
This is a repository copy of Deep Recurrent Neural Network for Intrusion Detection in 
SDN-based Networks.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/129091/

Version: Accepted Version

Proceedings Paper:
Tang, TA, Mhamdi, L, McLernon, D orcid.org/0000-0002-5163-1975 et al. (2 more authors) 
(2018) Deep Recurrent Neural Network for Intrusion Detection in SDN-based Networks. In:
2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft). NetSoft 
2018: 4th IEEE Conference on Network Softwarization and Workshops, 25-29 Jun 2018, 
Montreal, QC, Canada. IEEE , pp. 202-206. ISBN 978-1-5386-4633-5 

https://doi.org/10.1109/NETSOFT.2018.8460090

© 2018 IEEE. This is an author produced version of a paper published in 2018 4th IEEE 
Conference on Network Softwarization and Workshops (NetSoft). Personal use of this 
material is permitted. Permission from IEEE must be obtained for all other uses, in any 
current or future media, including reprinting/republishing this material for advertising or 
promotional purposes, creating new collective works, for resale or redistribution to servers 
or lists, or reuse of any copyrighted component of this work in other works. Uploaded in 
accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Deep Recurrent Neural Network for Intrusion

Detection in SDN-based Networks

Tuan A Tang∗, Syed Ali Raza Zaidi∗, Des McLernon∗, Lotfi Mhamdi∗ and Mounir Ghogho†

∗School of Electronic and Electrical Engineering, The University of Leeds, Leeds, UK.
†International University of Rabat, Morocco.

Email: eltat@leeds.ac.uk, s.a.zaidi@leeds.ac.uk, d.c.mclernon@leeds.ac.uk, l.mhamdi@leeds.ac.uk and m.ghogho@leeds.ac.uk.

Abstract—Software Defined Networking (SDN) has emerged as
a key enabler for future agile Internet architecture. Nevertheless,
the flexibility provided by SDN architecture manifests several
new design issues in terms of network security. These issues
must be addressed in a unified way to strengthen overall network
security for future SDN deployments. Consequently, in this paper,
we propose a Gated Recurrent Unit Recurrent Neural Network
(GRU-RNN) enabled intrusion detection systems for SDNs. The
proposed approach is tested using the NSL-KDD dataset, and
we achieve an accuracy of 89% with only six raw features.
Our experiment results also show that the proposed GRU-RNN
does not deteriorate the network performance. Through extensive
experiments, we conclude that the proposed approach exhibits a
strong potential for intrusion detection in the SDN environments.

Index Terms—software defined networking; SDN; intrusion de-
tection; deep learning; recurrent neural network; gated recurrent
unit; GRU; network security

I. INTRODUCTION

A. Motivation

The current Internet architecture has existed for nearly three

decades and is now becoming an increasingly complex system.

Consequently, the legacy Internet lacks agility to respond

to ever changing demands and dynamic nature of modern

day applications. Software Defined Networking (SDN) [1] is

introduced as a promising architecture, enabling scalability and

unprecedented flexibility in the configuration and deployment

of network services. The separation of control plane and

data plane provides more flexibility and greater control over

the traffic flows. The flow-based nature of SDNs enables

network information acquistion in real-time via the OpenFlow

[2] protocol. Nevertheless, as highlighted in [3], the SDN

architecture also introduces various security issues pertaining

to the control plane, the control-data interface and the control-

application interface. Recently, SDN security has become a

serious concern and has attracted significant interest (For

instance, see [4] and [5] and references there in).

An intrusion detection system (IDS) is one of the most im-

portant network security tools. The Anomaly-based IDS tries

to identify observations that deviates from a baseline model.

Various approaches have been proposed for the Anomaly-

based IDS like artificial neural network (ANN), support vec-

tor machine (SVM), and Bayesian Network. However, these

techniques have a high False Alarm Rate (FAR) and associ-

ated computational cost as mentioned in [6]. Recently, Deep

Learning (DL) has emerged as a new approach that delivers

higher accuracy than traditional machine learning techniques.

DL has the ability to process raw data and learn the high-

level features on its own, and so DL has a strong case for its

adaptability in resource constrained networks like SDNs.

B. Contribution

Following the current trajectory of research, we believe that

deep recurrent neural networks (RNNs) can potentially offer

better solution for implemention of IDS for SDN. A Gated

Recurrent Unit Recurrent Neural Network (GRU-RNN) is

proposed for anomaly detection. The GRU-RNN is a powerful

technique that can represent the relationship between current

and previous events and enhance the anomaly detection rate.

In summary, the major contributions of this paper are the

following:

• We introduce an IDS in the SDN paradigm using GRU-

RNN. To the best of our knowledge, this is the first

attempt to use GRU-RNN for an IDS in the SDN en-

vironment.

