while 293 qI differed by 175% between RIL36 and RIL136. Differences among RILs were less

294	pronounced for q	E, which varied by	y at most 12% among R	ILs in LL (Fig. 3b).
				$\tilde{\mathbf{U}}$

295	To empirically assess relationships among physiological traits, we tested for
296	significant bivariate correlations. As expected, A was correlated positively with g_s . A was
297	also positively correlated with F_{v}'/F_{m}' and with other fluorescence parameters (Fm' ,
298	Fv/Fm, NPQ , qI) (Table 2). We observed that in both LL and HL conditions RILs with
299	circadian rhythms closer to 24 hours had higher values of F_v'/F_m' (Fig. 2b, c), consistent
300	with the experiment utilizing all 32 lines. The fold difference in NPQ under LL vs. HL
301	conditions was associated with circadian period length (Fig. 4a), such that RILs with
302	circadian periods longer than 24 hrs expressed fold differences closer to 1. Fold
303	differences near 1 reflect RILs with comparatively high NPQ values even under the LL
304	treatment suggesting those genotypes experienced surplus light energy that elicited a
305	quenching requirement even in low light, a result akin to that observed in the clock
306	mutants. We also observed an association between the fold difference in qT and circadian
307	period (Fig. 4b). Specifically, RILs with shorter period lengths closer to 24 hr showed a
308	~1.5-fold increase in state-transition related quenching, qT , across the LL relative to HL
309	environment, whereas the plants with period lengths closer to 27 hr had lower values
310	across the two light treatments. Together, these findings suggest that there may be
311	coordinated circadian regulation of photochemical (F_v / F_m) and non-photochemical
312	(NPQ) processes under two different levels of irradiance.
313	

314 Principal Component Analysis

315

316 The PCA of data collected in the LL treatment revealed three major components that

317	describe genotypic variation (Table S1, Fig. S1a) and allow inference as to how different
318	traits (circadian period, A , g_s , chlorophyll fluorescence etc) are inter-related while
319	accounting for collinearity among multiple fluorescence measures. The first principal
320	component captured 43.95% of the total variance and was negatively related to Fo
321	(loading = -0.39), <i>Fm</i> (loading = -0.40), <i>Fo</i> ' (loading = -0.41), and <i>Fm</i> ' (loading = -0.40),
322	reflecting the well-known mathematical connection among fluorescence parameters. The
323	second principal component captured 28.47% of the variation and was positively related
324	to total NPQ (loading = 0.34), and negatively related to photosynthetic rates (loading = -
325	0.44), stomatal conductance (loading = -0.43), and Fv'/Fm' (loading = -0.42). The third
326	axis captured 10.77% of the variation and was positively related to circadian period
327	(loading = 0.52). Thus, PC2 and PC3 together account for variation that is independent of
328	fluorescence parameters Fo, Fm, Fo', Fm'. The loading of circadian period (PCA2) was
329	opposite in sign to that with Fv'/Fm' (PCA3) (Fig. S1a), consistent with the observed
330	negative bivariate correlation between these two traits (Fig. 2a, Table S1). PCA of gas
331	exchange and fluorescence traits in the HL treatment had similar trait loadings but were
332	generally less structured (inter-correlated), and specifically the association of the clock
333	and fold difference in qT (Fig. S1b) was absent, an outcome that could reflect light stress.
334	For HL, PC1 explained 43% of the total variance and was positively related to
335	fluorescence parameters Fo, Fm, Fo', Fm'. The second axes captured 20% and was
336	negatively related to parameters of gas-exchange (A, g_s) and Fv'/Fm' and positively
337	related to NPQ. The third and fourth axes both captured 11% of the variation were
338	positively related to Fv/Fm and circadian period. Overall, the PCA patterning is
339	consistent with univariate responses to the light treatments and observed bivariate

340 associations.

341 Structural equation model

342	To test the hierarchical relationships among measured circadian and physiological traits,
343	we used structural equation modeling. Based on AIC indices for all paths, we obtained a
344	model with good fit based on multiple metrics of Confirmatory Factor Analysis (Chi-
345	square p-value = 0.364 , RMSEA = $0.026 \pm 0.000 \ 0.177$ for the 90% CI, p-value = 0.466 ,
346	CFI = 0.999). The 'best fit' model is shown in Fig. 5a, and the standardized coefficients
347	for each of the modeled relationships are presented in Fig. 5b. The chi-square value of the
348	'best fit' model has a p-value > 0.05 , which indicates that observed and expected
349	covariance matrices are not different and that the model has an adequate fit. The 90%
350	confidence interval (0.000-0.177) of the RMSEA indicates that the model has close
351	approximate fit to the data.
352	The SEM model revealed a network of connections between traits in the LL
353	treatment. As expected, photosynthetic rate (A) was regulated by stomatal conductance
354	(g_s) and Fv'/Fm' . Shorter circadian period (closer to 24 hrs) was associated with higher
355	Fv'/Fm' and lower values of NPQ (total non-photochemical quenching). NPQ was also
356	associated with stomatal conductance and qE . qE was the primary determinant of total
357	<i>NPQ</i> . The other two <i>NPQ</i> components, qT and qI , were removed during initial model
358	selection because they did not explain a significant proportion of the variance. Variation
359	in qE was also related to A and to NPQ . As expected from the traits' shared calculation
360	from fluorescence parameters, the decrease in NPQ was reflected in increased maximum
361	efficiency of PSII.

363 Discussion

364

365 Plants utilize the sun's energy as a source for photosynthesis. However, when plants 366 experience light intensities that exceed the needs of photochemistry, excess excitation 367 energy may be dissipated as heat or re-emitted as chlorophyll fluorescence. Excess 368 radiation may impose significant stress and damage PSII (Björkman & Demmig-Adams, 369 1995; McDonald, 2003). Light availability and light stress vary in predictable ways over 370 the course of the day such that quantitative clock variation is associated with gas-371 exchange in various species under field and controlled environmental conditions (Burstin 372 et al., 2007; de Dios et al., 2016; Edwards et al., 2012; Edwards et al., 2011; Yarkhunova 373 et al., 2016), and suggesting the circadian clock might contribute to regulation of thermal 374 dissipation of excess energy. Here, we first quantified chlorophyll fluorescence patterns 375 in mutant genotypes with disrupted clock function vs. genotypes with wild-type clock 376 function. Using a segregating population, we then estimated the quantitative-genetic 377 architecture of these traits, including estimation of genetic variances in gas-exchange 378 traits, NPQ, and components of NPQ as well as of genetic correlations between these 379 physiological traits and the circadian clock. We found significant connections between 380 clock period and both PSII efficiency and non-photochemical quenching. 381

