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Abstract
The land-sparing versus land-sharing debate centers around how different intensities of habitat use can be coordinated to satisfy
competing demands for biodiversity persistence and food production in agricultural landscapes. We apply the broad concepts
from this debate to the sea and propose it as a framework to informmarine zoning based on three possible management strategies,
establishing: no-take marine reserves, regulated fishing zones, and unregulated open-access areas. We develop a general model
that maximizes standing fish biomass, given a fixed management budget while maintaining a minimum harvest level. We find
that when management budgets are small, sea-sparing is the optimal management strategy because for all parameters tested,
reserves are more cost-effective at increasing standing biomass than traditional fisheries management. For larger budgets, the
optimal strategy switches to sea-sharing because, at a certain point, further investing to grow the no-take marine reserves reduces
catch below the minimum harvest constraint. Our intention is to illustrate how general rules of thumb derived from plausible,
single-purpose models can help guide marine protected area policy under our novel sparing and sharing framework. This work is
the beginning of a basic theory for optimal zoning allocations and should be considered complementary to the more specific
spatial planning literature for marine reserve as nations expand their marine protected area estates.
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Introduction

The land-sparing versus land-sharing (sparing vs sharing) de-
bate emerged from contrasting views about how to balance the
competing demands for biodiversity persistence and food pro-
duction in agricultural landscapes (Green et al. 2005; Fischer
et al. 2014). Land sparing involves spatial consolidation and
intensification of agricultural activities. This approach is
based on the idea that concentrated agricultural activity can
achieve equal or higher yields in a smaller land area than low
intensity usage. More land is available for biodiversity protec-
tion thereby providing a net conservation benefit. The
counter-argument in support of sharing argues that wildlife-
friendly farming produces lower yields per unit area, but sup-
ports biodiversity conservation by using less intensive produc-
tion techniques across larger portions of the landscape
(Fischer et al. 2008). Studies typically investigate the sparing
vs. sharing dichotomy to identify the most appropriate strate-
gy for a given context, because how well species or popula-
tions fare alongside increasing agricultural yields depends up-
on species traits and local productionmethods (Balmford et al.
2005; Green et al. 2005; Phalan et al. 2011; Grau et al. 2013).
Although much of the debate centers around semantic issues
(Tscharntke et al. 2012; Fischer et al. 2014), more recent em-
pirical research supports the discussion with quantitative data
(Lee et al. 2014; Butsic and Kuemmerle 2015; Kremen 2015;
Law andWilson 2015) particularly in plantation and livestock
production (Grau et al. 2013).

While not framed as sparing vs. sharing per se, equivalent
discussions in ocean management debate the benefits of either
prohibiting fishing in some parts of the seascape or
constraining fishing through management (White and
Kendall 2007; Hilborn 2016). Marine reserves that exclude
all extractive activities are a popular tool for conserving ma-
rine biodiversity. Efforts are underway to increase the number
of reserves globally, particularly in developing countries
where inshore fisheries experience heavy exploitation
(White et al. 2014). In contrast, it is argued that traditional
fisheries management, such as catch and size regulations, are
more effective mechanisms to maintain healthy fish stocks
and productive fisheries (Hilborn et al. 2004). In this context,
quantitative investigations about sparing vs sharing in the sea
traditionally argue whether or not marine reserves will provide
greater fish biomass and environmental benefits than fishery
regulations (Hastings and Botsford 1999; Hilborn et al. 2006;
White and Kendall 2007)—a typically either/or argument.
These studies identify whether a fraction of the system in
marine reserves—sparing—or regulation across the entire ar-
ea—sharing—maximizes fishery yields or profits (Sanchirico
and Wilen 2001; Gerber et al. 2003; Hastings and Botsford
2003; Sanchirico et al. 2006; White et al. 2008). We note,
however, there is a body of literature that considers and tests
the utility of marine reserves as part of a mixed management

strategy to achieve fisheries objectives, rather than an either/or
argument (Holland and Brazee 1996; Mangel 2000; White
et al. 2010).