• Our GRU-RNN approach yields a detection rate of 89%

using a minimum number of features compared to other

state-of-the-art approaches.

• We also evaluate the network performance of the pro-

posed approach in the SDN. The test results show that our

approach is significantly potential for real time detection.

The rest of this paper is organized as follows. Section II

shows the related work. In Section III, we present the system

description. Section IV presents the detection performance

analysis. The network performance analysis is described in

Section V. Finally, Section VI concludes the paper and presents

future work.

II. RELATED WORK

In past several studies (see [7], [8], [9] and [10]), researchers

have employed classical machine learning mechanism such as

SVM, K-Nearest Neighbour (KNN), ANN, Random Forest

etc. for developing an IDS. These proposed methods have

achieved various degrees of success while rendering some

inherent limitations. These work focus on tradintional network

with a large set of features that cannot be applied to SDNs.

Early work on the flow-based anomaly detection approach

using SDN include [11] and [12]. Braga et al. [11] present



a lightweight approach using a Self Organizing Map (SOM)

to detect DDoS attacks in the SDN. This approach based on

six traffic flow features gives quite high detection accuracy. In

[12], the author use four traffic anomaly detection algorithms

(threshold random walk with credit based rate limiting, rate

limiting, maximum entropy and NETAD) in the SDN. The

experiments indicate that these algorithms perform better in

the SOHO (Small Office/Home Office) network than in the

ISP (Internet Service Provider).

In [13] and [14], SVM is used to detect DDoS attacks

quite efficiently. K-Nearest Neighbor and graph theory are

combined to classify DDoS attacks from benign flows in SDNs

by AlEroud et al. in [15]. Mousavi et al. [16] propose an early

DDoS attack detection method against the SDN controller

based on the variation of the entropy of the flow’s destination

IP addresses. Their detection rate is 96% with just first 250

packets. In [17], the authors propose a DL based approach

using a stacked autoencoder (SAE) for detecting DDoS attacks

in the SDN. They achieve a quite high accuracy and low FAR

on their own dataset.

In 2016, we applied Deep Neural Network (DNN) under

the context of SDNs with the NSL-KDD dataset [18]. We

obtained a potential accuracy of 75.75% with just six basic

features. In this paper, we continue this trend by using GRU-

RNN to improve the detection accuracy and reduce the FAR.

III. METHODOLOGY/SYSTEM DESCRIPTION

In this section, the RNN and GRUs are briefly reviewed.

The architecture of the SDN-based IDS is described in detail.

The NSL-KDD dataset are also discussed in this section.

A. Recurrent Neural Networks

A RNN, which is an extension of a conventional feed for-

ward neural network, makes use of the sequential information.

The RNNs are called recurrent because they perform the same

task for every element of a sequence, with the output being

depended on the previous computations.

The hidden states of the RNN are computed as:

ht = σ(Wxt + Uht−1 + bh), for t = T, . . . , 1, (1)

where σ is a nonlinearity function, xt is an input vector at

time t, ht is a hidden state vector at time t, W is an input to

hidden weight matrix, U is a hidden to hidden weight matrix,

and bh is a bias term.

The Backpropagation Through Time (BPTT) algorithm is

used for training the RNN. However, the traditional RNN

encounters vanishing/exploding gradient problems [19]. Long

Short Term Memory (LSTM) [20] networks and Gated Recur-

rent Units (GRUs) [21] were proposed to solve this problem.

B. Gated Recurrent Unit

GRUs are selected in our research because of their sim-

plicity and faster training phase compared to LSTMs [22].

Fig. 1 shows architectural detail of a single GRU cell. The

relationship in Fig. 1 is given by

rt = σ(xtWr + ht−1Ur), (2)

Fig. 1. Gated Recurrent Unit Structure [22]

zt = σ(xtWz + ht−1Uz), (3)

ht = (1− zt)ht−1 + zth̃t, (4)

h̃t = tanh(xtWh + (ht−1 ⊙ rt)Uh), (5)

where rt is the reset gate, zt is the update gate, ht is the

activation function and h̃t is the candidate activation. ⊙ is

an element-wise multiplication, and σ is the logistic sigmoid

function. W∗ and U∗ are denoted as learned weight matrices.

C. System Architecture

The IDS is implemented as an application on the SDN

controller. This paper focuses on the use of SDN paradigm

as a network infrastructure for the IDS. The SDN-based IDS

architecture is described in Fig. 2 with three main components:

Flow Collector, Anomaly Detector and Anomaly Mitigator.

• Flow Collector: This module is triggered by a packet-

in message or a timer function to aggregate all the flow

statistics such as protocol, source and destination IP and

source and destination port. All the aggregated features

will be sent to the Anomaly Detector module.

