

This is a repository copy of New Structural Model of Hydrous Sodium Aluminosilicate Gels and the Role of Charge-Balancing Extra-Framework Al.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/129004/

Version: Supplemental Material

Article:

Walkley, B. orcid.org/0000-0003-1069-1362, Rees, G., San Nicolas, R. et al. (3 more authors) (2018) New Structural Model of Hydrous Sodium Aluminosilicate Gels and the Role of Charge-Balancing Extra-Framework Al. The Journal of Physical Chemistry C, 122 (10). pp. 5673-5685. ISSN 1932-7447

https://doi.org/10.1021/acs.jpcc.8b00259

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supporting Information for:

A New Structural Model of Sodium Aluminosilicate Gels and the Role of Charge Balancing Extra-Framework Al

Brant Walkley^{1, 2}*, Gregory J. Rees³, Rackel San Nicolas⁴, Jannie S.J. van Deventer^{2, 5}, John V. Hanna³, John L. Provis¹*

¹ Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom

² Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia

³ Department of Physics, The University of Warwick, Coventry CV4 7AL, United Kingdom

⁴ Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia

⁵ Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012, Australia

* Corresponding authors. Email: b.walkley@sheffield.ac.uk and j.provis@sheffield.ac.uk

Appendix A: Precursor synthesis and characterisation

A 5 wt. % polyvinyl alcohol (PVA) solution was made by adding 98-99% hydrolysed PVA (Sigma Aldrich, molecular weight 31-50 kDa) to distilled water in small increments over heat, with the resulting solution stirred at 60 °C for 1 h. Aluminium nitrate nonahydrate, $Al(NO_3)_3 \cdot 9H_2O$ (Sigma Aldrich 98.5 wt. %) was added to distilled water to produce a 40 wt. % solution, which was then added to the 5 wt. % PVA solution and stirred at 60 °C for 1 h before addition of colloidal silica (Sigma Aldrich Ludox HS-40 colloidal silica (SiO₂), 40 wt. % in water). The stoichiometry was designed to achieve the elemental ratios of Si/Al = 1 and 0.5 for sample A ($2SiO_2 \cdot Al_2O_3$) and B ($4SiO_2 \cdot Al_2O_3$), respectively, as well as ensuring that the number of metal cations (M^{**}) in solution was significantly more than the number that the PVA could chemically bind through its OH groups ($M^{*+}/OH=4$). Water was evaporated from the resulting solution by stirring over heat at 80 °C, to form a viscous aerated gel. The dry aerated gel was calcined by heating at 3 °C/min to 550 °C in a laboratory muffle furnace, with a 1 h hold time at 550 °C and then cooling in air, to produce a fine white powder which was subsequently ground by hand before characterisation. X-ray diffraction (XRD) data (Figure S1) were obtained using a Bruker D8 Advance instrument with Ni-filtered Cu K α radiation, a step size of 0.020°, dwell time of 3 s and a 20 range of 3–70°.

Figure S1: X-ray diffraction data for the precursor and gel for samples A and B as marked

Figure S2: ²⁷Al 3QMAS NMR iso-sheared spectra of the precursor for sample A and associated deconvolutions of anisotropic slices.

Figure S3: ²⁷AI 3QMAS NMR iso-sheared spectra of the precursor for sample B and associated deconvolutions of anisotropic slices.

Figure S4: ²⁷Al 3QMAS NMR iso-sheared spectra of the alkali aluminosilicate gel for sample A and associated deconvolutions of anisotropic slices

Figure S5: ²⁷AI 3QMAS NMR iso-sheared spectra of the alkali aluminosilicate gel for sample B and associated deconvolutions of anisotropic slices

Appendix C: Iso-sheared ²³Na 3QMAS NMR spectra and associated anisotropic slices

Figure S6: ²³Na 3QMAS NMR spectra of the alkali aluminosilicate gels A and B as marked. Spectra are sheared using conventional single axial iso-shearing in the δ_{3Q} , δ_{1Q} axes by factors of (-7/9, 0), respectively, to give an isotropic component in the δ_{3Q} (F1) dimension and an anisotropic component in the δ_{1Q} (F2) dimension. The chemical shift (CS) and quadrupolar induced shift (Q_{1S}) axes are indicated by dotted and dashed lines, respectively.

Figure S7: ²³Na 3QMAS NMR iso-sheared spectra of the alkali aluminosilicate gel for sample A and associated deconvolutions of anisotropic slices

Figure S8: ²³Na 3QMAS NMR iso-sheared spectra of the alkali aluminosilicate gel for sample B and associated deconvolutions of anisotropic slices

Appendix D: Anisotropic slices of iso-sheared ¹⁷O 3QMAS NMR spectra

Figure S9: ¹⁷O 3QMAS NMR spectra of the alkali aluminosilicate gels A and B, as marked. Spectra are sheared using biaxial Q-shearing in the δ_{3Q} , δ_{1Q} axes by a factor of 3, -4/9, respectively, so that the δ_{1Q} (F2) axis purely reflects the isotropic chemical shift and the quadrupolar parameters are separated in the δ_{3Q} (F1) axis. The chemical shift (CS), quadrupolar induced shift (Q_{1S}) and anisotropic (A) axes are indicated by dotted, dashed and combined dotted/dashed lines, respectively.

Figure S10: ¹⁷O isotropic slices (taken through the centre of gravity of each resonance) extracted from the biaxial Q-sheared ¹⁷O 3QMAS NMR spectra of the alkali aluminosilicate gels A and B as marked.

Figure S11: ¹⁷O 3QMAS NMR iso-sheared spectra of alkali aluminosilicate gel A and associated deconvolutions of anisotropic slices

Figure S12: ¹⁷O 3QMAS NMR iso-sheared spectra of alkali aluminosilicate gel B and associated deconvolutions of anisotropic slices

Figure S13: ²⁹Si MAS NMR data ($B_0 = 14.1$ T, $v_R = 10$ kHz) of alkali aluminosilicate gels A and B and associated deconvolutions. Deconvoluted peaks attributed to the alkali aluminosilicate gels are shown in black, while deconvoluted peaks attributed to the precursors are shown in grey.