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Bearing-Based Formation Control of A Group of

Agents with Leader-First Follower Structure
Minh Hoang Trinh, Shiyu Zhao, Zhiyong Sun, Daniel Zelazo, Brian D. O. Anderson, and Hyo-Sung Ahn

Abstract—This paper studies bearing-based formation control
of a group of autonomous agents with the leader-first follower
(LFF) structure in an arbitrary dimensional space. Firstly, the
bearing-based Henneberg construction and some properties of
the LFF formation are introduced. Then, we propose and analyze
bearing-only control laws which almost globally stabilize LFF
formations to a desired formation. Further strategies to rotate
and to rescale the target formation are also discussed. Finally,
simulation results are provided to support the analysis.

Index Terms—distributed control, multi-agent systems,
bearing-only measurements, leader-first follower, Henneberg con-
struction

I. INTRODUCTION

FORMATION CONTROL is an ongoing research topic

in the realm of multi-agent cooperative control [1],

[2]. While distance-based formation control was extensively

studied [3]–[7], bearing-based formation control has recently

attracted much research interest due to the emergent tech-

nology of small UAVs equipped with vision sensors [8],

[9]. In bearing-based formation control problems, a group

of autonomous agents (mobile robots, UAVs) has to achieve

a target formation specified by some bearing information

(bearing vectors and/or subtended bearing angles) [10].

A focus of bearing-based formation control is designing

decentralized control laws using only bearing information.

Consider a small quadcopter, the relative bearing, which is

the unit vector obtained from a relative position vector by

normalizing its length, can be acquired from the onboard

cameras thanks to vision-based techniques [6], [11]. Since the

camera is a passive sensor, in applications where exchanging

signals is prohibited, bearing-only control is preferred [12].

Further, the quadcopter system has a limited payload. To save

the quadcopter’s restricted payload, we can reduce the number

of sensors in quadcopter systems by employing vision-based

control laws [13].

Early works on bearing-based formation control focused on

controlling the subtended bearing angle, which is invariant
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in each agent’s local coordinate frame [14]–[18]. Another

approach is based on bearing rigidity, in which the target

formation is characterized by a set of desired bearing vectors,

which are sufficient to specify the formation up to a scaling

and a translation. In two-dimensional space, the concept of

bearing rigidity (or parallel rigidity) has been studied in [19],

[20]. Based on parallel rigidity theory, the authors in [20]

defined the bearing constrained rigidity matrix. Recently, the

authors of [21] developed a theory of bearing rigidity and

infinitesimal bearing rigidity in R
d. A bearing-only stabi-

lization control law for formations with undirected graphs

in R
d has been proposed in [21]. Further applications of

bearing rigidity theory in formation maneuvering and network

localization have also been discussed in [22], [23]. However,

in these works, only undirected graphs were considered. That

is, bearing-only control for directed graphs has been less

investigated. Thus, differently from these existing works, we

attempt to fill a gap in the literature on bearing-only formation

control with directed graphs. Specifically, we focus on the

leader-first follower (LFF) graphs that can be generated from

a bearing-based Henneberg construction. It is worth remarking

that the analysis in the undirected case cannot be used in

the directed case due to the asymmetry in the sensing graph

[24]. The lack of symmetry raises difficulties in analysis, for

example, the formation’s centroid and scale are not invariant

as in the undirected case.

There are several initial studies in bearing-based forma-

tion control of directed graphs. For instance, in [25], by

assuming the existence of three stationary beacons in the

plane, it was proved that any n-agent system with an acyclic

directed sensing graph is locally asymptotically stable. The

local stability of planar formations with directed cycle graphs

was studied in [24], [26]. The authors in [27] introduced

the bearing Laplacian from a set of desired bearing vectors

and defined bearing persistence based on the null space of

the bearing Laplacian. However, the proposed control law in

[27] requires the relative positions between neighbors, which

are not available from bearing measurements. The authors in

[11], [28], [29] developed bearing-based rigidity theories in

SE(2), R3×S1, and SE(3), in which the bearing vectors are

defined in the body frame of each agent. Although a global

reference frame is unnecessary in [11], [28], the proposed

control law requires all neighbor agents to exchange their local

information; thus its applicability is limited.

The contributions of this work are as follows. First, we

define the bearing-based Henneberg construction for leader-

first follower graphs and show some properties of the LFF

graphs. Note that the bearing-based Henneberg construction,
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Fig. 1: An example of bearing constraint assignment: agents

2 and 3 control their bearings toward agent 1; agents 1 and 4

both control the bearing between them; agent 4 controls two

bearings with regard to agents 1 and 3.

unlike the bearing rigidity theory given in [21], is a basic

theoretical framework for bearing-based directed graphs. We

extend the bearing-based Henneberg construction in [18] to

generate all LFF graphs based on two graph operations,

namely vertex addition and edge splitting. In practice, systems

with LFF structure are easy to implement due to their cas-

cade structure [30]. Moreover, the LFF formation is uniquely

determined given the leader’s position, the set of desired

bearing vectors and the formation scale. Second, we study the

LFF formation [31]–[33] under the bearing-only control law

in an arbitrary dimensional space. The analysis is based on

the notion of almost global input-to-state stability of cascade

systems [34], [35]. Third, we propose a modified bearing-only

control law that guarantees the formation to escape from any

undesired equilibrium, and globally asymptotically converge

to the desired one. In practice, it may be unrealistic to assume

the existence of a global reference frame. Even though all

agents’ local body frames are initially aligned, due to drift in

inertial sensing, misalignment between local frames may still

happen [36]. To address this issue, as the fourth contribution, a

control strategy with orientation alignment is proposed. Under

some assumptions, all local orientations are aligned with

the leader’s orientation; thus, the formation almost globally

converges to the target formation under the proposed control

strategy. Finally, we propose several extensions of the control

law, including rotation and rescaling of the target formation.

The ability to rotate and rescale the formation is an important

feature for formation maneuvering [31].