201

382 Wild-type clock function is associated with physiological parameters

383 Circadian regulation of physiological traits has been documented in a large number of

studies and species (Dodd et al., 2014; Faure et al., 2012; Graf et al., 2010; McClung,

385 2013), and delayed fluorescence expresses circadian oscillations and is a proposed proxy

386	for circadian rhythms (Gould et al., 2009). Nevertheless, circadian regulation of the light
387	reactions of photosynthesis is not yet well-understood (Dodd et al., 2014). We were
388	interested in ascertaining whether clock function is related to Fv'/Fm' and to NPQ and its
389	components. Our results show that disruption of clock function via large-effect mutation
390	leads to shifts in Fv'/Fm' and NPQ , such that wild-type plants have both higher Fv'/Fm'
391	and lower total NPQ, representing more efficient photosynthetic machinery.
392	
393	Quantitative (co)variation of physiological traits and clock period
394	
395	Chlorophyll a fluorescence is frequently utilized to investigate PSII function and to
396	estimate the response of photosynthetic machinery to environmental stress (Baker &
397	Bowyer, 1994; Baker & Rosenqvist, 2004; Maxwell & Johnson, 2000). The energy-
398	dependent non-photochemical quenching component, qE , was the greatest contributor to
399	total NPQ under both high and low light, consistent with its role in protecting against
400	short-term high light and light fluctuations such as those that occurred between the
401	growth (350 μ mol photons m ⁻² s ⁻¹) and the measurement (500 μ mol photons m ⁻² s ⁻¹ or 1500
402	µmol photons m ⁻² s ⁻¹) conditions (Demmig-Adams et al., 2014; Papageorgiou, 2014). On
403	average, the proportion of the qE component was higher among plants in the low light
404	treatment compared to high light treatment (although RILs also differed in the response
405	of this component to light treatment). The qI component of NPQ represents photodamage
406	to reaction centers of PSII (Demmig-Adams et al., 2014; Krause, 1988); on average over
407	all genotypes, qI values were correspondingly greater in the HL conditions. The role of
408	the qT component may lie in maximizing photosynthetic efficiency under low light

409	conditions, and the percentage of qT may therefore increase when light is limited
410	(Coopman et al., 2010, D'Ambrosio et al., 2008), which is consistent with our
411	observation of higher values of qT under low light conditions (Fig. 3c).
412	While many studies have characterized the genetic architecture of A (Edwards et
413	al., 2011, Fracheboud et al., 2002, Hervé et al., 2001, Teng et al., 2004), fewer have
414	estimated genetic variances for NPQ and its component parameters (Jung & Niyogi,
415	2009, van Rooijen et al., 2015). We find significant genetic variances for Fm', Fv'/Fm',
416	NPQ and its individual components qE , qT , qI . Values of Fv'/Fm' ranged from 0.56 to
417	0.68 (Fig. 2a) among RILs, and NPQ values ranged from 1.1 to 1.8 in LL treatment. The
418	magnitude of NPQ variation among RILs is comparable to the magnitude of variation
419	observed among four accessions of A. thaliana (NPQ values = 1.5 to 2.0 at 600 µmol
420	photons m ⁻² s ⁻¹) reported by Jung and Nigoyi (2009). We further observe variation among
421	RILs in qE (significant main effect of genotype on average across both treatments),
422	consistent with one prior study estimating genetic variances for qE among natural
423	accessions of A. thaliana (Niyogi et al., 2005). Interestingly, these phenotypic differences
424	observed among a small sample of RILs (or accessions in Jung and Nigoyi, 2009 and
425	Niyogi <i>et al.</i> 2005) are comparable to interspecific differences for Fv'/Fm' and NPQ
426	(Demmig-Adams et al., 2006; Guo & Trotter, 2004), indicating that segregating variation
427	in a within-species cross can reproduce phenotypic differences among species
428	Previous studies have found that circadian periods providing a match to
429	environmental conditions are beneficial for plant growth and performance under
430	controlled conditions (Barak et al., 2000; Yerushalmi & Green, 2009) and in the field
431	(Rubin et al., 2017), and can lead to higher gas-exchange values (Dodd et al. 2005;

432 Edwards et al. 2011; Yarkhunova et al. 2016). Further, many genes encoding proteins 433 associated with PSII functioning and NPQ (PsbS protein and other Psb subunits) are 434 circadian regulated (Covington et al., 2008), suggesting the clock may regulate PSII 435 efficiency. We observe that circadian period lengths among a set of A. thaliana RILs 436 varies from 24 to 27 hours, and that this quantitative variation in circadian period 437 correlates with chlorophyll a fluorescence parameters. In addition, our data indicate that 438 this relationship is maintained under three different light conditions (Fig. 2a, b, c). This 439 association in the RILs together with the clock mutant results suggest that the adaptive 440 value of the circadian clock may arise in part from regulation of PSII function (Kreps & 441 Simon, 1997).

442 In addition to Fv'/Fm', we observe that plants with high fold changes in NPQ. 443 across low- to high-light conditions have period lengths that deviate from (are longer 444 than) 24 hrs. Genotypes with a circadian period closer to 27 hrs have higher initial rates 445 of NPQ under low light, indicating that the photoprotective mechanisms are induced at 446 lower light levels compared to the lines with shorter period lengths. These observations 447 demonstrate that there is a change in PSII excitation balance (Huner et al., 1998) among 448 long-period genotypes such that even LL imposes stress, providing a further indication 449 that the clock is linked to PS II. We observed that genotypes with a circadian period 450 closer to 24 hr show comparatively greater values of qT under LL (500 µmol photons m⁻ 451 $^{2}s^{-1}$) vs. HL (1500 µmol photons m⁻²s⁻¹) conditions (Fig. 4b), a pattern that is consistent 452 with the view that at least wild-type A. thaliana are generally not stressed at low light levels of 500 µmol photons m⁻²s⁻¹ and may in fact be light limited (Bailey et al., 2004). 453 454 Plants with normal clock function (expressing 24 hr periods) may experience light

limitation at 500 μ mol photons m⁻²s⁻¹. Transcriptomic studies reveal that some genes that 455 456 code for enzymes that are required for state transitions (STN7 protein kinase, 457 AT1G68830, AT5G01920, AT4G27800) are circadian regulated (Covington *et al.*, 2008), 458 suggesting the clock plays an important role in synchronization of state transitions. It is 459 worth noting that neither qE nor qI showed correlations with circadian period in our 460 study, and neither the genes responsible for qE sites such as LHCII, CP29, and CP26 461 (AT1G19150, AT3G53460, AT4G10340), nor the genes associated with photoinhibition 462 (AT1G77510, AT2G30950, AT3G19570) are under circadian control (Covington et al., 463 2008). 464

