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Abstract: 

The evolutionary origins of Homo sapiens and associated behavioural changes are 

increasingly seen as complex processes, involving multiple regions of Africa. In West 

Africa, Terminal Pleistocene/Holocene aged human fossils, demonstrating the late 

continuity of archaic morphological features in the region have been linked to models of 

surprisingly recent admixture processes between late archaic hominins and H. sapiens. 

However, the limited chronological resolution of the archaeological record has prevented 

evaluation of how these biological records relate to patterns of behaviour. Here, we provide 

a preliminary report of the first excavated and dated Stone Age site in northern Senegal 

which features the youngest Middle Stone Age (MSA) technology yet documented in 

Africa.  Ndiayène Pendao features classic MSA core axes, basally thinned flakes, Levallois 

points and denticulates mostly made from chert. Similar technological features characterise 

several, larger surface sites in the vicinity.  From this, it is postulated that populations using 

‘anachronistic’ technologies in the Lower Senegal Valley around the transition to the 

Holocene may have been widespread, in sharp contrast to other areas of Senegal and West 

Africa. The chronology and technology of Ndiayène Pendao provides the first cultural 

evidence to support a complex evolutionary history in West Africa. This is consistent with a 

persistently high degree of Pleistocene population substructure in Africa and the spatially 

and temporally complex character of behavioural and biological evolution. 
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1. Introduction 

Evolutionary and palaeoenvironmental processes in the West African Pleistocene are 

extremely poorly understood, limiting assessments of the pan-African demographic 

complexity now invoked in models of the origin of Homo sapiens (Gunz et al., 2009; Scerri 

et al., 2014 ; Veeramah and Hammer, 2014; Groucutt et al., 2015). This notwithstanding, 

genetic patterns consistent with late H. sapiens and African archaic admixture in West 

Africa and the regional persistence of ‘archaic’ morphological features into the Holocene, 
indicate that the transition to ‘anatomical modernity’ was complex and long-lasting in West 

Africa (Hammer et al., 2011; Harvati et al., 2011; Mendez et al., 2013).  

The potential for material culture to shed light on these complex evolutionary patterns in 

West African populations is significant. Material culture is both abundant and a product of 

learned traditions as well as other factors (e.g. environmental influences) and therefore 

subject to selective processes affected by the structure and evolutionary dynamics of the 

population producing it. However, little is known about the Pleistocene archaeology of West 

Africa. In view of this, a new programme of fieldwork was initiated to map patterns of 

cultural variability in the Senegal region of West Africa, commencing with the Lower 

Senegal region (Scerri et al., 2016).  

The Lower Senegal River straddles the boundary between the present-day xeric Sahelian 

savannah to the north and more wooded western Sudanian savannah to the south and links 

today’s arid northwest African coast to the tropical forest interior. Early research in the 

Lower Senegal Valley established a relative framework of geomorphological activity as 

well as the presence of Middle Stone Age (MSA) sites (Michel 1973). Here, we report the 

preliminary results of archaeological, geomorphological and chronometric analyses from 

Ndiayene Pendao, the first directly dated excavated Pleistocene archaeological site in the 

Lower Senegal Valley. 

 

2. Ndiayène Pendao  
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The Ndiayène Pendao quarry (N16° 29’ 03.6”, W15° 02’ 54.4”) is located near Saint-Louis, 

northern Senegal, and is situated 10 km south of the modern course of the Senegal River, 

which forms the border with Mauritania (Figures 1 and 2) . The site is located at the edge of 

the Ferlo, the low-relief Neogene sandstone plateau (>10 above mean sea level), not far 

from the Walo, which comprises the modern alluvial plains (<10 m above mean sea level) 

(Figure 1b). Ferralitic alteration of the Neogene sandstones throughout the Senegal basin 

occurred during the Pliocene, leading to the widespread appearance of iron-crust formations 

in the Senegal Valley, structured as three discrete terrace formations (Michel 1973; Dubosc 

and Camara 1986; Conrad and Lappartient 1987; Lang et al. 1990). Following the cessation 

of weathering in the Early Quaternary, iron crust deposits began to be eroded, and 

dismantled iron crust deposits have become reworked as sediments (Michel 1973; Scerri et 

al. 2016) (Figure 2).  