• Anomaly Detector: We choose the GRU-DNN as the

core of the Anomaly Detector module in this paper.

This module loads a trained model, receives the network

statistics and decides if a flow is an anomaly or not.

• Anomaly Mitigator: Through the Anomaly Detector’s

results, the Anomaly Mitigator module can make deci-

sions on the flow (e.g., drop or forward the flow).

Fig. 2. SDN-based IDS Architecture



D. Dataset

The NSL-KDD dataset [23] is one of the state-of-the-art

datasets for IDS evaluation. This dataset has 41 features which

are categorised into three types of features: basic, content-

based and traffic-based features. Our IDS is trained by the

KDDTrain+ dataset and tested by the KDDTest+ dataset. In

addition, the KDDTest+ dataset contains 17 different types of

attacks in addition to 22 attack types out of the KDDTrain+

dataset. Thus, the KDDTest+ dataset is a reliable indicator to

the performance of the model on zero-day attacks as well.

Within the context of SDN, the packet content is not

directly accessible in the current OpenFlow protocol. So we

just focus on the basic and traffic-based features of the NSL-

KDD dataset. In our research, a mixed feature set with

six features is selected from these two feature set. These

features are selected based on their SDN related nature with-

out any feature selection algorithms. The selected features

are <duration, protocol_type, src_bytes, dst_bytes, srv_count,

dst_host_same_src_port_rate>. Details of these features can

be seen in [23].

The NSL-KDD dataset contains both the numerical and

symbolic features, consequently all the symbolic features

are transformed into numerical values. After converting, the

dataset is normalized into the range of [0-1] by Min-Max

scaling. Its mathematical equation is given as:

x
′

=
x−min(x)

max(x)−min(x)
, (6)

where x
′

is normalized value, x is original value.

IV. DETECTION PERFORMANCE ANALYSIS

In this section, we firstly explain all the detection evalua-

tion metrics. Secondly, we describe all the experiment setup.

Finally, the results are given and compared with other works

for a better overview.

A. Evaluation Metrics

For evaluation purpose, Precision (P), Recall (R), F-measure

(F) and accuracy (ACC) metrics are used. These metrics are

calculated by using four different measures, true positive (TP),

true negative (TN), false positive (FP) and false negative (FN):

• TP: the number of anomaly records correctly classified.

• TN: the number of normal records correctly classified.

• FP: the number of normal records incorrectly classified.

• FN: the number of anomaly record incorrectly classified.

Accuracy (AC): the percentage of true detection over total

traffic records,

AC =
TP + TN

TP + TN + FP + FN
. (7)

Precision (P): the percentage of predicted anomalous in-

stances predicted are actual anomalous instances,

P =
TP

TP + FP
. (8)

Recall (R): the percentage of predicted anomalous instances

versus all the anomalous instances presented,

R =
TP

TP + FN
. (9)

F-measure (F): the harmonic of the precision and recall

metrics to express the performance of the model,

F =
2

1

P
+ 1

R

. (10)

B. Experimental Setup

In our experiments, we use Keras [24] to implement our

GRU-RNN, DNN, and VanilaRNN models. We use a Nadam

optimizer [25] and a mean squared error (MSE) for the model.

In addition, we added L_1-regularization to prevent over fitting

during the training phase. The hyper-parameter configuration

is 25, 10000 and 0.001 for the batch size, the epoch and the

learning rate respectively. Scikit-learn library [26] is used to

implement the SVM algorithm and measure all the evaluation

metrics. The detail of our models can be seen in Table I.

TABLE I
NEURAL NETWORK MODEL STRUCTURE

Algorithm Input Layer Hidden Layer Output Layer

GRU-RNN 6 6,4,2 1
DNN 6 6,4,2 1

VanilaRNN 6 4 1

C. Experimental Results

To start with, we present the detection performance of the

GRU-RNN in terms of P, R, F and AC. We also compare

the performance of the GRU-RNN with other algorithms like

VanilaRNN, SVM and DNN using the same mixed feature set.

Table II shows that the proposed GRU-RNN outperforms in all

the evaluation metrics for all classes. The detection rate of the

legitimate and anomaly traces is 89% and 90% respectively.

The results also show that the GRU-RNN is good at detecting

zero-day attacks with the anomaly detection AC of 90%. The

GRU-RNN yields good results for all classes, while other

algorithms just work well in only one class.

TABLE II
THE DETECTION PERFORMANE COMPARISON

Algorithm
Legitimate Class Anomaly Class

P (%) R (%) F (%) P (%) R (%) F (%)

VanilaRNN 43 90 58 57 10 17
SVM 71 32 44 64 90 75
DNN 67 89 76 88 66 76

GRU-DNN 87 89 88 91 90 90

As seen in Table III, our approach outperforms other ap-

proaches dealing with low-dimension and raw features. The

DNN, coming in second place, shows the potential of the

DL approach in anomaly detection. The VanilaRNN gives the

worst result compared with its counterpart GRU-RNN.