465 PCA and Path analysis confirmed empirical relationships between physiological traits
466

467 Three groups of traits that contribute to variation among the genotypes were identified 468 using the PCA analysis. The first group includes the fluorescence parameters Fo, Fm, 469 Fo', and Fm'. All of these parameters are related and reflect physical properties of the 470 primary quinone acceptor of PSII, Q_A, or are partly influenced by PSII reaction center 471 redox activities (Roháček, 2002). The second group of traits contributes to variation in 472 NPQ, Fv'/Fm', and gas-exchange traits; the third one is related to circadian period. PCA 473 and structural equation modeling revealed the correlation structure of complex traits and 474 potential mechanistic relationships, including how circadian period both directly and 475 indirectly interacts with and might influence physiological trait expression (Fig. 5; Fig. 476 S1).

477	Most of the paths in the SEM model were supported by bivariate correlations and
478	PC analysis, and specifically supported clock associations with chlorophyll fluorescence.
479	As noted, thermal dissipation, chlorophyll fluorescence and photochemistry (primarily
480	photosynthesis) are the three possible fates of light energy in the leaf, and all three occur
481	simultaneously (Baker, 2008), and therefore associations among components of NPQ as
482	well as between A and at least some chlorophyll fluorescence measures are anticipated.
483	Our SEM results are consistent with other studies, showing that qE is the primary
484	contributor to NPQ (Niyogi et al., 2005). Further, NPQ does not directly affect A, but
485	instead acts indirectly through Fv'/Fm .' This indirect relationship likely reflects the fact
486	that NPQ (in contrast to PSII activity) does not result in ATP or NADPH production for
487	the Calvin Benson cycle, but instead dissipates excitation energy as heat (Ruban et al.,
488	2016). Although we do not observe a significant path between total NPQ and A , our
489	results show that the qE component of NPQ negatively affects A. qE regulates the
490	excitation rate of PSII reaction centers, which might contribute to energy utilization in the
491	photosynthetic apparatus and thereby affect values of A through the production of ATP
492	and NADPH. The SEM also reveal an association between circadian period and both
493	Fv'/Fm' and NPQ . In sum, our results from clock mutants and segregating lines are
494	consistent with the hypothesized importance of a functional circadian clock that resonates
495	with ambient conditions to plant growth, survival and reproduction (Dodd et al., 2005,
496	Edwards et al., 2011, Green et al., 2002, Salmela et al., 2015, Yarkhunova et al., 2016).
497	
498	Conclusions

500	The circadian clock has been implicated in plant performance in controlled settings, in
501	which alleles conferring a match between endogenous rhythms and diurnal cycles evolve
502	to higher frequency (Yerushalmi & Green, 2009) as well as in field settings, in which
503	discrete and quantitative clock phenotypes are associated with differences in allocation
504	(Salmela et al., 2015) and in survival and fruit set (Rubin et al. 2017). The underlying
505	physiological reasons for these performance differences are unknown, although
506	quantitative clock variation correlates with gas-exchange traits (Edwards et al., 2012,
507	Yarkhunova et al., 2016). Recent studies also indicate that natural variation at the clock
508	gene, GIGANTEA, affects cold tolerance (Xie et al., 2015) and growth patterns (de
509	Montaigu et al., 2015) while in domesticated tomato delayed circadian clock was selected
510	during the process of domestication (Müller et al., 2016). Our data suggest that circadian
511	rhythms might play an important role in regulation of plant photosynthetic machinery.
512	Specifically, the results of the present study suggest possible circadian regulation of
513	maximum efficiency of PSII, NPQ and the qT component of NPQ .
514	
515	Acknowledgements
516	This work was supported by the National Science Foundation grants IOS-0923752 to CW
517	and IOS-1025965 to CW and BEE.
518	
519	References
520	
521 522 523 524	Adams III W.W., Zarter C.R., Mueh K.E. & Demmig-Adams B. (2008) Energy dissipation and photoinhibition: a continuum of photoprotection. In: <i>Photoprotection, photoinhibition, gene regulation, and environment</i> , pp. 49-64. Springer.

525	Asada K. (2006) Production and scavenging of reactive oxygen species in chloroplasts
526	and their functions. <i>Plant physiology</i> , 141 , 391-396.
527	Bailey S., Horton P. & Walters R.G. (2004) Acclimation of Arabidopsis thaliana to the
528	light environment: the relationship between photosynthetic function and
529	chloroplast composition. <i>Planta</i> , 218 , 793-802.
530	Bailey-Serres J. & Mittler R. (2006) The roles of reactive oxygen species in plant cells.
531	Am Soc Plant Biol.
532	Baker N.R. (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu.
533	<i>Rev. Plant Biol.</i> , 59 , 89-113.
534	Baker N.R. & Bowyer J.R. (1994) Photoinhibition of photosynthesis: from molecular
535	mechanisms to the field. Bios Scientific Publishers.
536	Baker N.R. & Rosenqvist E. (2004) Applications of chlorophyll fluorescence can
537	improve crop production strategies: an examination of future possibilities. <i>Journal</i>
538	of Experimental Botany, 55 , 1607-1621.
539	Barak S., Tobin E.M., Green R.M., Andronis C. & Sugano S. (2000) All in good time:
540	the Arabidopsis circadian clock. Trends in plant science, 5, 517-522.
541	Bassi R. & Caffarri S. (2000) Lhc proteins and the regulation of photosynthetic light
542	harvesting function by xanthophylls. <i>Photosynthesis Research</i> , 64 , 243-256.
543	Bilger W. & Schreiber U. (1987) Energy-dependent quenching of dark-level chlorophyll
544	fluorescence in intact leaves. In: Excitation Energy and Electron Transfer in
545	Photosynthesis, pp. 157-162. Springer.
546	Björkman O. & Demmig-Adams B. (1995) Regulation of photosynthetic light energy
547	capture, conversion, and dissipation in leaves of higher plants. In: <i>Ecophysiology</i>
548	of photosynthesis, pp. 17-47. Springer.
549	Boikoglou E. & Davis S.J. (2009) Signaling in the circadian clock. In: Signaling in
550	Plants, pp. 261-285. Springer.
551	Burstin J., Marget P., Huart M., Moessner A., Mangin B., Duchene C., Desprez B.,
552	Munier-Jolain N. & Duc G. (2007) Developmental genes have pleiotropic effects
553	on plant morphology and source capacity, eventually impacting on seed protein
554	content and productivity in pea. <i>Plant physiology</i> , 144 , 768-781.
555	Coopman R.E., Fuentes-Neira F.P., Briceño V.F., Cabrera H.M., Corcuera L.J. & Bravo
556	L.A. (2010) Light energy partitioning in photosystems I and II during
557	development of Nothofagus nitida growing under different light environments in
558	the Chilean evergreen temperate rain forest. Trees, 24, 247-259.
559	Covington M.F., Maloof J.N., Straume M., Kay S.A. & Harmer S.L. (2008) Global
560	transcriptome analysis reveals circadian regulation of key pathways in plant
561	growth and development. Genome Biol, 9, R130.
562	D'Ambrosio N., Guadagno C. & De Santo A.V. (2008) Is qE always the major
563	component of non-photochemical quenching? In: Photosynthesis. Energy from the
564	Sun, pp. 1001-1004. Springer.
565	Das K. & Roychoudhury A. (2014) Reactive oxygen species (ROS) and response of
566	antioxidants as ROS-scavengers during environmental stress in plants. Frontiers
567	in Environmental Science, 2, 53.
568	de Dios V.R., Gessler A., Ferrio J.P., Alday J.G., Bahn M., del Castillo J., Devidal S.,
569	Garcia-Munoz S., Kayler Z. & Landais D. (2016) Circadian rhythms have