The rest of this paper is organized as follows. In Section II,

we introduce the bearing-based Henneberg construction and

prove some properties of the LFF formation. In Sections III

and IV, we analyze the LFF formation under the bearing-only

control law for two cases: with and without a global reference

frame. A bearing-only global stabilization control law is also

studied in Section III. Strategies to rotate and to rescale

the target formation are discussed in Section V. Section VI

provides numerical simulations to support the analysis. Finally,

some concluding remarks and further research directions are

reported in Section VII.

Notations. In this paper, R
d denotes the d-dimensional

Euclidean space. Bold font lower-case letters denote vectors,

while bold font upper-case letters denote matrices. Let x =
[x1, . . . , xd]

⊤ denote a vector in R
d. The orthogonal projection

matrix of a nonzero vector x is defined as

Px := Id −
x

‖x‖
x⊤

‖x‖ ∈ R
d×d. (1)

Note that Px is symmetric, positive semidefinite, and idem-

potent. Moreover, Px has the nullspace N (Px) = span{x},

and the eigenvalue set {0, 1, . . . , 1} [21].

II. BEARING-BASED HENNEBERG CONSTRUCTION

A. Preliminaries

Let G = (V, E) be a directed graph with a vertex set V =
{v1, . . . , vn} of |V| = n vertices and an edge set E = {eij =
(vi, vj)|vi, vj ∈ V, vi 6= vj} of |E| = m directed edges. A

directed edge eij = (vi, vj) ∈ E is considered to be directed

from vi to vj , and we refer to vi and vj as the start and

the end vertex, respectively. If eij ∈ E , we call vertex j a

neighbor of vertex i and denote the neighbor set of vertex i
by Ni := {vj ∈ V| eij ∈ E}. A directed path is a sequence

of edges (vi1 , vi2), (vi2 , vi3), . . . (vik−1
, vik) in E . A directed

cycle is a directed path having the same start and end node,

i.e., vi1 ≡ vik . A graph G is called an acyclic directed graph

if G has no directed cycle. If there exists a vertex vi ∈ V
such that for any vertex vj 6= vi, vj ∈ V , we can find at

least one directed path connecting vj to vi, then G is called a

rooted in-branching graph with a root vertex vi. For an acyclic

directed graph, we define the parent set of a vertex vi as Pi =
{vk| ∃ a directed path from vk to vi} [37].

For each vertex vi ∈ V , we associate each vi with a point

pi ∈ R
d in a global reference frame. Then, the stacked vector

p = [p⊤
1 , . . . ,p

⊤
n ]

⊤ ∈ R
dn is referred to as a configuration

of G. The directed graph G and the configuration p together

define a framework G(p) in the d-dimensional space [1].

Define zij := pj−pi as the displacement vector between pi

and pj . The distance between pi and pj is dij = ‖zij‖. The

relative bearing vector gij ∈ R
d between two noncollocated

points pi and pj is defined as the unit vector pointing from

pi to pj . In other words, gij is the vector obtained from zij
by normalizing its length,

gij :=
pj − pi

‖pj − pi‖
=

zij

‖zij‖
. (2)

Consider the task of controlling a group of n autonomous

agents in a d-dimensional space to take up a formation

shape that is bearing congruent to a prescribed configuration

p∗ ∈ R
dn. Here, bearing congruency means that the formation

and the target formation are differ only by a translation and a

dilation [21]. Let Γ := {g∗
ij | i, j = 1, . . . , n, i 6= j} be the set

of all bearing vectors in the target configuration p∗. Supposing

that all agents have access to a global reference frame, in order

to guarantee bearing congruence between the formation with

the configuration p∗, it is unnecessary to control all bearing

vectors. In fact, based on bearing rigidity theory [21], when a

certain subset of the desired bearing vectors in Γ is achieved,

the target formation shape will be attained.

Therefore, the formation control task is distributed to every

agent in the group, and each agent must only maintain one

or more local bearing vectors with regard to other agents in

the system. The directed graph G is used to describe this
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Fig. 2: A LFF graph of eight vertices: vertex 1 (the leader)

has no neighbor, vertex 2 (the first follower) has one neighbor,

and each vertex i (i = 3, . . . , 8) has two neighbors.

task assignment. We use a slight abuse of terminology here

to refer to G(p) also as a formation. A directed edge eij in

E is understood to imply that the task of controlling gij is

assigned to agent i while a double-edge eij and eji means

that both agents i and j are assigned to control gij and gji,

respectively. An example of task allocation on a group of four

agents is illustrated in Fig. 1.

Besides achieving the group’s task, in formation control, it

is desirable that the control scheme has a scalability property

and should be cost effective. A possible design strategy is

minimizing the number of bearing vectors that have to be

controlled. Let all agents have access to a common global

reference frame; then it holds gij = −gji. The role of

controlling a bearing vector between two agents i and j can be

assigned to only one of the two agents, for example, to agent

i, and then agent j moves without awareness of this task. The

rest of this paper will focus on a task distribution strategy in a

special structure termed “leader-first follower” or “two-leader

formation” [18], [31].

B. Bearing-based Henneberg construction

The underlying graph of an LFF formation is constructed

from a bearing based Henneberg construction. For example,

an LFF graph of eight vertices is given in Fig. 2. The

Henneberg construction starts from a directed edge following

by a sequence of operations namely vertex addition and edge

splitting and is defined as follows:

Definition 1 (Henneberg construction). Start from a pair of

vertices v1 and v2 and a directed edge (v2, v1) joining them.

Define the degree of cascade of a vertex as the length of its

longest directed path from this vertex to the vertex v1. Then,

vertex 1 has degree 0, vertex 2 has degree 1, and we denote

doc (v1) = 0, doc(v2) = 1. In each step, we perform one of

the following two operations:

• Vertex addition: Add a new vertex vi to the graph,

together with two directed edges to two existing vertices

vj , vk in the graph. The degree of cascade of the new

vertex is defined by doc(vi) = max[doc(vj), doc(vk)]+1.

