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Latent Topic Text Representation Learning on

Statistical Manifolds
Bingbing Jiang, Zhengyu Li, Huanhuan Chen, Senior Member, IEEE, and Anthony G. Cohn

Abstract—The explosive growth of text data requires effective
methods to represent and classify these texts. Many text learn-
ing methods have been proposed, like statistics-based methods,
semantic similarity methods and deep learning methods. The
statistics-based methods focus on comparing the sub-structure
of text, which ignores the semantic similarity between different
words. Semantic similarity methods learn a text representation
by training word embedding and representing text as the average
vector of all words. However, these methods cannot capture
the topic diversity of words and texts clearly. Recently, deep
learning methods such as CNNs and RNNs have been studied.
However, the vanishing gradient problem and time complexity
for parameter selection limit their applications. In this paper,
we propose a novel and efficient text learning framework,
named Latent Topic Text Representation Learning (LTTR). Our
method aims to provide an effective text representation and
text measurement with latent topics. With the assumption that
words on the same topic follow a Gaussian distribution, texts are
represented as a mixture of topics, i.e., a Gaussian mixture model.
Our framework is able to effectively measure text distance to per-
form text categorization tasks by leveraging statistical manifolds.
Experimental results on text representation and classification,
and topic coherence demonstrate the effectiveness of the proposed
method.

Index Terms—Text Representation, Text Classification, Dis-
tance Metric, Statistical Manifold, Gaussian Mixture Model.

I. INTRODUCTION

The problem of text categorization plays an important

role in information retrieval, data mining, sentiment analysis,

etc. Existing text classification methods can be divided into

three categories: statistics-based methods, semantic similarity

methods, and deep learning methods. Statistics-based methods,

the traditional methods for text learning, include string kernels

[1], term frequency-inverse document frequency (TF-IDF) [2]

and naive Bayesian [3]. A string kernel [1] is a well-known

kernel method for text classification, which focuses on similar

subsequences that appear among multiple texts. The TF-IDF

method organizes text into a vector space, which is usually

based on a bag-of-words (BOW) model. Both approaches

conform to the hypothesis that similar texts should have many
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words in common, but ignore the semantics of texts [4].

For instance, although the two sentences, ‘Obama invites the

champion team to the White House’ and ‘The 44th President

has dinner with the winning players in his home’, have no

word in common, they convey almost the same semantic

information.

Recently, a number of efforts have been made to learn

a text representation based on semantic information. In [5],

Mikolov et al. proposed the word2vec model, which is based

on a distributional hypothesis and implemented by neural

network language models. Le and Mikolov [6] proposed

paragraph vector models, which incorporate paragraph matrix

information to the input layer of continuous bag-of-words

(CBOW) and Skip-gram models. A widely adopted semantic

model is to build a text vector by simply averaging all word

embeddings in this text. A word embedding is a mapping from

words to vectors of real numbers, whose relative similarities

correlate with semantic similarity [7]. Topic models are also

effective semantic similarity methods for text learning [8].

Topic models, such as probabilistic latent semantic analysis

(PLSA) [9], latent Dirichlet allocation (LDA) [10] and Gaus-

sian LDA [11], [12], aim to capture the distribution of topics

in the text. LDA groups similar words into similar topics and

represents documents over these topics. The underlying idea

behind LDA as a probabilistic language modeling method

is that a topic is a distribution of words and a text is a

distribution of topics. LDA assumes the distribution of topics

in texts and words in topics both follow Dirichlet distributions.

By contrast, Gaussian LDA assumes words in topics follow

Gaussian distributions. However, these methods fail to measure

the topic diversity of words and texts clearly. Although Liu et

al. [7] proposed Topical Word Embeddings (TWE), in which

each word has different embeddings in different topics, it only

considers the topic diversity of words.

In the area of deep learning, the combination of the pre-

trained word embedding and neural networks has also attracted

muchs attention in recent years. Examples are recursive neural

networks (RecursiveNNs) [13], [14], recurrent neural networks

(RecurrentNN) [15], [16] and convolutional neural networks

(CNNs) [17]. However, these neural network methods have

some limitations. For example, a RecursiveNN discovers the

semantics of a text by constructing a textual tree (e.g., RNTN

[18]), which has at least a computational complexity of at least

O(n2), where n denotes the length of the text). Moreover,

the performance of a RecursiveNN also heavily depends on

the structure of the textual tree, and it is hard to use the

tree structure to measure the difference between texts [15].

RecurrentNNs and CNNs both regard text as a sequence of
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Fig. 1. An illustration of our method: (1) Given a specific text, a Gaussian mixture model is used to represent text as a probability distribution p(w|textt, θt).
(2) Each text probability distribution is mapped as a point on a statistical manifold. (3) Following the framework of statistical manifolds, probability distributions
are mapped into a parameter model space. (4) Learning text distance and applying it to distance-based classifiers to classify texts.

words. A RecurrentNN is a biased model and suffers from

the vanishing gradient problem, which means that later words

have greater impact than earlier ones. However, in practice,

the key information may be distributed anywhere in a text

rather than at the end. CNNs use a convolutional kernel, such

as a sliding window with a pooling layer, to tackle the bias

problem. However, there is a tension between performance and

computational time: if a relatively small size of the sliding

window is selected, the training will be accelerated but some

critical information of a text may be missed, which is not

good for the effective representation of a text, whereas a large

sliding window size will enlarge the parametric space, which

dramatically increases the training time.

Motivated by recent work, this paper presents a novel and

efficient text learning framework to avoid the aforementioned

issues. Our method aims to provide an effective text represen-

tation based on word embedding and then learns a text distance

measurement in the framework of a statistical manifold. The

learning process of our framework is illustrated in Fig. 1.