Valid concerns remain regarding the socioeconomic im-
pacts of marine reserves on communities and countries.
Indeed, most studies modeling the use of reserves for fisheries
management have found that the addition of reserves will re-
duce yields whenever fisheries are already well managed
(Tuck and Possingham 2000; Hilborn et al. 2006), or suggest
reserves are an effective secondary management option in
cases where fisheries are heavily exploited or where effort
reductions are unlikely to succeed (Holland and Brazee
1996). The establishment of marine reserves can lead to a
redistribution of fishing effort within a region, potentially ne-
gating any net benefit of the reserve through increased fishing
pressure elsewhere (Agardy et al. 2011). Other studies have
identified scenarios in which reserves could be essential for
maintaining high yields in spite of otherwise effective manage-
ment regulations. These include, for example, the potentially
critical function of reserves as a buffer against environmental
stochasticity (Mangel 2000; West et al. 2009), and the positive
impact of reserves on the density-dependent survival of young
fish (White 2009) which could increase the net productivity of
fished populations adjacent to reserves (but see White et al.
2008; Hart and Sissenwine 2009; Russ and Alcala 2011).

Similar to the terrestrial debate, there is no standard solu-
tion to protecting biodiversity and meeting human needs from
the sea. Equipping decision-makers with a variety of tools to
inform policy will enable better and more flexible manage-
ment strategies as to which zoning allocation should be pur-
sued in a given context. Australia’s Great Barrier Reef Marine
Park, for example, represents one of the first systematically
designed networks of marine protected areas in the world
whose shared seascape consists of roughly equal proportions
of marine reserves, managed fisheries and general use areas
(Fernandes et al. 2005). While successful in Australia
(McCook et al. 2010), encouraging other countries to adopt
the exact same allocation would be unfounded given the di-
verse ecological, socioeconomic, and governance structures
across marine jurisdictions globally. Yet, general ecological
and socioeconomic principles apply everywhere, and rules
of thumb based on plausible, single-purpose models can help
guide policy (Starfield 1997; Gerber et al. 2003) in a time of
rapid marine protected area expansion (Klein et al. 2015).

Here, we transfer the land sparing vs. sharing debate to the
sea using three common zoning types: fully protected no-take
marine reserves, managed fishing zones, and unregulated and/
or unmanaged fishing zones, hereafter called Bopen-access.^
We choose to characterize an allocation with only marine re-
serves and open-access areas as a Bpure^ sea sparing strategy.
In the sea, we translate sharing to be any strategy that incor-
porates managed fishing zones, which can manifest as regu-
lations on spatial or temporal effort, or gear restrictions that
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minimize impact to the benthos or non-target species. We
characterize sharing along a continuum where some propor-
tion of the seascape is managed, but consider a Bpure^ sharing
strategy to be when the entire seascape is managed and no
reserves or open-access zones exist (Fig. 1). When defined
in this manner, we move beyond the sparing vs sharing di-
chotomy that prevails in the terrestrial debate (Kremen 2015),
to develop a framework that includes seven potential spared
and/or shared seascapes. We then illustrate how to
operationalize the framework using a simple modeling ap-
proach whose optimally zoned seascapes secure a minimum
biomass yield while maximizing standing stock biomass (the
environmental benefit) for a given management budget. This
approach considers a single habitat-dependent fished species
whose harvest methods exert different levels of pressure on
the benthos. We are interested in the circumstances in which
the optimal seascape is either a sparing strategy, defined here
when the case study area is allocated among no-take reserves
and open-access zones, and when that changes to a sharing
strategy, defined when the case study includes a managed
fishery zone, and potentially the addition of either or both
no-take and/or open-access zones (Fig. 1).

Material and methods

Model description

Our model assumes we are managing a single habitat-
dependent fished species that reproduces with a pelagic larval
phase leading to evenly distributed recruitment in all parts of

the seascape. The seascape is divided into three management
zones: protectedmarine reserves (fractionR), managed fishing
zones (fractionM), and open-access fishing zones (fraction F;
so every part of the system is in one of the zones,R+M+F=
1). There is a financial cost to reserving (CR) and managing
(CM) habitat, the sum total of which must not exceed an allot-
ted total management budget (B), R*CR +M*CM ≤ B. We
assume there is no management cost incurred in the open-
access zone. Our objective is to maximize the total population
of our fishery species subject to the budget constraint and a
minimum biomass yield. Our model identifies the optimum
proportional allocation of a seascape among the three zones.