• Edge splitting: Consider a vertex vi having precisely

two neighbors vj and vm in the graph. Remove an edge

(vi, vj) from the graph and add a new vertex vk together

with three directed edges (vi, vk), (vk, vj), and (vk, vl)

Fig. 3: An example of Henneberg construction. In each step,

the added vertex and added edges are in yellow and red,

respectively. Vertex addition is used in steps 2, 4, and 5 while

edge splitting is used in steps 3 and 6.

where doc(vl) ≤ doc(vi). Then, update the degrees

of cascade of vk and all its parent vertices, Pi, in

the new graph: doc(vk) = max[doc(vj), doc(vl)] + 1,

doc(vi) = max[doc(vk), doc(vm)] + 1, . . .

Figure 3 depicts an example on constructing the eight-

vertex graph in Fig. 2. Any graph G = (V, E) of n vertices

obtained from a Henneberg construction is acyclic and rooted

in-branching. Further, G has exactly 2n−3 directed edges [1],

[38] and except for vertex 1 and vertex 2, each vertex in G
has precisely two neighbors. It is not difficult to see that in

each step, the degree of the new vertex is two, and the degree

of existing vertices in the graph before and after the step is

unaltered. An induction argument then shows that all vertices

other than v1 and v2 have degree two.

Let each vertex in V represent an agent in the group and

each edge in E represent a bearing vector assignment. There

is an agent 1 (the leader) with no neighbor. Agent 2 is the

first follower, which is supposed to control one bearing vector

to the leader. Agent 3 (the second follower) has to control

exactly two bearing vectors to the leader and the first follower.

Similarly, each agent i (3 ≤ i ≤ n) (a follower) has to control

two bearing vectors to two agents j, k ∈ {1, . . . , i − 1}. The

Hennenberg construction together with a bearing assignment

is referred to as a bearing-based Henneberg construction.

Consider an n-agent formation in R
d; we examine the

degrees of freedom specifying the formation shape. With

n agents, there are dn coordinates, from which d + 1 (d
accounting for position of the centroid and 1 for the scale)

should be subtracted. Thus, dn − d − 1 scalar values specify

the formation shape.

Now, consider an LFF formation obtained from a bearing-

based Henneberg construction. Consider agent 2 which is

assigned only one unit bearing vector g∗
21 ∈ R

d. Note that any

vector in R
d contains d pieces of data. Since one constraint

‖g∗
21‖ = 1 was used, there are d − 1 independent pieces
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Fig. 4: Since agents 1, 2, 3 are in the same plane P1, the two

desired bearing vectors g∗
31 and g∗

32 of agent 3 must be in the

same plane with g∗
21. The position p∗

3 in R
d can be uniquely

determined from p∗
1, p∗

2 and g∗
31, g∗

32.

of bearing data1 in g∗
21. Next, consider agent 3, which is

assigned two bearing vectors g∗
31 and g∗

32 as depicted in Fig. 4.

The two vectors g∗
31 and g∗

32 cannot be chosen arbitrarily.

If we choose g∗
31 first, since g∗

31 6= ±g∗
21 and ‖g∗

31‖ = 1,

we have d − 1 independent pieces of bearing data in g∗
31.

Now because positions of three agents 1, 2 and 3 define a

plane, it follows that g∗
31 and g∗

21 define the same plane,

call it, P1. Next, we choose g∗
32. Besides the constraints

‖g∗
32‖ = 1, g∗

32 6= ±g∗
31, and g∗

32 6= ±g∗
21, g∗

32 must

be additionally restricted to the plane P1, which is called

coplanarity restriction. By choosing a direction in a plane,

we have only one degree of freedom. This implies that only

one piece of bearing data in g∗
32 can be freely chosen. Thus,

there are totally d (i.e., (d − 1) + 1) independent pieces of

bearing data chosen by agent 3. From a similar argument, for

each agent i > 3 with two neighbors 1 ≤ j < k < i, there

are d independent pieces of bearing data from g∗
ij and g∗

ik.

Hence, for the overall LFF formation with 2n − 3 bearing

vectors, there are exactly (d − 1) + d(n − 2) = dn − d − 1
pieces of independent bearing data that can be chosen.

Remark 1. For planar LFF formations (d = 2), each

bearing vector contains exactly one independent bearing data.

Thus, the number of independent bearing data specifying the

formation (dn−d−1 = 2n−3) matches the number of edges

in the graph (m = 2n − 3). Hence, 2n − 3 is the minimal

number of bearing vectors to specify a formation in the plane.

This observation is consistent with [18].

For LFF formations in R
d, there are totally 2n− 3 bearing

vectors that specify the formation. For d ≥ 3, the 2n − 3
bearing vectors give rise to more pieces of data than degrees

of freedom due to the coplanarity restriction, i.e. there is re-

dundant data in the collection of bearing vectors. Determining

whether 2n−3 is also the minimal number of bearing vectors

to specify a formation with general directed graph in R
d, d ≥ 3

is beyond the scope of this paper. We refer readers to [39]

1When we measure a relative bearing vector in R
d, we obtain d − 1

scalar pieces of information, which we term bearing data. As far as a single
measurement is concerned, they are all independent, in the sense that no
relation is implied among them. When a collection of such measurements is
obtained for a number of agents in a general formation, relations may exist,
and then the data would not be independent.

for a further discussion on this topic. Henceforth, we shall

assume that all specifications of bearings are consistent with

the coplanarity restriction described above.

C. Properties of LFF formations

This section studies some properties of LFF formations

generated from a bearing-based Henneberg construction.

Lemma 1 (Uniqueness of the target formation). Consider an

LFF formation with the position of the leader p∗
1, the distance

d∗21 = ‖p∗
2 −p∗

1‖ and the bearings {g∗
ij}(i,j)∈E . If each agent

i (i ≥ 3) has two neighbors 1 ≤ j 6= k < i with g∗
ij 6= g∗

ik,

the location p∗
i is uniquely determined from its neighbors’

positions and the desired bearing vectors. More specifically,

p∗
i is calculated iteratively by

p∗
i =

(∑

j∈Ni

Pg∗

ij

)−1 (∑

j∈Ni

Pg∗

ij
p∗
j

)

. (3)

Proof: For agent 2, since g∗
21 = (p∗

1 −p∗
2)/d

∗
21, we have

p∗
2 = p∗

1 − d∗21g
∗
21.