570	significant effects on leaf-to-canopy gas exchange under field conditions. <i>bioRxiv</i> ,
571	054593.
572	de Dios V.R. & Gessler A. (2017) Circadian regulation of photosynthesis and
573	transpiration from genes to ecosystems. Environmental and Experimental Botany,
574	2017, vol. en premsa.
575	de Montaigu A., Giakountis A., Rubin M., Tóth R., Cremer F., Sokolova V., Porri A.,
576	Reymond M., Weinig C. & Coupland G. (2015) Natural diversity in daily rhythms
577	of gene expression contributes to phenotypic variation. <i>Proceedings of the</i>
578	National Academy of Sciences, 112 , 905-910.
579	Demmig-Adams B. & Adams Iii W. (1992) Photoprotection and other responses of plants
580	to high light stress. Annual review of plant biology, 43, 599-626.
581	Demmig-Adams B., Koh SC., Cohu C.M., Muller O., Stewart J.J. & Adams III W.W.
582	(2014) Non-photochemical fluorescence quenching in contrasting plant species
583	and environments. In: Non-Photochemical Quenching and Energy Dissipation in
584	Plants, Algae and Cyanobacteria, pp. 531-552. Springer.
585	Demmig-Adams B., Moeller D.L., Logan B.A. & Adams III W.W. (1998) Positive
586	correlation between levels of retained zeaxanthin+ antheraxanthin and degree of
587	photoinhibition in shade leaves of Schefflera arboricola (Havata) Merrill, <i>Planta</i> ,
588	205, 367-374.
589	Demmig - Adams B., Ebbert V., Mellman D.L., Mueh K.E., Schaffer L., Funk C., Zarter
590	C.R., Adamska I., Jansson S. & Adams W.W. (2006) Modulation of PsbS and
591	flexible vs sustained energy dissipation by light environment in different species.
592	Physiologia Plantarum, 127 , 670-680.
593	Derks A., Schaven K. & Bruce D. (2015) Diverse mechanisms for photoprotection in
594	photosynthesis. Dynamic regulation of photosystem II excitation in response to
595	rapid environmental change. Biochimica et Biophysica Acta (BBA)-Bioenergetics,
596	1847 , 468-485.
597	Ding Z., Doyle M.R., Amasino R.M. & Davis S.J. (2007) A complex genetic interaction
598	between Arabidopsis thaliana TOC1 and CCA1/LHY in driving the circadian
599	clock and in output regulation. Genetics, 176 , 1501-1510.
600	Dodd A.N., Kusakina J., Hall A., Gould P.D. & Hanaoka M. (2014) The circadian
601	regulation of photosynthesis. <i>Photosynthesis research</i> , 119 , 181-190.
602	Dodd A.N., Salathia N., Hall A., Kevei E., Toth R., Nagy F., Hibberd J.M., Millar A.J. &
603	Webb A.A. (2005) Plant circadian clocks increase photosynthesis, growth,
604	survival, and competitive advantage. Science, 309 , 630-633.
605	Edwards C.E., Ewers B.E., McClung C.R., Lou P. & Weinig C. (2012) Quantitative
606	variation in water-use efficiency across water regimes and its relationship with
607	circadian, vegetative, reproductive, and leaf gas-exchange traits. Molecular Plant,
608	5 , 653-668.
609	Edwards C.E., Ewers B.E., Williams D.G., Xie Q., Lou P., Xu X., McClung C.R. &
610	Weinig C. (2011) The Genetic Architecture of Ecophysiological and Circadian
611	Traits in Brassica rapa. Genetics, 189, 375-390.
612	Farquhar G.D. & Sharkey T.D. (1982) Stomatal conductance and photosynthesis. Annual
613	review of plant physiology, 33 , 317-345.
614	Faure S., Turner A.S., Gruszka D., Christodoulou V., Davis S.J., von Korff M. & Laurie
615	D.A. (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts

616	domesticated barley (Hordeum vulgare) to short growing seasons. Proceedings of
617	the National Academy of Sciences, 109, 8328-8333.
618	Fournier-Level A., Wilczek A.M., Cooper M.D., Roe J.L., Anderson J., Eaton D.,
619	Moyers B.T., Petipas R.H., Schaeffer R.N. & Pieper B. (2013) Paths to selection
620	on life history loci in different natural environments across the native range of
621	Arabidopsis thaliana. <i>Molecular ecology</i> , 22 , 3552-3566.
622	Fracheboud Y., Ribaut J.M., Vargas M., Messmer R. & Stamp P. (2002) Identification of
623	quantitative trait loci for cold-tolerance of photosynthesis in maize (Zea mays L.).
624	Journal of experimental botany, 53 , 1967-1977.
625	Fujiwara S., Sakamoto S., Kigoshi K., Suzuki K. & Ohme-Takagi M. (2014) VP16 fusion
626	induces the multiple-knockout phenotype of redundant transcriptional repressors
627	partly by Med25-independent mechanisms in Arabidopsis. FEBS letters, 588,
628	3665-3672.
629	Fujiwara S., Wang L., Han L., Suh SS., Salomé P.A., McClung C.R. & Somers D.E.
630	(2008) Post-translational regulation of the Arabidopsis circadian clock through
631	selective proteolysis and phosphorylation of pseudo-response regulator proteins.
632	Journal of Biological Chemistry, 283, 23073-23083.
633	Fukumura H., Sato M., Kezuka K., Sato I., Feng X., Okumura S., Fujita T., Yokoyama
634	U., Eguchi H. & Ishikawa Y. (2012) Effect of ascorbic acid on reactive oxygen
635	species production in chemotherapy and hyperthermia in prostate cancer cells.
636	The Journal of Physiological Sciences, 62, 251-257.
637	Gilroy S., Suzuki N., Miller G., Choi WG., Toyota M., Devireddy A.R. & Mittler R.
638	(2014) A tidal wave of signals: calcium and ROS at the forefront of rapid
639	systemic signaling. Trends in Plant Science, 19, 623-630.
640	Gould P.D., Diaz P., Hogben C., Kusakina J., Salem R., Hartwell J. & Hall A. (2009)
641	Delayed fluorescence as a universal tool for the measurement of circadian
642	rhythms in higher plants. The Plant Journal, 58, 893-901.
643	Graf A., Schlereth A., Stitt M. & Smith A.M. (2010) Circadian control of carbohydrate
644	availability for growth in Arabidopsis plants at night. Proc Natl Acad Sci USA,
645	107 , 9458-9463.
646	Green R.M., Tingay S., Wang ZY. & Tobin E.M. (2002) Circadian rhythms confer a
647	higher level of fitness to Arabidopsis plants. <i>Plant Physiology</i> , 129 , 576-584.
648	Greenham K. & McClung C.R. (2015) Integrating circadian dynamics with physiological
649	processes in plants. Nature Reviews Genetics, 16, 598-610.
650	Guadagno C.R., Ewers B.E., & Weinig C. (2018) Circadian rhythms and redox state in
651	plants: till stress do us part. Frontiers in Plant Science.
652	Guo J. & Trotter C.M. (2004) Estimating photosynthetic light-use efficiency using the
653	photochemical reflectance index: variations among species. Functional Plant
654	<i>Biology</i> , 31 , 255-265.
655	Hervé D., Fabre F., Berrios E.F., Leroux N., Al Chaarani G., Planchon C., Sarrafi A. &
656	Gentzbittel L. (2001) QTL analysis of photosynthesis and water status traits in
657	sunflower (Helianthus annuus L.) under greenhouse conditions. Journal of
658	<i>experimental botany</i> , 52 , 1857-1864.
659	Hicks K.A., Millar A.J., Carré I.A. & Somers D.E. (1996) Conditional circadian
660	dysfunction of the Arabidopsis early-flowering 3 mutant. Science, 274, 790.

661	Horton P., Ruban A.V. & Wentworth M. (2000) Allosteric regulation of the light-
662	harvesting system of photosystem II. Philosophical Transactions of the Royal
663	Society of London B: Biological Sciences, 355 , 1361-1370.
664	Huner N.P., Öquist G. & Sarhan F. (1998) Energy balance and acclimation to light and
665	cold. Trends in Plant Science, 3, 224-230.
666	Jansen M.A., Martret B.L. & Koornneef M. (2010) Variations in constitutive and
667	inducible UV - B tolerance; dissecting photosystem II protection in Arabidopsis
668	thaliana accessions. <i>Physiologia plantarum</i> , 138 , 22-34.
669	Jung HS. & Niyogi K.K. (2009) Quantitative genetic analysis of thermal dissipation in
670	Arabidopsis. Plant physiology, 150 , 977-986.
671	Kangasjärvi S. & Kangasjärvi J. (2014) Towards understanding extracellular ROS
672	sensory and signaling systems in plants. Advances in Botany, 2014.
673	Kasajima I., Ebana K., Yamamoto T., Takahara K., Yano M., Kawai-Yamada M. &
674	Uchimiya H. (2011) Molecular distinction in genetic regulation of
675	nonphotochemical quenching in rice. Proceedings of the National Academy of
676	Sciences, 108 , 13835-13840.
677	Kevei E., Gyula P., Hall A., Kozma-Bognár L., Kim WY., Eriksson M.E., Tóth R.,
678	Hanano S., Fehér B. & Southern M.M. (2006) Forward genetic analysis of the
679	circadian clock separates the multiple functions of ZEITLUPE. <i>Plant physiology</i> ,
680	140 , 933-945.
681	Kline R.B. (2015) Principles and practice of structural equation modeling. Guilford
682	publications.
683	Krause G.H. (1988) Photoinhibition of photosynthesis. An evaluation of damaging and
684	protective mechanisms. <i>Physiologia Plantarum</i> , 74 , 566-574.
685	Kreps J.A. & Simon A.E. (1997) Environmental and genetic effects on circadian clock-
686	regulated gene expression in Arabidopsis. <i>The Plant Cell</i> , 9, 297-304.
687	Lai A.G., Doherty C.J., Mueller-Roeber B., Kay S.A., Schippers J.H.M. & Dijkwel P.P.
688	(2012) CIRCADIAN CLOCK-ASSOCIATED 1 regulates ROS homeostasis and
689	oxidative stress responses. Proceedings of the National Academy of Sciences, 109,
690	17129-17134.
691	Ledford H.K. & Niyogi K.K. (2005) Singlet oxygen and photo-oxidative stress
692	management in plants and algae. <i>Plant</i> , Cell & Environment, 28, 1037-1045.
693	Li XP., Müller-Moulé P., Gilmore A.M. & Niyogi K.K. (2002) PsbS-dependent
694	enhancement of feedback de-excitation protects photosystem II from
695	photoinhibition. Proceedings of the National Academy of Sciences, 99, 15222-
696	15227.
697	Long S. & Bernacchi C. (2003) Gas exchange measurements, what can they tell us about
698	the underlying limitations to photosynthesis? Procedures and sources of error.
699	Journal of experimental botany, 54, 2393-2401.
700	Long S., Humphries S. & Falkowski P.G. (1994) Photoinhibition of photosynthesis in
701	nature. Annual review of plant biology, 45, 633-662.
702	Lou P., Xie Q., Xu X., Edwards C., Brock M., Weinig C. & McClung C. (2011) Genetic
703	architecture of the circadian clock and flowering time in Brassica rapa.
704	Theoretical and applied genetics, 123 , 397-409.
705	Maxwell K. & Johnson G.N. (2000) Chlorophyll fluorescence - a practical guide. Journal
706	of experimental botany, 51 , 659-668.