Terminal Pleistocene and Holocene alluvial and aeolian deposits cover much of the 

landscape in the lower course of the Senegal River, with the former including dismantled 

iron crust products mixed with fluvial sediments and quartz gravels. Ndiayène Pendao, 

however, marks a rare example of an outcrop of in situ iron crust in the lower Senegal 

valley, corresponding to the “basse terrace” identified by Michel (1973). This outcrop 

comprises pale reddish purple ferricrete deposit, displaying bleaching zones, that is eroding 

as gravels, boulders and large blocks. This is overlain by a further in situ indurated, dark 

purple iron crust horizon, set back slightly from the existing erosional front.  

These in situ horizons are overlain by dismantled ferricrete nodules, which predominately 

appear cemented within an iron rich matrix as a result of Late Pleistocene pedogenic 

processes. Discrete pockets of calcareous clays are observed within the cemented horizon of 

ferricrete nodules closer to the course of the river at Ndiayene Pendao, suggesting that the 

iron crust outcrop may have supported pools of water away from the main channel during 

humid phases of the Late Pleistocene. Less cemented deposits of ferricrete nodules comprise 

the upper surface of the iron crust outcrop, formed of a thicker deposit of larger nodules 

(<10mm) grading into the cemented deposits below, and an upper horizon of fine nodules 

(<5mm).  These deposits have been repeatedly associated with MSA artefacts both in the 

past (Bessac 1955; Michel 1973; Camara and Duboscq 1986) and through our own research 

(Scerri et al. 2016). A minimal aeolian sand caps the iron crust outcrop at Ndiayene Pendao, 

with more varied thickness evident along the ~4.5km iron crust outcrop.  

Our study site occurs in a slightly raised position in the immediate landscape, accentuated 

when recent aeolian deposits are ignored. The site’s topographic position alongside the 
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absence of mixing with other fluvial sediments and clasts, as observed elsewhere in the 

lower Senegal valley, makes the introduction of dismantled iron crust products at Ndiayene 

Pendao through fluvial processes an unlikely explanation of the formation history at the site. 

Rather, we suggest that the iron crust outcrop has been more gradually deflated through 

sheetwash episodes, resulting in the gradual creep of ferricrete nodules across the landscape. 
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Figure 1: Top (a): Map illustrating the location of Ndiayène Pendao (blue star) in the Lower Senegal Valley in 

relation to the West African fluvial network, modern precipitation (isohyets in mm/year) and patterns of 

modern ecology (WWF Ecozones following Olson et al., 2001); Middle (b): Digital elevation map showing 

the position of Ndiayène Pendao in the Lower Senegal Valley and similar MSA –type sites (marked as red 

boxes, see Scerri et al., 2016).  

 

Figure 2: Satellite images of Ndiayene Pendao illustrating the presence of a distinct iron crust outcrop, visible 

as a NW-SE aligned dark reddish brown linear exposure, partially covered by SW-NE aligned linear dune 

systems (Photos © Google 2016). The study site is marked by the star in the lower picture, with a black line 

identifying the survey transect shown in the schematic stratigraphy shown in Figure 3. 
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Figure 3: Schematic diagram of sediment deposits at Ndiayène Pendao identified on transects between the 

modern alluvial plains of the Senegal River and local topographic highpoint provided by sand dune cover, 

illustrating the relative location of dated sequences with respect to other sediment horizons (not to scale). 

Lateral scale ~5km, vertical scale ~50m. Black boxes represent excavated section samples for luminescence 

dating with luminescence sample codes shown.  

Through systematic survey of exposed sediment sections and quarry spoil, spatially 

restricted concentrations of lithic artefacts were identified (see below). Survey across the 

rest of the quarry revealed no further artefacts and local workers maintained that only 

discrete concentrations of chert pieces occurred. We subsequently conducted shallow 

excavations (ca. 0.5m depth) at Ndiayène Pendao, targeting three concentrations of stone 

tool find spots (see below). The common sediment profile at the excavation sites comprised: 

(a) a pseudoconglomeratic ferricrete nodular facies, with decreasing nodular bridging 

upwards in the sediment profile; overlain by (b) a purple-brown pseudo-pisolitic deposit of 

indurated ferricrete nodules with concentric rinds, which are the reworked products of 

dismantled iron crust horizons, supporting a coarse sandy matrix with a thin upper horizon 

(~15cm) of small nodules (<5mm) overlying a thicker deposit (~30cm) of coarser nodules 

(<10 mm); capped with (c) friable aeolian sand deposits. 