Firstly, word2vec [5] is employed to learn word vectors. Given

the assumption that word vectors with the same topic follow a

Gaussian distribution, then a Gaussian mixture model is used

to describe the distributions of all words, in which each Gaus-

sian represents a potential topic. In our method, a Gaussian

mixture model can represent a text with different topics. This

model not only preserves the semantic information from word

embedding but also builds a novel text representation from

the perspective of text generation (i.e., the text is generated

by several topics) [10]. Secondly, following the framework

of the statistical manifold, each probability distribution can

be viewed as a point on the statistical manifold. Based on

information geometry [19], the distance between probability

distributions is mapped into a metric in the parametric space

of a statistical manifold, which can be applied to classify

texts. The main contributions of this paper are summarized

as follows:

1) We present a novel text learning framework. In this

framework, a text is represented as a mixture of topics,

i.e., a Gaussian mixture model, which can effectively

preserve the diversity of topic distribution.

2) By combining word embedding and topic models, our

method can achieve better performance for text represen-

tation and categorization, and topic coherence in com-

parison with other state-of-the-art text learning methods.

3) From different measure theories, we discuss and analyse

distance metrics between probability distributions. To ef-

fectively quantify the distance between texts, we propose

an efficient strategy based on the statistical manifold

that produces a similar distance metric to that defined in

functional space, confirming the validity of our method.

The rest of this paper is organized as follows. Section II

introduces the basic idea of word2vec and statistical man-

ifold learning. Section III presents the proposed method in

detail, including the text representation based on the Gaussian

mixture model and distance metric learning in a statistical

manifold. Section IV presents the experimental results and

analysis. Finally, a conclusion is drawn in Section V.

II. BACKGROUND

A. word2vec

Word2vec1 learns distributed word representations by using

neural network language models. The basic idea of word2vec

is the distributional hypothesis [20], which states that words

from the same context will have similar word representations.

It constructs a log-linear classification network by a simple

strategy for mapping words to real-number vectors [21]. Two

models are proposed in word2vec: the CBOW model [5] and

the Skip-gram model. The CBOW model is designed to predict

the target word by context words, while the Skip-gram model

is designed to predict context words from the target word.

For example, the CBOW model predicts each target

word by context words in a sliding window. Given a tar-

get word wt, the sliding window is a sequence Wt =

1https://code.google.com/p/word2vec/
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{wt−j , wt−j+1, . . . , wt, wt+1, . . . , wt+j}. The objective of

CBOW is to maximize the log-likelihood probability:

L =
∑

wt∈corpus

log p(wt|context(wt)), (1)

where context(wt) = Wt \ {wt}. And p(wt|context(wt) can

be defined as immediately below via softmax functions:

exp(v
′

wt

T ∑

wt∈context(wt)
vwt

)
∑

w∈corpus exp(v
′

w

∑

wt∈context(w) vwt
)
, (2)

where vwt
and v

′

wt
denote the “input” and “output” vector

representations of the word wt.

Word embeddings trained by word2vec also have linguistic

regularity [22]. The assumption is that words belonging to the

same topic have similar word vectors and this is also the basic

idea of text representation in our proposed method.

B. Manifold learning

Manifold learning assumes that low-dimensional data is of-

ten embedded in a high-dimensional space [23]. The main goal

of manifold learning is to recover the data’s low-dimensional

manifold structure. Because of this, manifold learning has been

widely used to reduce dimensionality for nonlinear structure

data [24]–[30].

Theoretically, a Riemannian manifold (M, g) is a differen-

tiable manifold M equipped with Riemannian metric g. At

each point p ∈ M , gp is a positive-definite quadratic form on

the tangent space of each point p. Thus we obtain the definition

of length, area, or volume on a Riemannian manifold. For

example, if C : [a, b] → M is a continuously differentiable

curve in the Riemannian manifold M , and the parameterized

equation is C(t), then the curve’s length is defined as:

L(C) =

∫ b

a

(

∑

i,j

gij
dxi

dt

dxj

dt

)
1

2

dt, (3)

where dxi

dt is the i-th component of a tangent vector at point

x = (x(1), . . . , x(D)). Moreover, with this definition of length,

the distance between two points x, y on M is defined as:

d(x, y) = inf{L(C)}, C ∈ C, (4)

where C is the set of continuously differentiable curves that

join x and y. Eq. (4) defines the distance between two

points as the length of the shortest curve on the manifold.

If the probability distributions associated with the points of

a Riemannian manifold are replaced with statistical models,

then a statistical manifold will be formed.

III. TEXT REPRESENTATION LEARNING WITH STATISTICAL

MANIFOLDS

In this section, our method will be introduced in three parts.

Firstly, a Gaussian mixture model is used to represent text

as a probability distribution. Then, we discuss and analyze

the distance metric between probability distributions, and then

propose to measure text distance under the statistical manifold

learning framework. Our approach is illustrated in Fig. 1.

A. Text representation based on Gaussian mixture model

Word2vec can learn word vectors for words from a large

corpus by using the CBOW or the Skip-gram. Our method

improves on such word embeddings to a text representation. It

is based on the view that text is generated from a combination

of topics. This idea is inspired by topic models [9], [10].

Firstly, each word is considered as a point in word space,

and it distributes in the word space according to its potential

topics. For example, ‘Illinois’ and ‘Chicago’, ‘stock’ and ‘tax’,

are close in word space due to containing the same topic,

which means that the words in the same topic have similar

word vectors and might be relatively close in word space.

Therefore, we assume that word vectors in the same topic

follow a Gaussian distribution. Building on this assumption,

a Gaussian mixture model is used to describe the distribution

of all words. Given all word vectors V = {w1, . . . , wN}, the

mixture density is:

p(w) =

K
∑

i=1

πiN (w|µi,Σi), (5)

where πi is the weight coefficient of each component, K
is the number of topics. In our method, each component

represents a potential topic but it is not required to know which

topic each component expresses. N (w|µi,Σi) is a Gaussian

distribution with mean µi and variance matrix Σi. The i-th
topic is the most probable topic that word w belongs to, when

πiN (w|µi,Σi) is maximum among all Gaussian components.