TABLE III
ACCURACY COMPARISON WITH OTHER ALGORITHMS

Algorithm Accuracy

VanilaRNN 44.39%
SVM 65.67%
DNN 75.9%

GRU-RNN (Proposed Model) 89%

In the following, the Receiver Operating Characteristic

(ROC) curve is presented as a standard measure for classifier

comparison. The ROC curve is created by plotting the False

Positive Rate (FPR) versus the True Positive Rate (TPR).

The area under the curve (AUC) is used to determine which

classifier predicts the classes best. The higher the AUC, then

the better is the classifier. Fig. 3 shows that the proposed

GRU-RNN achieves the highest AUC amongst all the tested

algorithms as expected. The TPR of the GRU-DNN is about

90% and the FPR is about 10%. It has higher TPR and lower

FPR compared to other algorithms. As we can see, the GRU-

RNN helps reduce the FP which is an important factor of the

IDS. The VanilaRNN gives the worst performance as expected.

Fig. 3. ROC Curve Comparison for Different Algorithms

Furthermore, we also compare the performance of the

proposed model with others in the literature. Our GRU-RNN

is compared with SVM, DNN and NB Tree algorithms. Table

IV contains the anomaly detection AC of the state-of-the-art

results against our proposed model. The results show that our

model outperforms all the previous methods. Our GRU-RNN

performs better than the SVM and NB Tree algorithms that

use a set of 41 features for training and testing. The GRU-

RNN result also indicates a significant improvement in AC

compared to the basic DNN in our previous work.

TABLE IV
ACCURACY COMPARISON WITH PREVIOUS STUDIES

Method Accuracy

SVM [23] 69.52%
DNN [18] 75.75 %

NB Tree [23] 82.02%
GRU-RNN (Proposed Model) 89%

V. NETWORK PERFORMANCE ANALYSIS

In this section, we evaluate the effect of the GRU-RNN on

the network performance. The evaluation testbed is described

in the first part and then the network performance evaluation

is presented.

A. Experimental Setup

The GRU-RNN is implemented as an application written

in Python language in a POX [27] controller. Cbench [28] is

a standard tool used for evaluating the SDN controller per-

formance. Cbench runs in two modes: throughput and latency

modes. In the throughput mode, it computes the maximum

number of packets handled by the controller. In the latency

mode, it computes the time needed to process a single flow

by the controller.

We run our experiments on a virtual machine having an

Intel Core i5-4460 3.2GHz with 3 cores available and 8GB of

RAM. The operating system is Ubuntu 14.04 LTS-64bit.

The controller performance is tested with a different number

of virtual OpenFlow switches emulated by Cbench. The per-

formance of the stand-alone POX controller is considered as a

baseline for our evaluation. We also compare the GRU-RNN

with the DNN in our previous work [18].

B. Analysis of Results

Fig. 4 depicts the average response rate of the controller

under three testing scenarios. As we can see, both the DNN

and GRU-RNN cause the overhead on the controller. The

DNN algorithm is simpler than the GRU-RNN, and so it

gives a slightly better performance than that of the GRU-

RNN. However, the GRU-RNN outperforms the DNN in terms

of the detection accuracy. The affect of the GRU-RNN on

the controller is predictable and unavoidable. The throughput

decreases slightly when the network size increases from 32

to 64 switches. The network performance degrades by about

3.5% when the network size is under 32 switches. When we

increase the size to over 64 switches, the throughput drops by

about 4%.

Fig. 4. Throughput Evaluation

As we can see in Fig. 5, the latency increases along with

increasing the network size. When we increase the network



size, the load on the controller is increased as well and causes

the overhead. The GRU-RNN still has the highest overhead

amongst all.The overall degradation is about 7% in all cases.

Fig. 5. Latency Evaluation

All in all, the overhead caused by the GRU-RNN on the

POX controller is quite low, and so our proposed approach

has significant potential for real-time anomaly detection in

the SDN environments. From a network perspective this is

a compromise between performance and security which all

network administrators have to deal with.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present an Anomaly-based IDS in the SDN

environment using the GRU-RNN algorithm. We show that the

GRU-RNN outperforms other state-of-the-art algorithms with

an accuracy of 89%. Our scheme uses a minimum number of

features compared to other state-of-the-art approaches. This

makes the model more computationally efficient for real time

detection. In addition, the network performance evaluation

showed that our proposed approach does not significant af-

fect the controller performance. Therefore, it is practical for

implementation under the context of SDN.

In the future, we will optimize our model and use other

features to increase the accuracy. We will also try to implement

our approach in a distributed manner to reduce the overhead

on the controller.
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