In all cases, excavations located lithic artefacts within the upper levels (0.05-0.2 m) of the 

pisolitic deposits, and no evidence for archaeological finds deflated on top of the iron crust 

surface were observed across the landscape, indicating that all artefacts recovered share a 

common stratigraphic provenance. All lithic artefacts recovered through excavation were 
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significantly larger than the ferricrete nodules, most appearing in fresh condition with no 

indication of significant weathering or rolling. The lack of comparable size sorting between 

ferricrete nodules and lithic artefacts further supports interpretation that the dismantled iron 

crust products have not been introduced to the site by significant fluvial activity, favouring 

only limited mobility within the immediate landscape. Rather, we suggest that the lithic 

artefacts have undergone minimal disturbance from their place of discard, and became 

buried by ferricrete nodules through repeated, low energy sheetwash events that had limited 

capacity to mobilise the larger lithic artefacts but led to a gradual creeping of the smaller 

nodules. While this could have resulted in winnowing out of flaking debris of a similar size 

to the ferricrete nodules (i.e. <10mm), it is unlikely to have significantly mobilised larger 

artefacts that preserve more diagnostic technological traces. Such episodes of instability of 

the surface of dismanted iron crust deposits are likely to have occurred during periods of 

heightened climatic flux, when sand sheet or dune cover was unable to stabilise on the 

surface and highly seasonal precipitation enabled mobilisation of nodular deposits.  

 

3. Lithic Technology 

166 lithic artefacts were recovered from Ndiayene Pendao. All the artefacts came from a 

buried context. However, many artefacts had been recently dug out by quarrying activities, 

and were collected from fresh spoil heaps by the edges of shallow hand-dug quarry pits. 

Survey of the quarry area showed that artefacts were only present in a spatially restricted 

area of ~15m x ~12m in a topographic high point, most of which had been quarried. 

Excavation in three test trenches extending quarry pits at these locations led to the 

discovery of 32 buried lithic artefacts (see Tables 1 and 2). To evaluate whether artefacts 

whose excavation we supervised and those excavated through quarrying activities comprise 

part of the same technological system, we performed Multidimensional Scaling with the 

Gower metric using a suite of techno-morphological attributes (Table S1).The results, which 

can be seen in Figure 4, show that there are no differences between the groups across a 

range of techno-morphological attributes, supporting our analysis of them as a single 

assemblage recovered from the same buried deposits.   
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Figure 4: Multidimensional scaling using the Gower metric of whole surface (marked by black circles) and 

buried artefacts (marked by pink circles) showing no separation between the groups. See Table S1 for 

attributes measured. 

The artefacts are mostly made from chert (54%), grading into silicified limestone (38%). A 

small number of artefacts were made from quartzite (8%). The source of the raw material 

was no identified. However, the typically small size of the artefacts and the presence of 

rounded cortex suggests that good quality chert river cobbles were being sourced for 

flaking. Of the lithics recovered, 9% were small debitage flakes (<2cm), including chips 

and chunks, and 34% of the assemblage was broken in some way (e.g., core fragments, 

distal flake fragments). Of the complete flakes, the average length was 4cm, with a median 

weight of 11g, reflecting the small and highly reduced nature of assemblage (Table 1 & 2).  

Variable Mean Standard deviation 

EPA (degrees) 68.6 13.8 

Length (cm) 4.2 16.3 

Width (cm) 3.3 12.1 

Thickness (cm) 1.1 5.9 

Weight (g) 23.4 (median)* 51 

Platform Width (cm) 2.3 12.9 

Platform Thickness (cm) 0.9 5.8 

Cortex (%) 8 19.2 

Table 1: Summary statistics of basic flake/tool variables.*Median weight given in text due to the highly 

skewed (right tailed) shape of the data and high standard deviation. 