It can be used to label each word by its most likely topic.

In our method, each word plays a different role in different

topics, preserving the topic diversity from words and texts.

The probability that the word w belongs to the i-th topic is:

p(topici|w) =
πiN (w|µi,Σi)

∑K
i=1 πiN (w|µi,Σi)

. (6)

We estimate the parameters µi, Σi and πi of the Gaussian

mixture model using the Expectation-Maximization (EM) al-

gorithm. The estimation process is presented as follows [31]:

(1) Initialize the weight coefficients πi, means µi, and

covariances Σi (i = 1, 2, · · · ,K).
(2) E-step: Use current parameter values, evaluate the

responsibilities γji that the i-th Gaussian component takes for
representing the j-th word vector wj :

γji =
πiN (wj |µi,Σi)

∑K

i=1
πiN (wj |µi,Σi)

, i = 1, 2, · · · ,K; j = 1, 2, · · · , N.

(3) M -step: Re-estimate the parameters using the current

responsibilities:

πi =

∑N
j=1 γji

N
; µi =

∑N
j=1 γjiwj
∑N

j=1 γji
, i = 1, 2, · · · ,K

Σi =

∑N
j=1 γji(wj − µj)(wj − µj)

T

∑N
j=1 γji

, i = 1, 2, · · · ,K.
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(4) Evaluate the log likelihood with respect to the parame-

ters:

lnp(V |µ,Σ, π) =
N
∑

j=1

ln

{ K
∑

i=1

πiN (wj |µi,Σi)

}

. (7)

Check for convergence of the parameter πi. If the convergence

criterion is not satisfied, repeat steps (2) and (3).

Furthermore, a text can be viewed as a subspace of word

space: words in a text are a recombination of all words

according to the topics. Therefore, for a specific text textt
in the text set T = {text1, . . . , textn}, it can be represented

as:

p(w|textt, θt) =
K
∑

i=1

θ
(i)
t N (w|µi,Σi), t = 1, 2, . . . , n; (8)

where θt is a weight coefficient vector that reflects the

proportion of different topics in the text. It can be ob-

served that each Gaussian component is the same as Eq.

(5), although the weight coefficient has changed due to the

recombination of words. Each coefficient reflects the propor-

tion of the corresponding component (or potential topic) in

the text. According to Eq. (6), the contribution from word

w to topici is p(topici|w). Thus, the weight of topici in

the text is
∑

w∈textt
πiN (w|µi,Σi). To ensure the condition

∑K
i=1 θ

(i)
t = 1, the weight coefficient of each Gaussian

component can be calculated by:

θ
(i)
t =

∑

w∈textt
πiN (w|µi,Σi)

∑K
i=1

∑

w∈textt
πiN (w|µi,Σi)

, i = 1, 2, . . . ,K. (9)

For example, if we use Eq. (8) to represent a paper about

machine learning, the weight coefficient of the topic ‘biology’

may be very close to zero, while the topic ‘clustering’ may

have a larger weight coefficient.

As stated above, we use a Gaussian mixture model as a

probability density function to provide a representation of a

text, which considers semantic information and the diversity

of topic distribution between words. We now discuss how

distances between Gaussian mixture models can be obtained.

B. Distance metric between probability distributions from

different measure theories

In the previous subsection, each topic is represented as a

Gaussian distribution, and thus texts are represented as proba-

bility distributions, i.e., the Gaussian mixture models (GMMs)

with the same Gaussian components. In order to classify texts

effectively, a distance metric is needed to measure the distance

between texts, i.e. how much they differ. In this subsection, we

will discuss and analyze how to measure the distance between

text probability distributions under different measure theories.

1) Jensen-Shannon divergence: In probability and infor-

mation theories, the Jensen-Shannon (JS) divergence [32]

provides a similarity of probability distributions. It is based

on the Kullback-Leibler (KL) divergence [33] and provides a

symmetric and smooth version of KL divergence. Given two

text probability distributions P and Q of a continuous random

variable x, the JS divergence between P and Q is defined as:

J(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M), (10)

where M = 1
2 (P + Q), and DKL(P ||Q) denotes the KL

divergence between P and Q.

For two Gaussian distributions, the KL divergence has a

closed-formed expression. However, the KL divergence has

no analytical solution for Gaussian mixture models. Although

some techniques have been introduced to solve this problem,

such as Monte Carlo sampling, unscented transformation [34],

variational approximation and so on, these methods will be

unstable with a relatively larger error when the dimension

of the random variable x or the number of the Gaussian

components in GMMs is large [35]. Thus, they are not suitable

for measuring the distance between texts from the theoretical

perspective.

2) Hellinger distance: In probability and statistics, the

Hellinger distance is used to quantify the similarity between

two probability distributions. The squared Hellinger distance

between probability distributions P and Q is defined as:

H2(P,Q) =
1

2

∫

(

√

f1(x)−
√

f2(x)
)2

dx

= 1−

∫

√

f1(x)f2(x)dx.

(11)

In our method, f1(x) =
∑K

i=1 θ
(i)
1 N (x|µi,Σi), f2(x) =

∑K
i=1 θ

(i)
2 N (x|µi,Σi) denote the densities of text probability

distributions, making the Hellinger distance between texts hard

to directly calculate from the theoretical perspective.

3) Wasserstein distance: Unlike the KL divergence, the

Wasserstein metric not only measures the change of probability

distribution but also incorporates the underlying geometry

between them. Given two probability distributions P and Q,

the 2-Wasserstein distance is defined as:

W2(P,Q) =
(

infEPxy

[

‖ x− y ‖22
]1/2 )

, (12)

where x and y are the random variables of P and Q and Pxy

denotes their joint distribution. The Wasserstein metric is the

minimum cost of moving the random variable from probability

distribution P to Q, which describes the changing of weights

in GMMs. However, Wasserstein metric is computationally

expensive to calculate for high-dimensional random variables.