To link the decisions about seascape zoning allocation to
our objectives and constraints, we use a simple population
model tracking adult post-harvest biomass, At, at time t. Let
L and K, be fecundity and the total number of potential sites
available for larval settlement (i.e., larval carrying capacity),
respectively. Fishing mortality in the managed and open-
access zones are (1-SM) and (1-SF), respectively. We assume
habitat damage temporarily reduces the proportion of avail-
able sites for settlement in zone type i, byDi, for i in {M, F, R},
at time t. We assume the damage is more severe in the open-
access zone (DM < DF), and that no habitat damage occurs in
the no-take reserves, (DR = 0). Assuming fish reproduce post-
harvest and contribute larva to a common pool, which are then
allocated to the three zone types proportionally based on area,
we obtain the following difference equation for total post-
harvest population size

Atþ1 ¼ SM 1−DMð ÞM þ S F 1−DFð ÞF þ R½ �LAt

1þ LAt=K
: ð1Þ

This formula is derived by assuming that larva uniformly
settle at random among a fraction of available sites, which
yields a Beverton-Holt recruitment relationship of the above
form (Duncan et al. 2009).

The model has a stable equilibrium at

A* ¼ SM 1−DMð ÞM þ S F 1−DFð ÞF þ R−
1

L

� �
K; ð2Þ

and analogous equilibrium harvest

H* ¼ 1−SMð Þ 1−DMð ÞM þ 1−S Fð Þ 1−DFð ÞF½ �LA*

1þ LA*=K
: ð3Þ

For simplicity, we assume 100% adult mortality after har-
vest and reproduction, but acknowledge the lifecycle for many
short-lived species may not be annual. We then search through
all financially possible zoning configurations to find the opti-
mal seascape at equilibrium. The optimal solution is the sea-
scape allocation that delivers the largest environmental benefit
(total equilibrium post-harvest adult population size), while
meeting the minimum harvest and budget constraints.

Fig. 1 Classes of sparing and sharing seascapes derived from our three-
zone framework. Pure spared seascapes are those defined by no-take
reserves (R) and open-access areas (F) and defined in these plots as any
point on the line between F and R (excluding apex points where the
zoning allocation would be 100%). Shared seascapes are defined by
any allocation with managed fishing zones (M), with a pure shared sea-
scape defined by apex M (100% managed). Pie charts offer illustrative
examples to help interpret the zone allocation at given points on the graph
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Ignoring the catch constraint we obtain an analytic solution for
this optimal zoning allocation, which produces a general rule
of thumb which holds true for small budgets (see BResults^).
However, to account for the nonlinear catch constraint, we
solved for the optimal allocation using simulations conducted
in Matlab (MathWorks, Natick Massachusetts, USA;
Appendix A).

Case study parameterization

For our case study, we apply our model to derive an optimum
zone allocation based on the conditions of tiger prawn fisher-
ies (O'Neill and Turnbull 2006) using the parameters outlined
in Table 1. Damage caused by benthic fishing is difficult to
quantify and depends on the type of gear, and the frequency
and distribution of effort (Thrush et al. 1998; Collie et al.
2000). Impacts to coastal habitats range from diminished
structural complexity (Auster 1998), changes to community
composition (Thrush et al. 1998), and altered ecological pro-
cesses (e.g., reduced primary production from macrofauna
depletion; enhanced nutrient cycling via suspended sediment
loads (Auster and Langton 1999)).

For the purpose of this exercise, wemake several necessary
simplifying assumptions about benthic impacts from fishing
activities. We recognize benthic habitat condition is case-spe-
cific. In cases where more detailed data exist, this information
can easily be incorporated into our modeling framework. We
assume that previously unregulated trawling has impacted the
benthic community in the open-access zone.We define impact
as the mean mortality (20–50%) of benthic invertebrates re-
ported in Collie et al. (2017) for towed benthic fishing gears.
We assume perfectly enforced restrictions in the managed
zone reduce the fishing impacts on the benthos by half so that
DM = 0.5*DF (Chuenpagdee et al. 2003). We set SM to be the

survival proportion that will yield MSY in a fully managed
seascape and SF to be the survival that leads to an equilibrium
of 10% of virgin biomass when the fishery is completely un-
regulated, open access. We assume that fishers will not toler-
ate a level of catch lower than the pre-managed open access
yield therefore the catch threshold (CT) is set to the open-
access harvest.

Costs

Despite being critical to decision-making about natural re-
source management (Naidoo et al. 2006), costs associated
with establishing and managing protected areas are often
poorly reported, difficult to quantify (Balmford et al. 2004;
Ban et al. 2011), and highly contextual (Rojas-Nazar et al.
2015). As a flexible way to integrate the amalgam of costs
(e.g., stock assessments, ecological monitoring, staffing, en-
forcement, etc.) associated with the different zones (Ban et al.
2011) and across regions, we parameterize the relative costs
between protected and managed areas. One key factor driving
the cost of management interventions, be they marine reserves
or gear restrictions, is the cost of enforcing compliance. The
costs associated with surveillance and enforcement depend on
both the size of the zones and the social and economic char-
acteristics of the resource users. Only a few studies have ex-
plicitly quantified these costs (Ban and Klein 2009; Davis
et al. 2015). Ban et al. (2011) compared the enforcement costs
for staffing an entirely no-take protected area versus a mixed
zone seascape (protected and fished) and found that compli-
ance staffing was doubled when mixed zoning occurred.