 Trench 1 Trench 2 Trench 3 Quarry Spoil 

Core    24 
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Levallois Core  1  10 

Core Tool    2 

Flake 4 10 14 84 

Levallois Flake   2 4 

Retouched Flake    3 

Retouched 

Levallois Flake 

  1  

Retouched Point    1 

Chunk/Fragment    6 

Table 2: Typological description of assemblage with counts and provenance information. 

In terms of shape, the assemblage is dominated by small, largely oval shaped flakes with 

very little cortex (Figure 5). There is no significant difference in the amount of cortex on 

core management elements and flakes (p=0.001), and the core management elements, 

although larger than the flakes, overlap in size (Figure 5). Together with the fact that larger 

flakes were re-used as cores, these features indicate that, while flaking occurred at the site, 

primary decortification took place elsewhere and the site represents a secondary and 

perhaps final stage of flaking. The location of the site at a topographic high point and the 

mixture of small elements, including chips and chunks, representing a post-decortification 

reduction sequence robustly indicates that the assemblage is broadly in situ.  

 

Figure 5: Flake elongation (left); Weight in grams by core management elements and flakes (right). 

The Ndiayène Pendao assemblage displays a MSA (typically ~300-30 ka, see McBrearty 

and Brooks, 2000) technological structure. Technologically, Ndiayène Pendao primarily 

features Levallois reduction methods (Figure 6, d-e, Figure 7), alongside the production of 

simple blades from single and multiplatform cores. Levallois methods appear to be 

employed on chert for the production of points (unidirectional convergent methods) and 

flakes (centripetal preferential). Levallois products feature finely faceted platforms with an 

average of seven facets. Non-Levallois chert flakes were on average more laminar, with 
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plain platforms and typically unidirectional scar patterns. A few large limestone and 

quartzite flakes also form part of the assemblage. These large flakes have all been 

subsequently used as cores. Together with the small size of the cores, these ‘flaked flakes’ 
indicate a high degree of reductionintensity. As discussed above, the presence of flake 

debitage, core management flakes (e.g., débordant flakes, core tablets) and a hammerstone 

indicates that flaking took place on site. The small number of unbroken Levallois products 

(n=2) suggests that these artefacts were taken away from the site.  

 

Figure 6. Selected lithics from Ndiayéne Pendao: a. Core axe; b. Denticulate; c. Basally 

thinned flake; d-e. Levallois cores. 

 

Retouch was either regular or denticulated, and bases were sometimes modified through 

bifacial thinning (Figure 6, b, c). Two core axes (following the definition of Clark and 

Kleindienst, 2001) were also discovered (Figure 6, a), together with a thick bifacial thinning 
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flake made out of the same cherty-limestone material. The assemblage was indistinguishable 

to other surface assemblages collected in northern Senegal during the same field season 

(Scerri et al., 2016). 

 

 

Figure 7: Examples of excavated lithics from Ndiayéne Pendao. Left: denticulated Levallois 

flake found buried in Trench 3; Right: Recurrent centripetal Levallois core found buried in 

Trench 2. 

 

4. Chronology  

Optically stimulated luminescence (OSL) samples were recovered from the excavated 

sequence and measured using standard procedures (See SI for details). Shfd15009 was 

sampled from a thick sand sheet horizon at a location lacking artefacts, but which was better 

suited to OSL dating than the predominately thin aeolian deposits (<10 cm) above the 

lithic-bearing layer located ~5 m away. Shfd15010 and Shfd15011 were both sampled from 

Trench 3 (Figure 8), which yielded the largest sample of artefacts. The majority of artefacts 

at this site were recovered from the lower, larger deposit of iron crust nodules (nodule 

diameter<10 mm). Shfd 15010 was sampled from this horizon in direct association with a 

number of complete, fresh artefacts, and underlying the majority of artefacts at the site to 

provide a maximum age bracket. Shfd15011 was sampled from the interface between the 

lower deposit and a thin (8 cm) layer of finer iron crust nodules (nodule diameter <5 mm), 

in direct association with the uppermost artefacts. The location of this sample at the 

interface between two units and less than 15 cm from the modern ground surface offer sub-
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optimal conditions for reliable dose rate calculations for OSL dating,  but offered an 

opportunity to provide a minimum age bracket for the artefact assemblages.  