Consider agent 3, the position p∗
3 of agent 3 satisfies two

bearing vectors g∗
31 and g∗

32 as depicted in Fig. 4. Thus,

Pg∗

31
(p∗

1 − p∗
3) = 0, and Pg∗

32
(p∗

2 − p∗
3) = 0. (4)

From (4), it follows that

(Pg∗

31
+Pg∗

32
)p∗

3 = Pg∗

31
p∗
1 +Pg∗

32
p∗
2. (5)

Consider the matrix (Pg∗

31
+ Pg∗

32
). We have N (Pg∗

31
) =

span(g∗
31) and N (Pg∗

32
) = span(g∗

32). Since g∗
31 6= ±g∗

32, and

recalling that Pg∗

31
and Pg∗

32
are positive semidefinite matrices,

the nullspaces of Pg∗

31
and Pg∗

32
intersect at only {0}. As a

result, (Pg∗

31
+ Pg∗

32
) is invertible and p∗

3 can be calculated

from (5) as

p∗
3 =

(
Pg∗

31
+Pg∗

32

)−1 (
Pg∗

31
p∗
1 +Pg∗

32
p∗
2

)
, (6)

which can be written in a compact form as (3). For i =
4, . . . , n, the position can be calculated in a similar way.

Lemma 2 (Translation of the target formation). For an LFF

formation, given d∗21 and {g∗
ij}(i,j)∈E , the translation of the

leader’s position determines the translation of the entire

formation.

Proof: We only need to prove that if p∗
1 is changed to

q∗
1 = p∗

1+δ, then p∗
i for all i will be changed to q∗

i = p∗
i +δ.

For agent 2, it is obvious that q∗
2 = q∗

1 − d∗21g
∗
21 = p∗

1 + δ −
d∗21g

∗
21 = p∗

2 + δ. For agent 3, we have

q
∗

3 =
(

Pg
∗

31
+Pg

∗

32

)

−1
(

Pg
∗

31
q
∗

1 +Pg
∗

32
q
∗

2

)

= (Pg
∗

31
+Pg

∗

32
)−1(Pg

∗

31
p
∗

1 +Pg
∗

32
p
∗

2 + (Pg
∗

31
+Pg

∗

32
)δ)

= p
∗

3 + δ.

For agent i (i = 4, . . . , n), the proof is similar.

Although the main goal is achieving a formation shape

defined by some desired bearing vectors, it is important to have

a measure to compare the size between two LFF formations.

To this end, we have the following definition.
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Definition 2 (Formation scale). Consider an LFF formation

G(p), the formation scale is defined as the average of all the

inter-agent distances defined by the edge set, E ,

ζ(G(p)) := 1

|E|
∑

(i,j)∈E

‖pi − pj‖ =
1

|E|
∑

(i,j)∈E

dij .

Lemma 3 (Scale of the target formation). For an LFF

formation, if d∗21 is scaled by α, all inter-agent distances will

be scaled by α, i.e, the formation scale is determined by d∗21.

Proof: Suppose that p∗
2 − p∗

1 is changed to α(p∗
2 − p∗

1)
for α 6= 0, then for any (i, j) ∈ E , p∗

i −p∗
j will be changed to

α(p∗
i−p∗

j ). We only consider n = 3 without loss of generality.

Since p∗
3−p∗

1 = (Pg∗

31
+Pg∗

32
)−1(Pg∗

31
p∗
1+Pg∗

32
p∗
2)−p∗

1 =
(Pg∗

31
+ Pg∗

32
)−1(Pg∗

31
p∗
1 + Pg∗

32
p∗
2 − (Pg∗

31
+ Pg∗

32
)p∗

1) =
(Pg∗

31
+Pg∗

32
)−1Pg∗

32
(p∗

2−p∗
1), which shows that p∗

3−p∗
1 is

a linear mapping of p∗
2 −p∗

1. Thus, when p∗
2 −p∗

1 is changed

to α(p∗
2 − p∗

1), p
∗
3 − p∗

1 will be changed to α(p∗
3 − p∗

1).

III. BEARING-ONLY CONTROL OF LFF FORMATIONS

A. Problem formulation

Consider a group of n agents modeled by a single integrator

model,

ṗi = ui, i = 1, . . . , n. (7)

where pi ∈ R
d and ui ∈ R

d are the position and the control

input of agent i at time instance t, respectively. All agents in

the group have access to a common global reference frame

and each agent can sense the relative bearing vectors to its

neighbor agents. We assume that the n-agent system satisfies

the following assumptions.

Assumption 1. The sensing graph of the group is charac-

terized by a graph G = (V, E) generated from a Henneberg

construction. Each agent can measure the bearing vectors with

regard to its neighbor agents.

Assumption 2. The information of a desired formation is

given as a set of feasible desired bearing constraints B =
{g∗

ij ∈ R
d| eij ∈ E}. The feasibility conditions are: (i)

there exists a configuration p̄ ∈ R
dn such that g∗

ij =
p̄j−p̄i

‖p̄j−p̄i‖
, ∀g∗

ij ∈ B; (ii) Agent i’s (3 ≤ i ≤ n) desired

position is not collinear with its two neighbor agents j, k
(1 ≤ j 6= k < i), i.e., g∗

ij 6= ±g∗
ik.

Note that Assumption 2 implies that the desired bearing vec-

tors have been chosen to guarantee the coplanarity condition

as discussed in the subsection II-B.

Assumption 3. Initially, the positions of the agents are not

collocated, i.e., pi(0) 6= pj(0), ∀1 ≤ i 6= j ≤ n.

This section aims to solve the following problem.

Problem 1. Under the Assumptions 1-3, design control laws

for the agents using only local bearing information such that

all desired bearing vectors in B are asymptotically achieved

as t → ∞.

Fig. 5: Agent 2 adopts the control law (9). There are two

isolated equilibria p∗
2a and p∗

2b corresponding to g21 = g∗
21

and g21 = −g∗
21, respectively.