4) Lp space distance in functional space: In functional

analysis, Lp space is often defined as a functional space. It

provides the p-norm distance between two functions f1(x)
and f2(x). Let p = 1, then the 1-norm distance is given by:

L1(f1(x), f2(x)) =

∫

||f1(x)− f2(x)||dx

=

∫ K
∑

i=1

||θ
(i)
1 − θ

(i)
2 ||N (x|µi,Σi)dx

= ||θ1 − θ2||1,

(13)

which gives the same form with the 1-norm of the difference

of weight coefficient vectors. The 2-norm distance is more
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often used since it is more smooth. Let p = 2, the 2-norm

distance between f1(x) and f2(x) in functional space is:

L2(f1(x), f2(x)) =

(
∫

||f1(x)− f2(x)||
2dx

)1/2

=

(
∫ K

∑

i=1

K
∑

j=1

didjN (x|µi,Σi)N (x|µj ,Σj)dx

)1/2

=

( K
∑

i=1

K
∑

j=1

didjmij

)1/2

=
√

(θ1 − θ2)TM(θ1 − θ2) ,

(14)

where di = θ
(i)
1 − θ

(i)
2 , mij ∼ N (µi|µj ,Σi + Σj) and M =

(mij)K×K . Compared with L1 distance, L2 can preserve the

diversity or similarity among different Gaussian components.

In Eq. (14), M can be regarded as a correlation information

matrix of different Gaussian distributions. However, calculat-

ing matrix M and text distance in Eq. (14) require O(K2d3)
and O(K2d2) computational complexity, respectively, which

will dramatically increase the running time for a large topic

number K or a high word vector dimension d.

C. Text distance metrics with statistical manifold learning

In our method, texts are represented as Gaussian mixture

models, and the space composed of these Gaussian mixture

models can be viewed as a statistical manifold. A statistical

manifold is a special case of a Riemannian manifold, whose

elements are probability distributions. As stated in Section II,

Eqs. (3) and (4) provide the distance metric between two points

on a Riemannian manifold. However, on a statistical manifold,

each point is a probability distribution, which means that the

distance between probability distributions cannot be directly

measured by using Eqs. (3) and (4).

In statistical manifold learning, probability distributions are

usually mapped into a parameter space [36]. Considering S
as a family of probability distributions, and S = {p(x|λ)|λ =
[λ(1), λ(2), . . . , λ(n)]}, in which λ is called a parametric space

and S is called a parametric model. In this paper, texts are

represented as probability models (i.e., Gaussian mixture mod-

els with same Gaussian components). Therefore, a Gaussian

mixture model can be seen as a family of probability distribu-

tions that distributes on a statistical manifold. When mapping

the text probability distribution to a parametric model, the

parametric model can be defined as the coordinates of the

statistical manifold. In Eq. (8), the Gaussian mixture model

can be defined as a function in functional space, each Gaussian

component N (w|µi,Σi) can be viewed as a base function of

the function space and the parameters θ denote the coordinates

on a Riemannian manifold. Therefore the statistical manifold

of the Gaussian mixture model is parameterized by θ =
[θ1, . . . , θK ]. The parametric model is S = {p(w|text, θ)}.

According to information geometry, Riemannian geometry can

be used to learn underlying information from a statistical

model [19]. Therefore the parametric model can be embedded

in a Riemannian manifold.

It should be noted that the space of a parametric model is a

continuous and differentiable manifold. Moreover, according

to the properties of a Gaussian mixture model, θ1+ . . . , θK =

1. Hence the shape of the parametric manifold is a hyperplane

of dimension K−1. It is shown on the right-hand side of Fig.

1. Therefore, the geodesic curve in a hyperplane is a straight

line, and the shortest curve that joins two points α and β in

the manifold is:

C(u) = α+ (β − α)u, u ∈ [0, 1]. (15)

Thus, according to Eq. (3), the distance between α and β is:

d(α, β) = L(C(u)) =

∫ 1

0

(
∑

i,j

gij
dC(u)

dui

dC(u)

duj
)

1

2 du

=

∫ 1

0

(
∑

i,j

gij((βi − αi)(βj − αj))
1

2 du

=
√

(β − α)TG(β − α),

(16)

where the Riemannian metric gij measures the correlation

between different dimensions and G = (gij)K×K is similar to

M in Eq. (14). The Fisher information metric, which provides

the similarity measurement, can be used to define the metric

on the Riemannian manifold. It can be computed as [37]:

gij(θ) =

∫

∂ ln p(x|θ)

∂θi

∂ ln p(x|θ)

∂θj
p(x|θ)dx

= Ep(x|θ)

[

N (x|µi,Σi)N (x|µj ,Σj)
∑K

i=1 θiN (x|µi,Σi)

]

,

(17)

where the expectation defines the similarity or overlap between

topics i and j on the Riemannian manifold. From Eq. (17),

we note that it is hard to directly calculate the closed-form

expression for gij . In our method, we can sample according

to the text probability distribution p(x|θ), then calculate the

approximated values for gij . Asymptotically, however, the

Fisher information metric is immaterial, and it may be ignored

in practice [38], [39]. Often, the Kronecker delta function is

used as a replacement i.e., G = I [39],

gij = δij =

{

1 i = j,
0 i 6= j.

(18)

Thus, substituting gij in Eq. (16) with Eq. (18), the distance

between α and β becomes:

d(α, β) =

∫ 1

0

(
∑

i,j

δij((βi − αi)(βj − αj))
1

2 du

=

∫ 1

0

(
∑

i

(βi − αi)
2)

1

2 du = ‖β − α‖2.