707	McClung C.R. (2013) Beyond Arabidopsis: the circadian clock in non-model plant
708	species. Paper presented at the Seminars in cell & developmental biology.
709	McDonald M.S. (2003) Photobiology of higher plants. John Wiley & Sons.
710	Millar A.J., Short S.R., Chua NH. & Kay S.A. (1992) A novel circadian phenotype
711	based on firefly luciferase expression in transgenic plants. The Plant Cell, 4,
712	1075-1087.
713	Müller N.A., Wijnen C.L., Srinivasan A., Ryngajllo M., Ofner I., Lin T., Ranjan A., West
714	D., Maloof J.N. & Sinha N.R. (2016) Domestication selected for deceleration of
715	the circadian clock in cultivated tomato. <i>Nature genetics</i> , 48 , 89-93.
716	Müller P., Li XP. & Niyogi K.K. (2001) Non-photochemical quenching. A response to
717	excess light energy. <i>Plant physiology</i> , 125 , 1558-1566.
718	Mullineaux C.W. & Emlyn-Jones D. (2005) State transitions: an example of acclimation
719	to low-light stress. <i>Journal of experimental botany</i> , 56 , 389-393.
720	Murchie E.H. & Harbinson J. (2014) Non-photochemical fluorescence quenching across
721	scales: from chloroplasts to plants to communities. In: Non-Photochemical
722	Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria, pp. 553-
723	582. Springer.
724	Nilkens M., Kress E., Lambrev P., Miloslavina Y., Müller M., Holzwarth A.R. & Jahns
725	P. (2010) Identification of a slowly inducible zeaxanthin-dependent component of
726	non-photochemical quenching of chlorophyll fluorescence generated under
727	steady-state conditions in Arabidopsis. Biochimica et Biophysica Acta (BBA)-
728	Bioenergetics, 1797 , 466-475.
729	Niyogi K.K. (1999) Photoprotection revisited: genetic and molecular approaches. Annual
730	review of plant biology, 50 , 333-359.
731	Niyogi K.K. (2000) Safety valves for photosynthesis. <i>Current opinion in plant biology</i> , 3 ,
732	455-460.
733	Niyogi K.K., Grossman A.R. & Björkman O. (1998) Arabidopsis mutants define a central
734	role for the xanthophyll cycle in the regulation of photosynthetic energy
735	conversion. <i>The Plant Cell</i> , 10 , 1121-1134.
736	Niyogi K.K., Li XP., Rosenberg V. & Jung HS. (2005) Is PsbS the site of non-
737	photochemical quenching in photosynthesis? <i>Journal of Experimental Botany</i> , 56 .
738	375-382.
739	Oxborough K. & Baker N.R. (1997) Resolving chlorophyll a fluorescence images of
740	photosynthetic efficiency into photochemical and non-photochemical
741	components-calculation of qP and Fv-/Fm-: without measuring Fo.
742	Photosynthesis research 54 135-142
743	Papageorgiou G.C. (2014) The non-photochemical quenching of the electronically
744	excited state of chlorophyll a in plants: definitions timelines viewpoints open
745	questions In: Non-Photochemical Quenching and Fnergy Dissipation in Plants
746	Algae and Cyanobacteria pp 1-44 Springer
747	Pilgrim M I & McClung C R (1993) Differential involvement of the circadian clock in
748	the expression of genes required for ribulose-1 5-bisphosphate
740	carboxylase/oxygenase synthesis assembly and activation in Arabidopsis
750	thaliana Plant Physiology 103 553-564
751	Pospíšil P (2009) Production of reactive oxygen species by photosystem II Riachimica
752	et Rionhysica Acta (RRA)_Rionnergetics 1787 1151_1160
154	or Display new (DDi) Discher Sches, 1101, 1151 1100.

753	Powles S.B. (1984) Photoinhibition of photosynthesis induced by visible light. Annual
754	Review of Plant Physiology, 35, 0066-4294.
755	Roháček K. (2002) Chlorophyll fluorescence parameters: the definitions, photosynthetic
756	meaning, and mutual relationships. <i>Photosynthetica</i> , 40 , 13-29.
757	Rosseel Y. (2012) lavaan: An R package for structural equation modeling. Journal of
758	Statistical Software, 48, 1-36.
759	Rubin, M.J., M.T. Brock, A.M. Davis, Z.M. German, M. Knapp, S.M. Welch, S.L.
760	Harmer, J.N. Maloof, S.J. Davis, and C. Weinig. Circadian rhythms vary over the
761	growing season and correlate with fitness components. In press, Molecular
762	Ecology 2017.
763	Salmela M.J., Greenham K., Lou P., McClung C.R., Ewers B.E. & Weinig C. (2015)
764	Variation in circadian rhythms is maintained among and within populations in
765	Boechera stricta. Plant, cell & environment.
766	Sanchez S.E. & Kay S.A. (2016) The Plant Circadian Clock: From a Simple Timekeeper
767	to a Complex Developmental Manager. Cold Spring Harbor Perspectives in
768	Biology, 8, a027748.
769	Schreiber U. (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse
770	method: an overview. In: <i>Chlorophyll a Fluorescence</i> , pp. 279-319. Springer.
771	Sharma P., Jha A.B., Dubey R.S. & Pessarakli M. (2012) Reactive oxygen species,
772	oxidative damage, and antioxidative defense mechanism in plants under stressful
773	conditions. Journal of Botany, 2090-0120.
774	Szabó I., Bergantino E. & Giacometti G.M. (2005) Light and oxygenic photosynthesis:
775	energy dissipation as a protection mechanism against photo - oxidation. EMBO
776	reports. 6 , 629-634.
777	Takahashi S. & Badger M.R. (2011) Photoprotection in plants: a new light on
778	photosystem II damage. Trends in plant science. 16 , 53-60.
779	Team R.C. (2014) R: A language and environment for statistical computing. R
780	Foundation for Statistical Computing, Vienna, Austria, 2013, ISBN 3-900051-07-
781	0.
782	Teng S., Oian O., Zeng D., Kunihiro Y., Fujimoto K., Huang D. & Zhu L. (2004) OTL
783	analysis of leaf photosynthetic rate and related physiological traits in rice (Orvza
784	sativa L.). <i>Euphytica</i> , 135 , 1-7.
785	van Rooijen R., Aarts M.G. & Harbinson J. (2015) Natural genetic variation for
786	acclimation of photosynthetic light use efficiency to growth irradiance in
787	Arabidopsis. Plant physiology, 167 , 1412-1429.
788	Walters R.G. & Horton P. (1990) The use of light pulses to investigate the relaxation in
789	the dark of chlorophyll fluorescence quenching in barley leaves. In: <i>Current</i>
790	Research in Photosynthesis, pp. 631-634. Springer.
791	Walters R.G. & Horton P. (1991) Resolution of components of non-photochemical
792	chlorophyll fluorescence quenching in barley leaves. <i>Photosynthesis Research</i> ,
793	27 , 121-133.
794	Wrzaczek M., Brosché M. & Kangasjärvi J. (2013) ROS signaling loops—production.
795	perception, regulation. Current Opinion in Plant Biology, 16, 575-582.
796	Xie Q., Lou P., Hermand V., Aman R., Park H.J., Yun DJ., Kim W.Y., Salmela M.J.,
797	Ewers B.E. & Weinig C. (2015) Allelic polymorphism of GIGANTEA is