B. Almost global stabilization of LFF formations

The following bearing-only control law is proposed for each

agent i (i = 1, . . . , n):

ṗi = ui = −
∑

j∈Ni

Pgij
g∗
ij . (8)

We will prove that the control law (8) almost globally sta-

bilizes the n-agent system to the target formation satisfying

all bearing vectors in B. Note that almost global stability is

understood in the sense that every trajectory starting in R
nd\A

asymptotically converges to the target formation, where A is a

set of measure zero in R
nd [34], [35]. The analysis starts from

the leader and the first follower to other followers. Due to the

cascade structure of LFF formations, mathematical induction

will be invoked to establish almost global stability of the n-

agent LFF formation.

1) The leader and the first follower: Since the leader (agent

1) has no neighbor, from (8), ṗ1 = u1 = 0 and the leader’s

position is fixed at p1 = p∗
1 for all t ≥ 0.

The first follower (agent 2) can measure one bearing vector

g21 and has to asymptotically reach to p∗
2a = p∗

1 − d21g
∗
21

corresponding to g21 = g∗
21 (see Fig. 5). The control law for

agent 2 is proposed as

ṗ2 = u2 = −Pg21
g∗
21. (9)

We have the following lemma on the equilibria of the first

follower.

Lemma 4. Under Assumptions 1-3 and control law (9): (i) d21
is invariant; (ii) There are two equilibria of (9): p∗

2a = p∗
1 −

d21g
∗
21 where g21 = g∗

21 and p∗
2b = p∗

1+d21g
∗
21 where g21 =

−g∗
21. The equilibrium p∗

2a is almost globally exponentially

stable, while the equilibrium p∗
2b is unstable.

Proof: (i) We have

d

dt
d221 =

d

dt
(z⊤21z21) = 2z⊤21ż21

= 2z⊤21(ṗ1 − ṗ2) = 2z⊤21Pg21
g∗
21 = 0, (10)

where the last equality follows from z21 = d21g21 and

g⊤
21Pg21

= (Pg21
g21)

⊤ = 0⊤. Consequently, d21 is invariant

under the control law (9).

(ii) It follows from (9) and the property of the projection

matrix that ṗ2 = 0 if and only if g21 = g∗
21 or g21 = −g∗

21.
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Since d21 is invariant, in R
d there are only two equilibrium

points: p∗
2a corresponding to g21 = g∗

21 and p∗
2b corresponding

to g21 = −g∗
21 as depicted in Fig. 5.

Consider the Lyapunov function Vb = 1
2‖p2 − p∗

2b‖2,

which is continuously differentiable everywhere since d21 =
d21(0) 6= 0 for all t ≥ 0. Moreover, Vb is positive definite and

Vb = 0 if and only if p2 = p∗
2b. The derivative of Vb along a

trajectory of system (9) is

V̇b = (p2 − p∗
2b)

⊤ṗ2 = −(p2 − p∗
2b)

⊤Pg21
g∗
21

= (p2 − p∗
2b)

⊤Pg21

d21
(p1 − p2 + p2 − p∗

2b)

= (p2 − p∗
2b)

⊤Pg21

d21
(p2 − p∗

2b) ≥ 0, (11)

since Pg21
z21 = 0 and Pg21

is positive semidefinite. There-

fore, p2 = p∗
2b is unstable by Chetaev’s instability theorem

[40][Theorem 4.3].

Similarly, consider the Lyapunov function Va = 1
2‖p2 −

p∗
2a‖2, which is continuously differentiable, radially un-

bounded. Moreover, Va is positive definite, Va = 0 if and

only if p2 = p∗
2a. Along a trajectory of system (9),

V̇a = (p2 − p∗
2a)

⊤ṗ2 = −(p2 − p∗
2a)

⊤Pg21
g∗
21

= −(p2 − p∗
2a)

⊤Pg21

d21
(p2 − p∗

2a) ≤ 0. (12)

Note V̇a = 0 if and only if p2 = p∗
2a or p2 = p∗

2b, see Fig. 5.

Since p∗
2b is unstable, p∗

2a is almost globally asymptotically

stable due to LaSalle’s invariance principle.

Moreover, consider p2(0) 6= p∗
2b, we can write

V̇a = −2 sin2 α

d21
Va ≤ −2 sin2 α(0)

d21
Va = −κVa,

where α is the angle as depicted in Fig. 5, α(0) ∈ (0, π
2 ] for

p2(0) 6= p∗
2b, and κ = 2d−1

21 sin2 α(0) > 0. It follows that

p2 → p∗
2a exponentially fast if p2(0) 6= p∗

2b.

2) The second follower: We will analyze the dynamics of

agent 3 (the second follower), whose neighbors are agents 1

and 2. The other agent’s dynamics can be treated later in a

similar way. The dynamics of agent 3 is

ṗ3 = u3(p3,p2) = −Pg31
g∗
31 −Pg32

g∗
32. (13)

We consider (13) as a cascade system with p2 being an input

to the unforced system

ṗ3 = u3(p3,p
∗
2a) = −Pg31

g∗
31 −Pg32

g∗
32. (14)

The unforced system (14) characterizes the motion of agent 3

when agent 2 is located at its desired position p∗
2a. However,

if agent 2 is initially located at the undesired equilibrium

p2(0) = p∗
2b, then ṗ2(t) = 0 and the dynamics of agent

3 changes to

ṗ3 = u3(p3,p
∗
2b). (15)

The following lemma characterizes the equilibrium set of

(14) and (15).

Lemma 5. (i) The system (14) has a unique equilib-

rium point p∗
3a =

(
Pg∗

31
+Pg∗

32

)−1 (
Pg∗

31
p∗
1 +Pg∗

32
p∗
2a

)

corresponding to g31 = g∗
31 and g32 = g∗

32.

(ii) The system (15) has a unique equilibrium point

p∗
3b =

(
Pg∗

31
+Pg∗

32

)−1 (
Pg∗

31
p∗
1 +Pg∗

32
p∗
2b

)
corresponding

to g31 = −g∗
31 and g32 = −g∗

32.