(19)

Eqs. (16) and (19) provide the distance metric between two

texts with different measurements. It is worth pointing out that

if we use mij to replace the value of gij , the distance between

α and β becomes:

d(α, β) = L(C(u)) =

∫ 1

0

(
∑

i,j

mij
dC(u)

dui

dC(u)

duj
)

1

2 du

=

∫ 1

0

(
∑

i,j

mij((βi − αi)(βj − αj))
1

2 du

=
√

(β − α)TM(β − α) = L2(f1(x), f2(x)).

(20)
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Eqs. (20) and (14) give the same results under different

theoretical approaches. In fact, Eqs. (20) or (16) can preserve

more diversity or similarity information among different topics

than Eq. (19). However, if the dimension of word vectors

and the number of the Gaussian components are large, the

calculation of matrix M or G will be very difficult and time-

consuming. Thus, we use Eq. (19) to calculate the text distance

in the experiments. The intuitive explanation is that a larger

number of topics enable the topics to be fully separated and

independent, and the overlaps between different topics are

fewer, which means that each topic may have a more equal

weight.

Algorithm 1 Measure latent topic text representation on

statistical manifold

1: Input: Word embeddings V = {w1, . . . , wN} trained by

word2vec, texts for training T = {text1, . . . , textn}.

2: Output: Distance matrix D between each pair of texts.

3: Given word embeddings V , estimate the parameters µi, Σi,

and πi of Gaussian mixture model by the EM algorithm.

4: Calculate the topic labels of each word using Eq.(6) (word

label list) based on the Gaussian mixture model.

5: for each textt (t = 1, 2, · · · , n) in T do

6: initialize parametric model θt = (0, . . . , 0) for textt.
7: for each word w in textt do

8: θ
(i)
t = θ

(i)
t + πiN (w|µi,Σi), i = 1, 2, · · · ,K.

9: end for

10: Normalizing weight coefficient θt = θt/
∑

i θ
(i)
t .

11: end for

12: for each pair of texti, textj ∈ T (i, j = 1, 2, · · · , n), do

13: D(i, j) = d(θi, θj), and d(θi, θj) is defined in Eq. (19).

14: end for

15: return D.

In our representation of text, the semantic information from

word embeddings is preserved in each Gaussian component.

Moreover, the proportion of different topics in the text can be

expressed by the weight coefficient vector θt. The algorithm

of Latent Topic Text Representation (LTTR) is summarized

in Algorithm 1. First of all, the parameters of the Gaussian

mixture model are estimated by the EM algorithm, then the

word label list is constructed by the Gaussian mixture model.

For each text, we initialize the parametric model θt as a zero

vector and then calculate the weight coefficient vector θt by

using Eq. (9). After that, θt is standardized to ensure the

condition θ
(1)
t + θ

(2)
t + . . . + θ

(K)
t = 1. Finally, the distance

between texts is calculated using Eq. (19). The most time-

consuming part of the proposed method is to construct all

word label lists using a Gaussian mixture model. After that, the

computation complexity of the text representation is O(W ),
in which W is the total number of words in the text.

In this paper, we propose a novel and efficient text learning

framework, which aims to provide an effective text representa-

tion and text measurement with latent topics. Therefore, there

are two learning objectives in our method. One is to develop an

efficient text representation model that can preserve the seman-

tic information of texts and the diversity of topic distributions.

The other is to effectively measure the distance between

text probability distributions that can be directly applied for

text categorization. The learning process of our framework

is illustrated in Fig. 1. At the text representation stage, the

parameters to be learned include πi, µi, and Σi in the Gaussian

mixture model, and the weights θt that reflect the proportions

of the topic in a specific text, textt. The parameters πi, µi,

and Σi are estimated by using EM algorithm to maximize

the log-likelihood function with respect to them in Eq. (7)

(i.e., the objective function), and θt is calculated by Eq. (8).

In our method, word vectors belonging to the same topic

are assumed to follow a Gaussian distribution, then texts are

represented as probability distributions, i.e., Gaussian mixture

models. Therefore, in the text distance measurement stage, the

learning objective is how to effectively quantify the distance

between text probability distributions. The measure of distance

between probability distributions remains an open question. In

Section III-B, we have discussed and analyzed the distance

measure between text probability distributions from different

measure theories. In Section III-C, we introduce the statistical

manifold, then convert the measurement of text probability

distributions on the statistical manifold to the parametric space.

Therefore, the distance between text probability distributions

is calculated, which can be directly applied to the distance-

based classifiers to perform text categorization.

IV. EXPERIMENTAL STUDIES

A. Experimental Datasets

In this paper, the datasets in the experiments are chosen

from three news corpora. Each dataset contains news of

different classes.

• BBC News2: The BBC dataset is built on BBC News,

provided as benchmarks for machine learning research.

The dataset consists of 2285 documents from the BBC

news website corresponding to stories in five topical

areas. The information is shown in Table I.

TABLE I
BBC NEWS DATASET

Class train docs test docs Total docs

business 340 170 510
entertainment 258 128 386
politics 278 139 417
sport 341 170 511
technology 268 133 401

Total 1485 740 2285

• Reuters 215783: This dataset appeared on the Reuters

newswire and was manually classified by Reuters person-

nel. There are two versions of the dataset R8 and R52, the

latter has 52 topics but the distribution is very skewed,

hence here we use R8 with 8 topics. The distribution of

documents per class is shown in Table II.

• 20 newsgroups3: This dataset is a collection of approx-

imately 20,000 news items, and it contains 11293 items

for training and 7528 items for testing. The distributions

of training and test data are shown in Table III.