OSL measurement at the single aliquot level was applied to coarse quartz grains extracted 

from the three samples (Table 1). Dose rates are based on elemental concentrates 

determined by inductively coupled plasma - mass spectrometry and atomic emission 

spectroscopy (ICP-MS, ICPAES) both from sampled and adjacent sediments, which would 

have contributed dose. While the ratio or K, U and Th diverge from average crustal values 

there is no clear evidence that elemental mobility has taken place.  The ratios diverge both 

in the unconsolidated sand sheet above and in the indurated sediment below the ferruginous 

nodules.  It has therefore been assumed that present day values have remained constant 

during the time elapsed since burial. The presence of ferruginous nodules was considered in 

terms of dose rate homogeneity especially in the absence of field based gamma 

spectroscopy.  Beta dose rates were based on ICP-MS and ICP-AES analysis of the sandy 

sediment contained within the OSL sample and therefore safely assumed to have provided 

the beta dose to the sample.  Gamma dose rates were based on ICP-MS and ICP-AES 

analysis of bulk sediments surrounding the OSL samples (~ 1 kg) as well as from bulk 

sediment from adjacent stratigraphic units. In this way the full sediment content including 

nodules was analysed. Contributions of gamma dose rates from adjacent units were 

modelled as a function of distance to OSL sample and to unit boundaries using data from 

Aitken (1985). This reduced the dose-rates to samples Shfd15010 and Shfd15011 by 5% 

and 2% respectively. 

The data show that all samples were reset prior to burial (See SI and figures and tables 

therein). The sand sheet covering at the site has an age of 1.34±0.06 ka (Shfd15009), 

suggesting recent mobility of sand sheet deposits in the region. Shfd15011 returned an age 

of 22.7±1.2 ka and Shfd15010 returned an age of 11.6±0.51 ka (Shfd15010). There is 

therefore an apparent stratigraphic inversion of these two ages. We consider the age of 

Shfd15010 to be more consistent with the depositional setting and thus a more reliable 

representation of the age of the artifacts. This is because the sample was collected from a 

thicker single sediment unit, at greater depth, so should have  been less susceptible to post-

depositional disturbance or alteration of the dose rate. We interpret the results from 

Shfd15010 as being consistent with the burial of lithic artefacts around the 

Pleistocene/Holocene transition, at ~11.6 ka. The location of the site at a topographic high-

point in sediments formed by low energy creeping of dismantled iron crust deposits 

alongside the assemblage size, composition and fresh appearance are consistent with 
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contemporaneous deposition of artefacts and the dated sediments without significant 

reworking.   

 

Figure 8: Stratigraphic log showing positions of the OSL samples Shfd5009, Shfd15010 and Shfd15011. The 

latter two samples were recovered from dismantled iron crust nodules directly associated with MSA artefacts 

in Trench 3. X axis (top) indicates sediment size, Sa=Sand. Ages are given in ka.  

Table 1: Summary of OSL results. a Overdispersion of De replicate data. b reliability questioned  see text. All 

OSL ages are presented in Ka from the time of measurement (2015) and include both systematic and 

unsystematic uncertainties. 

Lab Code Depth (cm) De (Gy) OD (%) a  Dose rate  

(ȝGy/a-1  

 

Age (ka) 

Shfd15009  75 1.47 ± 0.04  17  1093 ± 36  1.34 ± 0.06  

Shfd15011  15 57.8 ± 1.7  23  2544 ± 105  22.7 ± 1.2b  

Shfd15010  28 30.1±  0.39  45  2590 ± 108  11.6 ± 0.51  

 

 

5. Discussion 
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The young timeframe for artefact deposition reported in this paper fits neatly with broader 

schemes of geomorphological evolution throughout the Senegal Valley (e.g. Michel 1973). 

The dates associated with the artefacts also give the first benchmark for Pleistocene 

sediment sequences in the Lower Senegal Valley and constrain similar assemblages found 

elsewhere in similar stratigraphic contexts in the region. However, the greatest significance 

of the results lies in the fact that the timeframe and MSA character of Ndiayène Pendao 

indicates the late persistence of technology long replaced in every other studied region of 

Africa. Other, contemporary lithic assemblages from the Falémé (a major tributary of the 

Senegal River) Valley at the site of Fatandi V are Later Stone Age (LSA) in character, 

featuring backed pieces, including microliths and segments, and points (Lebrun et al., 2016). 