Proof: (i) The equilibria of (14) satisfy

ṗ3 = −(Pg31
g∗
31 +Pg32

g∗
32) = 0. (16)

Premultiplying g⊤
31 on both sides of (16), we have

g⊤
31(Pg31

g∗
31 +Pg32

g∗
32) = 0

or, g⊤
31Pg32

g∗
32 = 0. (17)

Equation (17) is satisfied if and only if g31 = ±g32 or g∗
32 =

±g32. The condition g32 = ±g31 happens if and only if agent

3 is collinear with agent 1 and agent 2. In this case, Pg31
=

Pg32
= Pg∗

12
. Substituting them into (16) gives Pg∗

12
(g∗

31 +
g∗
32) = 0, or equivalently,

g∗
32 + g∗

31 = kg∗
12, (18)

where k is a nonzero constant.

On the other hand, from the assumption on feasibility of

the target formation, the desired position of agent 3 and two

leaders must be coplanar. Thus, there exist positive scalars

d∗12, d
∗
31 and d∗32 such that

d∗12g
∗
12 − d∗32g

∗
32 + d∗31g

∗
31 = 0. (19)

Substitute (18) into (19), it follows that

d∗12
k

(g∗
31 + g∗

32)− d∗32g
∗
32 + d∗31g

∗
31 = 0

or, (d∗12 + kd∗31)g
∗
31 + (−kd∗32 + d∗12)g

∗
32 = 0,

which implies g∗
31 is parallel with g∗

32. This contradicts

Assumption 2 that g∗
31 6= ±g∗

32. Thus, (i) cannot happen and

(17) holds if and only if g32 = ±g∗
32. Substituting g32 = ±g∗

32

into (14), it follows that g31 = ±g∗
31.

The feasibility of B guarantees the existence of p∗
3a

where g∗
31 and g∗

32 are both achieved. The equilibrium p∗
3a

is uniquely determined as in Lemma 1. Note that when

p2 = p∗
2a, other combinations −g∗

31 and g∗
32, or g∗

31 and

−g∗
32, or −g∗

31 and −g∗
32 are unrealizable in R

d.

(ii) Following the same process as the above, the equilibrium

has to satisfy g31 = ±g∗
31 and g32 = ±g∗

32. The existence

of p∗
3a in the case (i) implies the existence of p∗

3b which is

symmetric with p∗
3a about p1 as depicted in Fig. 6. At p∗

3b,

the bearing vectors with regard to p1 and p∗
2b are g31 = −g∗

31

and g32 = −g∗
32, respectively.

We discuss on stability of the equilibria of two systems (14)

and (15) in the following lemma.

Lemma 6. (i) The equilibrium p∗
3a corresponding to g31 =

g∗
31 and g32 = g∗

32 of the unforced system (14) is globally

asymptotically stable. (ii) The equilibrium p∗
3b corresponding

to g31 = −g∗
31 and g32 = −g∗

32 of the unforced system (15)

is unstable.
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Fig. 6: Illustration when the position of agent 3, p3, is collinear

with p1 and p∗
2a.

Proof: (i) Consider the Lyapunov candidate function V =
1
2‖p3 − p∗

3a‖2 which is positive definite, radially unbounded

and continuously differentiable. We have

V̇ =− (p3 − p∗
3a)

⊤(Pg31
g∗
31 +Pg32

g∗
32)

=− (p3 − p∗
3a)

⊤ Pg31

‖z∗31‖
(p1 − p3 + p3 − p∗

3a)

− (p3 − p∗
3a)

⊤ Pg32

‖z∗32‖
(p2 − p3 + p3 − p∗

3a)

=− (p3 − p∗
3a)

⊤

(
Pg31

‖z∗31‖
+

Pg32

‖z∗32‖

)

︸ ︷︷ ︸

:=M

(p3 − p∗
3a) (20)

Since Pg31
and Pg32

are positive semi-definite matrices, M

is also positive semi-definite. Thus, V̇ ≤ 0. Moreover, V̇ = 0
if and only if (p3 − p∗

3a) ∈ N (M). We consider two cases:

• If g31 = ±g32 or three agents are in collinear positions,

then, N (M) = span{g31}. Due to Assumption 2 on the

feasibility of B, p∗
3a is not collinear with p1 and p∗

2a,

that is (p3 − p∗
3a) /∈ N (M). Therefore,

V̇ ≤ −γsin2 α‖p3 − p∗
3a‖2 = −γ sin2 αV ≤ 0,

where α is the angle between the line connecting p3 and

p∗
3a and the line connecting p1 and p∗

2a as depicted in

Fig. 6, and γ = ‖z∗31‖−1+‖z∗32‖−1. It is easy to see that

α ∈ (0, π).
• If g31 6= ±g32, M is positive definite (see the proof of

Lemma 1). As a result,

V̇ ≤ −λmin(M(t))‖p3−p∗
3a‖2 = −λmin(M(t))V ≤ 0,

where λmin(M(t)) > 0 is the smallest eigenvalue of M

at time t and V̇ = 0 if and only if p3 = p∗
3.

Choosing κ = min{inf
t
{λmin(M)}, γ sin2 α} > 0, it

follows that V̇ ≤ −κV ≤ 0. As a result, V̇ is negative definite

and V̇ = 0 if and only if p3 = p∗
3a. Thus, p3 = p∗

3a of (14)

is globally asymptotically stable [40].

(ii) Consider the function V = 1
2‖p3 − p∗

3b‖2. Similar to

(i), along a trajectory of system (15), we have

V̇ =(p3 − p∗
3b)

⊤(Pg31
(−g∗

31) +Pg32
(−g∗

32))

=(p3 − p∗
3b)

⊤ Pg31

‖z∗31‖
(p1 − p3 + p3 − p∗

3b)

+ (p3 − p∗
3b)

⊤ Pg32

‖z∗32‖
(p2 − p3 + p3 − p∗

3b)

=(p3 − p∗
3b)

⊤M(p3 − p∗
3b) ≥ 0.