responsible for naturally occurring variation in circadian period in Brassica rapa. Proceedings of the National Academy of Sciences, 112, 3829-3834. Yarkhunova Y., Edwards C.E., Ewers B.E., Baker R.L., Aston T.L., McClung C.R., Lou P. & Weinig C. (2016) Selection during crop diversification involves correlated evolution of the circadian clock and ecophysiological traits in Brassica rapa. New *Phytologist*, **210**, 133-144. Yerushalmi S. & Green R.M. (2009) Evidence for the adaptive significance of circadian rhythms. Ecology letters, 12, 970-981.

Figure 1. Differences in quantum yield of PSII (Fv'/Fm') (a) and total non-photochemical quenching *NPQ* (b) among circadian clock mutant and wild type genotypes of *Arabidopsis thaliana* growing at 350 µmol photons m⁻² s⁻¹, 22 ± 1°C. Error bars indicate ± SE. Different letters indicate statistically significant differences among (p < 0.05).

Figure 2. Association between circadian period and quantum yield of photosystem II (Fv'/Fm') at different light levels.

(a) Association between circadian period and F_v/F_m for thirty-two *Arabidopsis thaliana* genotypes at 350 µmol photons m⁻² s⁻¹. Each circle represents a genotype while *ws* and *ler* represents the parental genotypes. The line represents the following relationship: R²=0.19, *p*=0.01

(b) Association between circadian period and F_{ν}'/F_m' in low light condition (500 µmol photons m⁻² s⁻¹; LL) for eleven *Arabidopsis thaliana* genotypes. Each triangle represents a genotype. The line represents the following relationship: R²=0.53, p=0.0099

(c) Association between circadian period and F_v'/F_m' in high light conditions (1500 µmol photons m⁻² s⁻¹; HL) for eleven *Arabidopsis thaliana* genotypes. Each diamond represents a genotype. The line represents the following relationship: R²=0.38, *p*=0.03

Figure 3. (a) Differences in total *NPQ* among RILs of *Arabidopsis thaliana* under different light conditions (500 μ mol photons m⁻² s⁻¹, LL and 1500 μ mol photons m⁻² s⁻¹, HL). (b) Individual *NPQ* components (*qE*, *qT* and *qI*) expressed as percentage values in leaves of *A. thaliana* RIL genotypes measured at 500 μ mol photons m⁻² s⁻¹. LL and (c) at 1500 μ mol photons m⁻² s⁻¹, HL

Figure 4. Association between circadian period and fold difference of NPQ.

(a) Association between circadian period and fold difference of total NPQ (values under LL / HL) for eleven *Arabidopsis thaliana* RIL genotypes. Each circle represents a genotype while *ws* and *ler* represents the parental genotypes. The line represents the following relationship: $R^2=0.44$, p=0.02

(b) Association between circadian period and transitionary quenching (qT) for eleven Arabidopsis thaliana genotypes. Each triangle represents a genotype while ws and *ler* represents the parental genotypes. The line represents the following relationship: $R^2=0.38$, p=0.04

Figure 5. (a) Tested model (b) Path diagram of the relationships among physiological traits and circadian period of *A. thaliana* at 500 μ mol photons m⁻² s⁻¹. (LL) light treatment. *Arrows* indicate significant relationships. Labels on arrows show standardized path coefficients. Paths are drawn with solid green lines if positive and red lines if negative, *n* = 95.

Fv'/Fm'					
Source	DF	Туре Ш SS	Mean Square	F Value	Pr > F
Genotype	2	0.04061530	0.02030765	3.32	0.0568
NPQ					
Source	DF	Туре Ш SS	Mean Square	F Value	Pr > F
Genotype	2	0.24957873	0.12478937	5.57	0.0125

Table 1a. Analysis of variance for effects of circadian clock genotype on Fv'/Fm' and NPQ.

Circadian Period					
Source	DF	Туре Ш SS	Mean Square	F Value	Pr > F
Genotype	31	215.0204579	6.9361438	11.58	<.0001

Table 1b. Analysis of variance for effects of RIL genotype on circadian period.