2http://mlg.ucd.ie/datasets/bbc.html
3http://ana.cachopo.org/datasets-for-single-label-text-categorization
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TABLE II
REUTERS 21578 R8 DATASET

Class train docs test docs Total docs

acq 1596 696 2292
crude 253 121 374
earn 2840 1083 3923
grain 41 10 51
interest 190 81 271
money-fx 206 87 293
ship 108 36 144
trade 251 75 326

Total 5485 2189 7674

TABLE III
20 NEWSGROUPS DATASET

Class train docs test docs Total docs

alt 480 319 799
computer 2917 1952 4869
misc 585 390 975
rec 2389 1589 3978
science 2373 1579 3952
society 598 398 996
talk 1951 1301 3252

Total 11293 7528 18821

B. Experimental Settings and Word embedding training

In our method, the CBOW model is used to train word

embeddings. According to the analysis in [40], in order to

reduce the calculation time and keep the high-level expression

of word vectors, we analyze the parametric sensitivity with the

dimensionality of vector and the size of the sliding window.

In training, a hierarchical softmax strategy is adopted to speed

it up. A word vector list is trained with the Wikipedia corpus,

which contains millions of words and sentences. This corpus is

also used in other methods which needs a corpus for training.

Table IV presents the accuracy of LTTR with KNN on the test

documents of Reuters by using two kinds of word2vec models

(i.e., CBOW and Skip-gram) with different vector lengths and

window sizes.

TABLE IV
ACCURACY (%) ON REUTERS DATASET WITH K=300 IN LTTR WITH

k-NN CLASSIFIER

vector length window size

accuracy with different word2vec models
CBOW Skip-gram

2 84.52 82.21
50 5 85.13 82.44

10 84.52 82.44

2 90.32 88.46
100 5 91.17 90.87

10 91.03 89.73

2 92.04 94.20
150 5 94.38 94.17

10 93.34 92.96

2 93.80 94.17
200 5 94.06 94.19

10 94.04 92.17

2 91.96 93.77
300 5 92.43 92.08

10 93.12 92.80

In Table IV, the 3rd and 4th columns denote the accuracies

of adopting the CBOW model and Skip-gram model, respec-

tively. The results on the parametric sensitivity of word2vec

models shown in the table provide an empirical basis for

choosing the parameter of our experiments. For example, we

notice that when word vector length=150 and window size=5,

LTTR using the word vectors trained by CBOW model achieve

the best performance. For convenience, this setting is used

for the subsequent experiments. Better performance could be

achieved by evaluating possible parameter settings with more

finely grained chosen values, which would of course require

further training time.

In the experiments, stop words are removed from experi-

mental datasets to avoid the influence of irrelevant words. As

stated in Section III-A, a Gaussian mixture model is used to

describe the distribution of all words. The number of Gaussian

components in GMMs (i.e., the number of topics K) is chosen

to optimize the experimental results, and the details of the

sensitivity analysis of the parameter K are shown in Fig. 5.

C. The Results and Analysis of Text Classification

1) Comparison with related work: We evaluate our method

for text classification tasks by using the k-NN and SVM

classifiers. The distance between texts is defined as Eq. (19)

in Section III-C, which can be used for k-NN and SVM to

classify text. In the following, we compare our method with

other text learning methods:

• TF-IDF [2]. This method is a modified bag-of-words

model. The element of the vector is the document fre-

quency of the corresponding word.

• Topical Word Embeddings (TWE) [7]. TWE allows each

word to have different embeddings under different topics

by utilizing latent topic model. The text embeddings

generated by word embeddings are used as text features.

• word2vec: In this paper, we use the average vector of all

the words in a text to represent a text.

• Distributed Memory Model of Paragraph Vectors (PV-

DM) [6], which incorporates paragraph matrix informa-

tion to the input layer of CBOW. In this model, every

paragraph is mapped to a unique vector, and every word

is also mapped to a unique vector. The paragraph acts

as a memory that remembers what is missing from the

current context or the topic of the paragraph.

• Latent Dirichlet Allocation (LDA) [10]. LDA is a method

which belongs to topic model methods [41]. It assumes

that each text is a mixture of topics and each word has

a topic label. In this method, the text is compressed

into a vector. Each component of the vector is the

probability of topics included in the text. Therefore, the

topic information is used as text features for LDA.

• Gaussian Latent Dirichlet Allocation (Gaussian LDA)

[11]. This model is developed based on the framework

of LDA, which replaces the parameterizations of topics

in LDA as the multivariate Gaussian distributions on the

embedding space. This model can infer different topics

relative to standard LDA.

• Convolutional Neural Networks (CNNs). A CNN is a

deep learning model which can capture the semantics of

the text through convolution layers.
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TABLE V
TEST RESULTS (%) ON EACH DATASET

Method TF-IDF TWE word2vec PV-DM LDA Gaussian LDA CNN LTTR

Classifier SVM K-NN SVM K-NN SVM K-NN SVM K-NN SVM K-NN SVM - K-NN SVM

BBC news 78.11 91.99 92.32 91.49 91.99 91.74 92.43 93.65 93.09 93.46 94.12 94.83 94.75 95.68

Reuters 71.38 91.52 91.67 93.24 93.07 93.56 93.32 93.14 93.65 93.22 93.78 94.21 94.38 93.55
20newgroups 46.59 69.67 68.87 72.86 70.56 72.52 71.01 69.85 69.77 72.21 72.43 72.95 74.63 73.22
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(a) Recall rates on BBC news dataset
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(b) Precision rates on the BBC news dataset

Fig. 2. The recall and precision rates of different methods on the BBC news dataset
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Fig. 3. The recall and precision rates of different methods on the R8 dataset
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Fig. 4. The recall and precision rates of different methods on the 20newsgroup dataset

The experimental results of the proposed method and other

state-of-the-art methods on text classification tasks are pre-

sented in Table V. The results are classification accuracy of

each method with different classifiers on the test sets, and the

best performance on each data set is highlighted. From Table

V, we observe that PV-DM obtains comparable performance

with word2vec, and Gaussian LDA achieves slightly better

performance than LDA, but they are still inferior to our

method. Although CNN obtains comparable performance with

our method, CNN as a deep learning method, has a limitation

that it is expensive to tune parameters, as discussed in Section

I. In LTTR, we assume that words on the same topic follow

a Gaussian distribution, and then texts are represented as a

Gaussian mixture model, whose parameters are learned with

the help of the EM algorithm. The complexity of text modeling

is O(W ), and the complexity for calculating the text distance

is O(K2), where W is the number of words in the text, and K
is the number of topics. Therefore, while the CNN achieves

comparable accuracy, the proposed LTTR is more efficient.