Thus, V̇ > 0 if p3 6= p∗
3b. The equilibrium p3 = p∗

3b is

unstable and ‖p3 − p∗
3‖ grows unbounded in this case. Thus,

p2(0) 6= p∗
2b is required to avoid the divergence of p3.

Since the bearing vectors are undefined when the neighbor

agents are collocated, the analysis is valid when collision

avoidance is guaranteed. In practice, when each agent is

equipped with vision sensors, collision avoidance can be

treated independently by vision-based techniques, see [41],

[42] and the references therein for examples. Below, we give

a sufficient condition for collision-free between agent 3 and

its leaders under the dynamics (14).

Lemma 7. Consider the system (14), agent 3 never collides

with agents 1 and agent 2 if

‖p3(0)− p∗
3‖ < min{‖p∗

3 − p∗
1‖, ‖p∗

3 − p∗
2a‖}. (21)

Proof: Agent 3 never collides with agent 1 if ‖p3−p1‖ =
‖p3 − p∗

1‖ > 0, ∀t ≥ 0. Since

‖p3 − p∗
1‖ = ‖(p3 − p∗

3) + (p∗
3 − p∗

1)‖
≥ ‖p∗

3 − p∗
1‖ − ‖p3 − p∗

3‖,

and p3 → p∗
3 asymptotically (Lemma 6(i)), the following

condition is sufficient to avoid collision between agent 1 and

agent 3

‖p3(0)− p∗
3‖ < ‖p∗

3 − p∗
1‖.

Similarly, a sufficient condition for collision-free between

agent 2 and agent 3 is given as

‖p3(0)− p∗
3‖ < ‖p∗

3 − p∗
2a‖.

Thus, condition (21) guarantees collision-free between agent

3 and its leaders.

Remark 2. In [43], a bearing-only navigation problem in a

two-dimensional space with three stationary landmarks was

studied. The authors in [43] proposed a 2D version of the

control law (14) to guide an agent to any desired position in

R
2. Lemma 6(i) improved the result in [43, Proposition 1] by

showing that it is sufficient to use only two stationary beacons

to reach any position in R
d that is not collinear with the two

landmarks.

At this stage, we can prove the following result on the

stability of the system (13).

Proposition 1. The system (13) has an almost globally

asymptotically stable equilibrium p3 = p∗
3a corresponding to

g31 = g∗
31 and g32 = g∗

32.
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Proof: We will show that the system (13) satisfies the

ultimate boundedness property. Consider the Lyapunov func-

tion V = 1
2‖p3 − p∗

3a‖2 which is positive definite, radially

unbounded and continuously differentiable. If p2(0) 6= p∗
2b,

the derivative of V along a trajectory of system (13) is

V̇ =− 2(p3 − p∗
3)

⊤(Pg31
g∗
31 +Pg32

g∗
32)

=− (p3 − p∗
3)

⊤

(
Pg31

‖z∗31‖
(p1 − p3 + p3 − p∗

3a)

+
Pg32

‖z∗32‖
(p∗

2a − p2 + p2 − p3 + p3 − p∗
3a)

)

=− (p3 − p∗
3)

⊤(
Pg31

‖z∗31‖
+

Pg32

‖z∗32‖
)(p3 − p∗

3)

+ (p3 − p∗
3)

⊤ Pg32

‖z∗32‖
(p2 − p∗

2a)

≤− (p3 − p∗
3)

⊤(
Pg31

‖z∗31‖
+

Pg32

‖z∗32‖
)(p3 − p∗

3)

+ ‖p3 − p∗
3‖

‖Pg32
‖

‖z∗32‖
‖p2 − p∗

2a‖

≤ − (p3 − p∗
3)

⊤(
Pg31

‖z∗31‖
+

Pg32

‖z∗32‖
)(p3 − p∗

3)

+
2d21
‖z∗32‖

‖p3 − p∗
3‖. (22)

When ‖p3‖ is large, the second term in (22) is O(‖p3−p∗
3a‖)

while the first term is −O(‖p3 −p∗
3a‖2). This implies V̇ < 0

when ‖p3‖ is large. Equivalently, ‖p3 − p∗
3a‖ is ultimately

bounded and so is ‖p3‖. Since the unforced system (14) has

a globally asymptotically stable equilibrium p∗
3a as shown in

Lemma 6 and satisfies the ultimate boundedness property, the

system (13) is input-to-state stable (ISS) with regard to the

input p2. On the other hand, according to Lemma 4, the input

p2 exponentially converges to p∗
2a if it is not initially located

at p∗
2b. Thus, the equilibrium p3 = p∗

3a is almost globally

asymptotically stable [34, Theorem 2].

By Proposition 1, we have proved that the desired equilib-

rium p2 = p∗
2a, p3 = p∗

3a of the cascade connection

ṗ2 = u2(p2),

ṗ3 = u3(p3,p2). (23)

is almost globally asymptotically stable. All trajectories of (23)

converge to the desired positions except for those starting at

p2(0) = p∗
2b. Moreover, the undesired equilibrium p2 = p∗

2b,

p3 = p∗
3b is unstable.

3) The n-agent system: Consider the LFF formation of n-

agents (n ≥ 3) satisfying all assumptions in Problem 1. From

the assumption on the graph G, each agent i (3 ≤ i ≤ n) has

two neighbors 1 ≤ j 6= k ≤ i−1 and must control two bearing

vectors gij , gik. The control law for agent i is explicitly given

as

ṗi = ui(pi,pi−1, . . . ,p2) = −Pgij
g∗
ij −Pgik

g∗
ik. (24)

The dynamics of n agents can be expressed in the form of a

cascade system:

ṗ =















ṗ1

ṗ2

ṗ3

...

ṗi

...

ṗn















=















0

u2(p2)
u3(p3,p2)
...

ui(pi,pi−1, . . . ,p2)
...

un(pn,pn−1, . . . ,p2)















, (25)

where (pi−1, . . . ,p2) is considered as an input to the dynam-

ics of an agent i (i = 3, . . . , n).