In Cameroon, minimum radiocarbon ages of 15.3ka were reported in association with 

centripetal preferential Levallois artefacts (MacDonald, 1997).  Elsewhere in both the arid 

Sahelian and forested regions of West Africa, the few dated sites such as Ounjougou, Birimi 

and Bilma document the latest MSA at between ~40-30ka (Maley et al., 1971; Hawkins et 

al., 1996, Quickert et al., 2003; Soriano et al., 2010). However, since archaeological 

research in these regions is in its infancy further young MSA dates are anticipated. At the 

site of Goda Buticha in East Africa, a mid-Holocene (7.8–4.7 ka cal BP) assemblage is 

described as LSA, but with some MSA-like elements (primarily the use of the Levallois 

reduction method and the presence of retouched points) (Pleurdeau et al., 2014). While 

these MSA elements may reflect a degree of continuity, given the long hiatus at the site of 

~24ka between the MSA and the LSA, it seems more likely that the more anachronistic 

elements were reinvented. In northeast Africa, a classic MSA assemblage documented at 

~15ka in the Nile Valley most resembles the situation at Ndiayene Pendao (OsypiĔski & 

OsypiĔska, 2015), indicating that cultural diversity in Africa was complex, persistent and 

time-transgressive, perhaps particularly so in forested regions (Mercader, 2002).  

The biological record presents parallels to the cultural record we document in West Africa. 

The Iwo Eleru calvaria (Harvati et al., 2011; Stojanowski, 2013), which is the only known 

West African human fossil contemporary to Ndiayène Pendao, preserves archaic features 

and demonstrates a distinct lack of similarities with contemporary Saharan, and indeed any 

other African populations at the Pleistocene/Holocene transition. The presence of such 

archaic features supports genetic models suggesting unexpectedly late admixture between H. 

sapiens and archaic hominins at ~35 ka in the region (Hammer et al., 2011; Mendez et al., 

2013). These data have been argued to demonstrate a strong degree of population 
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subdivision, in which West African groups may have remained relatively isolated from 

others living elsewhere in Africa (Stojanowski, 2013). 

While the precise mechanisms of this apparent cultural and biological isolation are currently 

unclear, West and Central Africa form a discrete evolutionary realm, protected from the 

extreme aridity of North Africa and distinct from the grasslands and savannahs of southern 

and eastern Africa (Mercader, 2002). During the African Humid Period (~11-5ka), it is 

likely that Ndiayène Pendao was well within this forested ecozone (Drake et al., 2011; 

Shanahan et al., 2015). The Senegal and Gambia fluvial systems are also notably the 

westernmost and most remote river basins in Africa. Of the West African fluvial networks, 

only the Senegal and the Niger reach today’s arid edges of the Sahara, allowing for a 

complex patchwork of biogeographic zones and cultural influences. It is possible that both 

ecological diversity and isolation by distance played a role in the persistence of 

‘anachronistic technology’ in certain parts of Africa. However, such hypotheses have 
neither been explored nor tested and represent a future stage of research.  

At present, the research presented here at least demonstrates for the first time that biological 

and cultural records in West Africa during the Pleistocene-Holocene transition are 

complementary, adding to a growing body of evidence demonstrating that Africa was until 

recently, more culturally and biologically diverse than has typically been considered (see 

also Crevecoeur et al., 2016).  Future studies of behavioural diversity across this region will 

determine whether the patterns of spatial heterogeneity identified above were longstanding 

and the result of adaptation to distinct environmental circumstances or whether they reflect 

greater levels of behavioural flux than previously anticipated in West Africa. In the 

meantime, differences in the tempo of innovation and cultural change in West Africa, 

compared with the rest of the African continent at this time, in particular demonstrate the 

depth and complexity of population structure in this region. More broadly, the evidence 

affirms that the documentation of environmental, evolutionary and cultural processes across 

all regions of Africa, many of which remain very poorly understood, is critical for 

unravelling human origins.  
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