Therefore, the results show the effectiveness of the proposed

method on text classification tasks in comparison with other

methods.

We note that the difference in accuracy of LTTR with

various classifiers (i.e., KNN and SVM) for solving different

data sets. The main reason, causing the difference in accuracy

of LTTR with KNN and SVM, is the parameter settings of

word2vec. In LTTR, word2vec is firstly employed to learn the

word vectors from the Wikipedia corpus. In order to reduce

the calculation time and keep the high-level expression of

word vectors, the parameters of word2vec are determined by

analyzing the parametric sensitivity according to the accuracy

of LTTR with KNN on Reuters in Table IV. As a result,
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TABLE VI
15 WORDS WHICH HAVE A HIGHER PROBABILITY DENSITY IN EACH TOPIC OR GAUSSIAN DISTRIBUTION

topics animal economy education internet language politic science social sports

words

species supply school network english members research society football
animals investment students access speaking council study freedom professional

fish prices degree connection ungrammatical parliament scientific moral teams
birds budget classes mail dialects elected institute intellectual competition

mammals inflation teaching servers grammar committee engineering liberty hockey
insects debt universities sharing vocabulary executive learning collective olympic

endangered benefits colleges hubs literacy senate psychology individualism basketball
whales fiscal graduate wap lexicon legislative geology motivation cricket

zoo taxation junior wifi phonetics ministers psychology morally contest
hunters oversupply courses timestamping arabic representatives humanities argues championships
lizards industrializing lessons broadband anglophones cabinet biomedical unequal tournament
feral overvalued exam lan esperanto presidents linguistics persuasion leagues

predator surplus majors bbs fluent ombudsman astronomy democracy arena
snakes policies coursework clients lingua house mineralogy servile rankings

cetaceans demand pedagogy distributed multilingual meeting informatics unjust spectator
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Fig. 5. Accuracy changes (k-NN classifier) on all datasets with different K
in Gaussian mixture models

LTTR with KNN is definitely biased towards achieving higher

accuracy on Reuters due to more suitable parameter settings.

Another possible reason is the distribution of data sets. For the

balanced text data, like BBC news, SVM can easily find an

optimal decision hyperplane and produces a higher accuracy

than KNN [42]. However, it might be difficult for an SVM

to find the optimal hyperplane on multi-class imbalanced text

data, like Reuters and 20newsgroups. In fact, this problem is

a worth-studying direction in the future.

From Table II-III, we know that the Reuters R8 and 20

newsgroup datasets are unbalanced. In order to better evaluate

the effectiveness of our method for text classification, two

common evaluation metrics, the precision and recall rates, are

adopted. The precision and recall rates of different methods

on each dataset are analyzed. As typical models, LDA and

word2vec are selected to compare with our method. The word

vector length is set to 150 in word2vec and the number of

topics is set to 300 in LDA and LTTR. The results are shown

in Figs. 2-4. From Table I, we know the BBC news is a

balanced dataset. In Fig. 2, we observe that our method obtains

promising performance in terms of recall and precision rates

on each class of BBC news dataset. It can be observed that the

precision and recall rates in Figs. 3 and 4 reflect the imbalance

intuitively. From Table II, we know that the size of text that

belongs to ‘gain’ is few, and the text length is shorter. Fig 3

shows that our method is not better than word2vec in recall

rate on the class ‘gain’. The result may demonstrate that the

words play a more important role than the topic in short text

classification. In Fig. 4, we note that the recall rate of class

‘society’ is high but the precision is pretty low for all methods,

which demonstrates that class ’society’ overlaps with other

classes. The classifiers might categorize text belonging to other

classes into the class ‘society’.

We also analyze the parametric sensitivity of K on each

dataset. The result is shown in Fig. 5. It can be observed that

changing the parameter K in the Gaussian mixture models has

little effect on the performance of LTTR. In view of Table IV

and Fig. 5, it also shows the stability and robustness of our

proposed method with respect to the number of topics K.

D. Experimental Results and Analysis for Text Representation

and Diversity Preservation of Topic Distribution

To evaluate the ability to describe the word vector distri-

bution while using the Gaussian Mixture Model, we select

some representative topics for visualization. The results are

shown in Table VI. Each column represents a topic, 15 words

with a higher probability density in each topic or Gaussian

distribution are presented. It can be observed that the matching

of words and topics is good in our method.

In our method, the diversity of topic distributions is also

considered. Four words {class, power, doctor, right} are

selected as targets, and they all may belong to at least two

possible topics.

The probability that word w belongs to the i-th topic is

calculated by Eq. (6), and then the topics with a higher

probability are selected. The results are given in Table VII,

which shows the diversity of topic distributions is effectively

preserved from words. For example, the word ‘doctor’ belongs

to two topics which have a higher probability than that of

others. We list some words which have a higher probability

density in the selected topic from Table VI. It shows that the

most probable topic that word ‘doctor’ belongs to is medical

science, the second is academic degree.

In addition, principal component analysis (PCA) has been

used to visualize the text representation. To give an example,

We choose the BBC news as observation data for visualization.