1 111					
Source	DF	Туре Ш SS	Mean Square	F Value	Pr > F
Genotype	10	1790663.954	179066.395	9.15	<.0001
Treatment	1	2946925.899	2946925.899	150.6	<.0001
Genotype*Treatment	10	451899.95	45189.995	2.31	0.0148
A					
Source	DF	Туре Ш SS	Mean Square	F Value	Pr > F
Genotype	10	356.0066621	35.6006662	3.46	0.0004
Treatment	1	39.2847737	39.2847737	3.82	0.0522
Genotype*Treatment	10	68.6918485	6.8691849	0.67	0.7527
g_s					
Source	DF	Туре Ш SS	Mean Square	F Value	Pr > F
		v			
Genotype	10	0.20292674	0.02029267	5.78	<.0001
Genotype Treatment	10	0.20292674 0.00073165	0.02029267 0.00073165	5.78 0.21	<.0001 0.6485
Genotype Treatment Genotype*Treatment	10 1 10	0.20292674 0.00073165 0.03881545	0.02029267 0.00073165 0.00388155	5.78 0.21 1.11	<.0001 0.6485 0.3603
Genotype Treatment Genotype*Treatment <i>Fv'/Fm</i> '	10 1 10	0.20292674 0.00073165 0.03881545	0.02029267 0.00073165 0.00388155	5.78 0.21 1.11	<.0001 0.6485 0.3603
Genotype Treatment Genotype*Treatment <i>Fv'/Fm'</i> Source	10 1 10 DF	0.20292674 0.00073165 0.03881545 Type III SS	0.02029267 0.00073165 0.00388155 Mean Square	5.78 0.21 1.11 F Value	<.0001 0.6485 0.3603 Pr > F
Genotype Treatment Genotype*Treatment <i>Fv'/Fm'</i> Source Genotype	10 1 10 DF 10	0.20292674 0.00073165 0.03881545 Type III SS 0.15260004	0.02029267 0.00073165 0.00388155 Mean Square 0.01526	5.78 0.21 1.11 F Value 18.3	<.0001 0.6485 0.3603 Pr > F <.0001
Genotype Treatment Genotype*Treatment <u>Fv'/Fm'</u> Source Genotype Treatment	10 1 10 DF 10 1	0.20292674 0.00073165 0.03881545 Type III SS 0.15260004 0.38823759	0.02029267 0.00073165 0.00388155 Mean Square 0.01526 0.38823759	5.78 0.21 1.11 F Value 18.3 465.49	<.0001 0.6485 0.3603 Pr > F <.0001 <.0001

Table 1c. Analysis of variance for effects of genotype and treatment (LL and HL) on gas-exchange parameters and components of photochemical and non-photochemical quenching.

Source	DF	Туре Ш SS	Mean Square	F Value	Pr > F
Genotype	10	8.27940223	0.82794022	26.43	<.0001
Treatment	1	7.27058433	7.27058433	232.06	<.0001
Genotype*Treatment	10	0.5065335	0.05065335	1.62	0.1068

Source	DF	Туре Ш SS	Mean Square	F Value	Pr > F
Genotype	10	0.05566935	0.00556694	4.86	<.0001
Treatment	1	0.02865255	0.02865255	25.01	<.0001
Genotype*Treatment	10	0.02556133	0.00255613	2.23	0.0189
qI					
Source	DF	Туре Ш SS	Mean Square	F Value	Pr > F
Genotype	10	0.0390058	0.00390058	5.48	<.0001
Treatment	1	0.04846508	0.04846508	68.1	<.0001
Genotype*Treatment	10	0.0091006	0.00091006	1.28	0.2475
qT					
Source	DF	Туре Ш SS	Mean Square	F Value	Pr > F
Genotype	10	0.02075992	0.00207599	6.43	<.0001
Treatment	1	0.0012175	0.0012175	3.77	0.054
Genotype*Treatment	10	0.00522974	0.00052297	1.62	0.106

	Period	A	G_s	F_{v}'/F_{m}'	F_{o}	F_v/F_m	NPQ	F_m	qE	qT	qI
Period	1	-0.18424 ^{ns}	-0.3255 ^{ns}	-0.73518**	-0.34427 ^{ns}	-0.01184 ^{ns}	0.4895 ^{ns}	-0.34318 ^{ns}	0.18781^{ns}	-0.25292 ^{ns}	-0.03305 ^{ns}
A	-0.18424 ^{ns}	1	0.91449***	0.66855**	-0.05218 ^{ns}	0.78373**	-0.77557**	0.24886^{ns}	-0.42351 ^{ns}	-0.13583 ^{ns}	0.74798^{**}
G_s	-0.3255 ^{ns}	0.91449***	1	0.65384^{*}	0.02668^{ns}	0.64053^{*}	-0.89794**	0.2743^{ns}	-0.43889^{ns}	-0.1152 ^{ns}	0.75076^{**}
F_{v}'/F_{m}'	-0.73518**	0.66855^{*}	0.65384^{*}	1	0.09073^{ns}	0.33412 ^{ns}	-0.71858**	0.21581^{ns}	-0.39723^{ns}	0.04947^{ns}	0.53288 ^{ns}
F_{o}	-0.34427 ^{ns}	-0.05218 ^{ns}	0.02668 ^{ns}	0.09073 ^{ns}	1	-0.01753 ^{ns}	-0.19731 ^{ns}	0.92043***	-0.32823 ^{ns}	0.37615 ^{ns}	0.12059 ^{ns}
F_v/F_m	-0.01184 ^{ns}	0.78373^{**}	0.64053*	0.33412 ^{ns}	-0.01753 ^{ns}	1	-0.50506 ^{ns}	0.37281 ^{ns}	-0.45395 ^{ns}	0.20493 ^{ns}	0.46745^{ns}
NPQ	0.4895 ^{ns}	-0.77557**	-0.89794**	-0.71858**	-0.19731 ^{ns}	-0.50506 ^{ns}	1	-0.38731 ^{ns}	0.6344*	-0.13819 ^{ns}	-0.7946**
F_m	-0.34318 ^{ns}	0.24886 ^{ns}	0.2743 ^{ns}	0.21581 ^{ns}	0.92043***	0.37281 ^{ns}	-0.38731 ^{ns}	1	-0.48925 ^{ns}	0.44896 ^{ns}	0.28628 ^{ns}
qE	0.18781 ^{ns}	-0.42351 ^{ns}	-0.43889 ^{ns}	-0.39723 ns	-0.32823 ^{ns}	-0.45395 ^{ns}	0.6344^{*}	-0.48925 ns	1	-0.7331**	-0.76113**
qT	-0.25292 ^{ns}	-0.13583 ^{ns}	-0.1152 ^{ns}	0.04947 ^{ns}	0.37615 ^{ns}	0.20493 ^{ns}	-0.13819 ^{ns}	0.44896 ^{ns}	-0.7331**	1	0.11686 ^{ns}
qI	-0.03305 ^{ns}	0.74798^{**}	0.75076^{**}	0.53288 ^{ns}	0.12059 ^{ns}	$0.46745^{\text{ ns}}$	-0.7946**	0.28628 ^{ns}	-0.76113**	0.11686 ^{ns}	1

Table 2. Phenotypic correlations between traits in *Arabidopsis* RIL population in LL light treatment. * P<0.05; ** P<0.01; *** P<0.001; ns not significant