As a starting point for our case study, we assume the cost of
enforcing fisheries management is twice that of protecting
area, CM = 2CR but we test the sensitivity of the outcome to
variations in the relative costs to protect and manage when

Table 1 Case study parameters
based on population conditions
for Penaeus esculentus (tiger
prawn)

Parameter Description Value Source

s Intrinsic survival 1 O'Neill and Turnbull 2006

K Carrying capacity of whole
environment

30 O'Neill and Turnbull 2006

L* Fecundity of adults 5 O'Neill and Turnbull 2006

DF* Habitat damage in the
open-access fishing zone

0.35 Collie et al. 2017

DM Habitat damage in the managed
fishing zone

0.175 (derived as 0.5*DF) Chuenpagdee et al. 2003

SF* Survivorship in fished zones 0.48 To achieve 10% virgin biomass at equilibrium. See
formula in code, Appendix A

SM Survivorship in managed zones 0.65 To achieve MSYat equilibrium. See formula in code,
Appendix A

CT* Catch threshold 1.85 Open-access equilibrium

CM to
CP*

Cost ratio between managing
and protection

2:1 Ban et al. 2011

*Sensitivity tested (see Fig. 3 and Appendix)
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CR =CM and when the cost of enforcing reserves is double the
cost of enforcing managed fishing areas CR = 2CM. We also
examine the case of additional fixed costs (e.g., costs that do
not scale with area) of reserves and managed areas in the
appendix (see Appendix B). Management budgets can vary
enormously between regions and in time; therefore, we are
most interested in identifying the circumstances under which
the optimal management strategy shifts between sparing and
sharing as the management budget changes. We investigate
the optimal strategy under different budgets to variations in
several parameters of interest: habitat damage in the open-
access fishing zone (DF), escapement in the open-access fish-
ing zone (SF), fecundity (L), and the catch threshold (CT).

Results

Case study

If there is no management budget, then fishing must occur
under open-access conditions throughout the seascape, re-
gardless of the fishery being considered, because managed
areas and reserves require financial investment. In our case
study, we find that when management budgets are low
(Fig. 2 where B ≤ 0.61), the optimal choice is to allocate the
entire budget to establishing no-take zones and have no man-
aged areas. With the budget exhausted the rest of the seascape
remains in open-access fishing—considered here as a sea
sparing strategy where the portions of the seascape not under
protection are intensively harvested. As the budget increases,
so does the fraction of the protected seascape. During this
stage, initially, the catch increases because additional reserves
increase larvae production, which is then mostly distributed to
unregulated zones for fishing. However, after a critical reserve
threshold, catch declines because additional reserves do not
provide sufficient larval export to the open-access zones to
compensate the fishery for the population now excluded from
harvesting. Eventually, the optimal seascape switches from
sparing (reserves and open-access) to include all three
zones—a version of sea sharing (Fig. 1). This occurs when
further expanding the reserved area prevents the fishery from
satisfying the minimum harvest constraint. In this case, bio-
mass can be increased further with the addition of managed
zones while still meeting the catch constraint.

Figure 3 shows how the optimal zoning allocation changes
as a function of the budget for our parameters of interest: DF,
SF, L, and CT. Beginning with no budget, the seascape is
completely open-access fishing (apex F). As the budget
grows, the allocation moves along the Bsparing^ boundary,
where the seascape consists of open-access and increasing
proportions of no-take reserves. A point of departure, or tran-
sition point, finally moves the allocation away from sea spar-
ing and into a shared configuration consisting of all three

zones. We find this departure is most sensitive to changes in
fecundity (L) and occurs when the reserve coverage is be-
tween 45 and 70% of the seascape. When fecundity is greater,
we switch to investing in management zones at lower propor-
tions of reserves in the seascape.