Figs. 6 and 7 display the visualization of 3 classes {business,

politics, sport} of the BBC news in LTTR and word2vec,
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TABLE VII
MIXTURE DISTRIBUTIONS OF TOPICS ON TARGET WORDS

target word

mixture topics

words with higher probability density in each topic topics explanationtopic rank p(topic|w)(%)

class

1 42.53 labor, worker, wealthy, employment society, politics
2 27.64 courses, school, education, teacher education

power

1 37.42 government, political, rule, unity authority
2 23.54 energy, wave, mass, flow physics

doctor

1 58.84 hospital, nurse, dentist, clinic medical science
2 18.21 university, academy, graduated, campus academic degree

right

1 37.12 left, side, front, moving position
2 22.58 true, false, proof, facts logical
3 17.64 law, legal, conventions, regulations politics

respectively. The dimensionality of the parametric model and

the text vector both are reduced to 3 for visualization. It can

be observed that points in Fig. 6 are more easily classified

than those in Fig. 7, which demonstrates the effectiveness of

our method of text representation.
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Fig. 6. Visualization of three classes of the BBC news in LTTR
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Fig. 7. Visualization of three classes of the BBC news in word2vec

As stated in Section III. The assumption of our method is

that words from the same topic follow a Gaussian distribution.

To show the ability of Gaussian mixture model for describ-

ing the distribution of words, several words from six topics

{economy, internet, language, social, sports, science} in Table

VI are selected. The principal component analysis (PCA) is

also used for visualization. Fig. 8 shows the distributions of

words from different topics. The dimension of word vector

has been reduced to two by PCA. It can be observed that
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0.6

0.8
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social
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Fig. 8. Distributions of words from different topics with PCA visualization

these six topics are clearly separated. The word marked as

‘linguistics’ is most likely to belong to the ‘science’ topic, but

it also appears in texts with topic ‘language’. So this word is

located in both topics. This example validates the effectiveness

of using a Gaussian mixture model to extract the topic diversity

from words or texts.

E. The Results for Topic Coherence

In order to quantitatively analyze the quality of the topic-

word learned by our method, the normalized Point-wise Mu-

tual Information (PMI) [43] of topic words is used to measure

the semantic coherence (topic coherence) of topic words. The

co-occurrence statistics of topic words are extracted from

Wikipedia, and then the normalized PMI score of a topic is

computed by averaging the scores of the top 10 words of this

topic on the 20newsgroup dataset. A higher normalized PMI

score means a more semantically coherent topic [40].

The top 10 words and the normalized PMI score of some

topics from LDA and our method are given in Table VIII. The

words in our method are ranked based on their probability

density in each topic or Gaussian distribution. From Table

VIII, we observe that our method is able to effectively capture

the intuitive topics, and achieves higher normalized PMI scores

than LDA. Moreover, we notice that LDA is not able to fully

identify the ‘politics’ topic whereas our method can effectively

capture, which demonstrates the topic coherence superiority of

our method in comparison with LDA model.
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TABLE VIII
TOP WORDS OF SOME TOPICS AND NORMALIZED PMI OF OUR METHOD

AND LDA ON 20NEWSGROUP DATASET. THE WORDS OF OUR METHOD

ARE RANKED BASED ON THEIR PROBABILITY DENSITY IN EACH TOPIC.
WORDS IN EACH COLUMN REPRESENT A TOPIC.

game president god university windows space gun
team government jesus institute file earth force

hockey people christian study dos orbit warning
play states man conference window space fire

Our method games money bible science program moon guns
nhl state christ technology server launch control

season public church information files flight guns
win rights christians engineering run mars police
pit clinton faith department problem astronomy weapons

period policy christianity college system satellites attack

normalized PMI 0.1083 0.1450 0.2233 0.1035 0.1050 0.1671 0.1039

year people god university window space gun
writes president jesus information image nasa people
game mr people national color gov law
good don bible research file earth guns

LDA model team money christian center windows launch don
article government church april program writes state

baseball stephanopoulos christ san display orbit crime
don time christians number jpeg moon weapons

games make life year problem satellite firearms
season clinton time conference screen article police

normalized PMI 0.0350 -0.0730 0.1451 0.0598 0.0810 0.1060 0.0812

V. CONCLUSION

In this paper, we propose a novel and efficient model to

represent text and measure the distance between text rep-

resentations by using a statistical manifold. Based on the

distributional semantics hypothesis, we assume that words

in the same topic follow a Gaussian distribution. Then we

utilize a Gaussian mixture model to describe the distribution

of all word vectors. The text representation is constructed

from the perspective of text generation: text is generated from

different topics. Hence the word space in a text is a subspace

of all words. A modified Gaussian mixture model is used to

represent texts according to their topics. The weight coefficient

is re-calculated by the probability that the word belongs

to each topic. As discussed in Section III, the computation

complexity of giving a text representation is linearly related

to the size of the text after constructing words label list.

After a discussion and analysis of distance metric between

probability distributions, we chose a distance metric using

statistical manifold learning. In a statistical manifold, each

probability distribution that represents the text becomes a point

on the manifold. In this perspective, metrics between probabil-

ity distributions are defined from information geometry. This

method can give the similarity result with a 2-norm distance

defined in functional space. To demonstrate the effectiveness

of our method, several state-of-the-art methods were used to

compare with LTTR. The experimental results demonstrate

the superiority of LTTR in terms of text representation and

categorization. To illustrate the result of LTTR, the PCA has

been used to visualize the distribution of text representations.

To quantitatively analyze the topic coherence of LTTR, the

normalized PMI has been employed to measure the semantic

coherence of topic words.

Thus, our method solves practical problems in text repre-

sentation and categorization. As future work, we will plan

to provide more theoretical analysis and perform further

experimental studies to demonstrate the effectiveness of our

method. We also plan to extend our method to deal with

text categorization problems in the field of semi-supervised

learning [44]–[46]. Besides, instead of using the Gaussian

mixture model to describe the distribution of topics, there

should be other effective probability models to make the

metrics with statistical manifold learning be more stable and

efficient.
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