Regardless of the parameter tested, we consistently observe
the phenomenon of sea sparing when budgets are small, as
well as the switch to the three-zone version of sharing as
budgets increase. This trend is robust to changes in the cost
ratio as well as when we eliminate the influence of habitat
damage caused by fishing in each zone (DM = 0 and DF = 0)
(see Appendix B–C for further sensitivity analyses).
Sensitivity manifests in two possible ways that affect the op-
timal seascape as the budget grows: (1) the point of departure
from sparing to sharing and (2) the proportion allocated to
each zone (Fig. 3). Interestingly, the proportion of area
protected, R, at the point of departure from sparing to sharing
remains fairly constant irrespective of the cost ratio for our
case study (Appendix B; about 60% of the seascape). When
the cost of protection is double the cost of management,
CR=2CM, the point of departure is substantially delayed as
the budget grows large enough to share the seascape but ulti-
mately follows the same investment strategy.

Optimal rule of thumb for small budgets

Our approach also allows us to derive an analytic rule of
thumb to assist decision-makers about what the optimal in-
vestment strategy may be for their given context. With no
catch constraint, the optimal zoning solution is to allocate
the entire budget to marine reserves (sparing) if the benefit
of adding a reserve (relative to open-access fishing), per unit
cost, is greater than the cost-benefit of adding a managed area.
Otherwise, the decision-maker should spend their entire bud-
get on managed areas. This rule can be simplified mathemat-
ically as Bspend the entire budget on reserves^ if

1−
1−SM 1−DMð Þ
1−S F 1−DFð Þ >

CM

CR
: ð4Þ

To derive this rule, let x be the amount of money
allocated to reserves and, B – x, the amount of money
allocated to managed areas. Then R = x/CR and M = (B -
x)/CM, and F = 1 – R - M. One can solve for the x that
maximizes A* by substituting these quantities into Eq. 2
which produces condition 4.

Based on our numerical simulations, the rule of thumb held
for all tested cases until so many reserves had been purchased
that the catch constraint would no longer be satisfied if the
decision maker continued adding reserves. For our baseline
parameterization, we found that reserves were favored over
managed areas unless the cost of reserves was nearly five
times that of managed areas. Even for the combination of
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parameters most favorable for managed areas in the sensitivity
analysis, managed areas were not selected for low budgets
unless the cost of reserves was over three times higher than
the cost of managed areas.

Discussion

A sea sparing and sharing framework

Seven seascape allocations emerge from our sea sparing and
sharing framework (Fig. 1). A seascape allocated entirely to
one zone is highly unlikely as (1) an entirely reserved no-take
system (R = 1) cannot meet the harvest constraint; (2) an

unmanaged open-access system (F = 1) likely results in over
exploitation and potential fishery collapse (Hutchings 2000);
finally, while (3) a purely shared system is possible (e.g.,M =
1 with no reserves or unmanaged fisheries), the reality of
limited management budgets and global commitments to
MPAs reduce the likelihood of this option persisting through
time. Mixed zoning under our framework consists of (4) a
pure spared seascape with both no-take reserves and open-
access zones, (5) shared seascapes with managed and open-
access zones, and two zoning configurations that allow
Bsparing and sharing.^ The first of these last two zoning con-
figurations includes (6) no-take reserves and managed fisher-
ies; and (7) no-take reserves, managed fisheries and open-
access zones.With this conceptual starting point, a useful next

Fig. 2 The optimal sparing versus
sharing strategy (top) showing the
fraction of the seascape allocated
to each of the three zones with an
increasing budget for our case
study. No-take marine reserves in
blue (R); open-access fishing in
green (F); and managed zones in
yellow (M). Thewhite dashed line
is the departure point between
sparing and sharing. When there
is no budget we can neither
reserve nor manage. As the
budget increases, first marine
reserves and then managed
fisheries, enter the optimal zoning
allocation. Also shown are catch,
biomass, and the spending regime
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step for the future would be to classify existing management
plans within this framework to see what the most dominant
strategies are in practice, and to create a typology of spared
and shared seascapes that enable moving beyond the dichot-
omous view of the sparing vs sharing debate. Building on this
idea, our framing also exposes the need for a more refined
classification system, as Bsparing,^ Bsharing,^ and Bsparing
and sharing^ are too vague to encompass the nuanced man-
agement practices governing marine systems (White et al.
2010; Kremen 2015).

Only the rich can afford to share

When budgets are small, sea sparing is always the optimal
allocation. As the budget grows, we arrive at a point where
increasing the amount of the reserves any further will compro-
mise our ability to achieve the minimum harvest constraint. If
budgets increase beyond this point, the optimal strategy is to
start sharing. The optimal strategy under our framework will
be specific to the definition of objectives and constraints
(White et al. 2017). For example, we approached this problem
by identifying a single conservation objective (maximize
standing biomass), while acknowledging two constraints: a
natural resource requirement (expressed by the minimum har-
vest constraint) and a fixed management budget. However, it
is important to note there are many alternate ways to frame this
problem depending on whether the above outcome variables

are treated as objectives to bemaximized orminimized, and/or
constraints. Defining a different objective for ocean manage-
ment (e.g., maximizing larval connectivity, protecting species
climate refugia (Beger et al. 2015) or building near-pristine
fish biomass (McClanahan et al. 2007)), or evaluating trade-
offs for multi-objective problems would also be valid
approaches.

We strategically simplify many assumptions in order to
develop a model that can begin to inform policy (Hastings
and Botsford 1999). Opportunities to add complexity into
our approach include incorporating a spatially realistic model-
ing environment (Polasky et al. 2008; Metcalfe et al. 2015),
alternative assumptions of density dependence before and af-
ter settlement (e.g. Ricker models), age structure, overcom-
pensation (e.g., White and Kendall (2007)), integrating more
complex dispersal processes, accounting for variable distribu-
tions of fishing effort and displacement, socioeconomics
(Sanchirico and Wilen 2002; Halpern et al. 2004; Armstrong
and Skonhoft 2006; Costello and Polasky 2008), and devel-
oping multi-species models.

For some of these limitations, we can foresee how the
model will respond. For example, adding age structure would
allow biomass to accumulate in reserves, likely achieving our
objectives with less reserved area. In instances where over-
compensation is justified we would expect to see higher re-
serve coverage (White and Kendall 2007). We acknowledge
that our approach also depends on some degree of overfishing

Fig. 3 Ternary plots showing the
fraction of the seascape in each of
the three zones (R = no take
reserves, M = managed fishing
zones, F = open access) for a
given budget, where R+M + F=
1. When no budget exists, B = 0,
the entire seascape is open access,
100% F in the bottom right
corner. Colored lines show the
sensitivity of the seascape
allocation under several values for
each parameter of interest: a
habitat damage caused by fishing
in the open-access fishing zone
(DF), b escapement in the open-
access fishing zone (SF), c
fecundity of adults (L), and d the
catch threshold (CT). The
departure from the sparing
strategy (line F–R) indicates the
transition point from sparing to
sharing as the budget increases
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for this framework to apply. This assumption influences the
point of departure, in that, the time at which managed areas are
added will depend on the assumptions of overfishing.
However, the general trend of sparing first and moving to
the three-zone version of sharing is robust and highlights that
mixed management approaches have merit where substantial
management capacity exists (Hilborn 2016).

The species and associated fishery we chose to represent
in the model are intentionally responsive to reserves, be-
cause we believe that it is these types of species and fish-
eries that drive zoning decisions for coastal management.
However, our findings may also apply to systems where
common pool dispersal assumptions are not met. The first
empirical measurements of larval dispersal revealed unex-
pectedly high levels of self-recruitment (Jones et al. 1999;
Swearer et al. 1999) which challenged the general assump-
tion of strong population connectivity across large sea-
scapes. More recent studies confirm that larval settlement
close to spawning locations is indeed common, but that the
dispersal distances of a significant proportion of other lar-
vae can still be extensive (Green et al. 2015; Jones 2015;
Williamson et al. 2016; Almany et al. 2017). In such cases,
reserve size and placement can be optimized with a high
level of flexibility to provide for maximum fishery benefits
(Krueck et al. 2017a, b).

Despite our stated limitations, our model goes beyond tra-
ditional management zone assessments by illustrating how
fisheries management influences the optimal seascape alloca-
tion. Our approach is the first attempt to underpin the sharing
and sparing debate with a process model. In doing so, we
reveal a more nuanced and practical framework than the de-
bate has produced to date (Kremen 2015). Oceanmanagement
can benefit from applying this framework and devising simple
rules of thumb to guide policy options, for example, investing
in marine reserves when budgets are low with the addition of
managed areas when budgets are high. Building additional
complexity into this base exploration as well as developing
the sea sparing vs sea sharing framework will help advance
the debate and its relevance for marine policy. This work is the
beginning of a basic theory for optimal allocations within
seascape zoning frameworks and should be considered com-
plementary to the more specific spatial planning literature for
marine reserve design and implementation, which addresses
the size, shape, and placement of individual MPAs within a
seascape.
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