From Lemma 5 and Lemma 6, for all i = 3, . . . , n, it fol-

lows that pi = p∗
ia =

(
∑

j∈Ni
Pg∗

ij

)−1 (∑

j∈Ni
Pg∗

ij
p∗
ja

)

is a globally asymptotically stable equilibrium of the unforced

subsystem

ṗi = ui(pi,p
∗
(i−1)a, . . . ,p

∗
2a). (26)

Based on the stability of cascade interconnected systems [34],

we can prove almost global stability of the system (25) in the

following theorem.

Theorem 1. Under the Assumptions 1-3 and the proposed

control laws, the system (25) has two equilibiria. The equilib-

rium p∗
a = [p∗⊤

1 ,p∗⊤
2a , . . . ,p

∗⊤
na ]

⊤ satisfying all desired bear-

ings constraints in B is almost globally asymptotically stable.

The equilibrium p∗
b = [p⊤

1 ,p
∗⊤
2b , . . . ,p

∗⊤
nb ]

⊤ is unstable. All

trajectories starting with p2(0) 6= p∗
2b asymptotically converge

to p∗
a.

Proof: We will prove this theorem by mathematical

induction. Consider p2(0) 6= p∗
2b. Firstly, for l = 2, we

have p2 = p∗
2a is almost globally asymptotically stable and

p2 = p∗
2b is unstable based on Lemma 4. Thus, Theorem 1

is true for l = 2. Secondly, Theorem 1 is also true for l = 3
based on Proposition 1.

Secondly, suppose that the claim of Theorem 1 is true for

3 ≤ l ≤ i − 1. That is, pi = p∗
ia is globally asymptotically

stable for all 3 ≤ l ≤ i−1. We have to prove that the theorem

is also true for l = i. By following a similar process as in

the proof of Lemma 6, we can show that p∗
ia is a globally

asymptotically stable equilibrium of the unforced system (26).

We will next show that pi(t) is bounded. To this end,

suppose i has two neighbor agents j and k, 1 ≤ j 6= k < i.
Consider the Lyapunov function V = 1

2‖pi − p∗
ia‖2 which is

positive definite, radially unbounded and continuously differ-

entiable. The derivative of V along a trajectory of the system
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(26) is given by

V̇ =− (pi − p∗
ia)

⊤(Pgij
g∗
ij +Pgik

g∗
ik)

=− (pi − p∗
ia)

⊤

(

Pgij

‖z∗ij‖
(p∗

ja − pj + pj − pi + pi − p∗
ia)

+
Pgik

‖z∗ik‖
(p∗

ka − pk + pk − pi + pi − p∗
ia)

)

=− (pi − p∗
ia)

⊤

(

Pgij

‖z∗ij‖
+

Pgik

‖z∗ik‖

)

(pi − p∗
ia)

− (pi − p∗
ia)

⊤

(

Pgij

‖z∗ij‖
(p∗

ja − pj) +
Pgik

‖z∗ik‖
(p∗

ka − pk)

)

≤− (pi − p∗
ia)

⊤

(

Pgij

‖z∗ij‖
+

Pgik

‖z∗ik‖

)

(pi − p∗
ia)

+‖pi − p∗
ia‖
(

‖Pgij
‖

‖z∗ij‖
‖p∗

ja − pj‖+
‖Pgik

‖
‖z∗ik‖

‖p∗
ka − pk‖

)

Because Theorem 1 is true for l ≤ i − 1, ‖pj − p∗
ja‖ and

‖pk −p∗
ka‖ are bounded and converge to zero as t → +∞. It

follows that ‖pi − p∗
ia‖ is bounded, which implies that ‖pi‖

is also bounded. Thus, the equilibrium p∗
ia is asymptotically

stable and all trajectories with p2(0) 6= p∗
2b converge to p∗

ia

[34, Theorem 2]. Further, if p2(0) = p∗
2b, the system has an

unstable equilibrium p∗
ib due to Lemma 6. Therefore, pi = p∗

ia

is almost globally asymptotically stable and Theorem 1 is also

true for l = i.
Finally, from mathematical induction, the claim holds for

all l ≥ 3. Thus the n-agent system (25) is almost globally

asymptotically stable. All trajectories satisfying p2(0) 6= p∗
2b

converge to a formation satisfying all desired bearing vectors

in B. If p2(0) = p∗
2b, the system has an undesired equilibrium

where gij = −g∗
ij for all g∗

ij ∈ B. This undesired equilibrium

is unstable.

C. Global stabilization of LFF formations

In the previous subsection, the fact that instead of a global

stabilization we have an almost global stabilization of the

overall formation is due to the possibility that p2(0) = p∗
2b,

which is an unstable equilibrium. Of course, in practice noise

may displace the system from p∗
2b if it is initialized there.

However, instead of relying on noise, we can propose the

following modified bearing-only control law for agent 2:

u2 = −Pg21
g∗
21 − k ‖g21 − g∗

21‖Pg21
(sgn (Pg21

g∗
21) + n) .

(27)

In this control law, k > 0 is a control gain,

sgn denotes the signum function, sgn (Pg21
g∗
21) :=

[sgn([Pg21
g∗
21]1), . . . , sgn([Pg21

g∗
21]d)]

⊤; n = n(t) =
[n1(t), . . . , nd(t)], where n1(t), . . . , nd(t) are time-varying

continuous functions satisfying
∑d

k=1 n
2
k(t) = c, and c is a

constant satisfying 0 < c < 1.2

In the control law (27), the first term is the same as the

control law (9) while the last term is added to guarantee global

convergence of g21 to g∗
21. Note that the adjustment term in

2When d = 2, we may choose n =
√

c[cos t, sin t]⊤.

(27) was originally introduced in another form in [4]. Observe

that under the control law (27), we have

d

dt
d221 =

d

dt
(z⊤21z21) = 2z⊤21(ṗ1 − ṗ2)

= −2z⊤21Pg21
(g∗

21 + k ‖g21 − g∗
21‖ (sgn (Pg21

g∗
21) + n))

= 0. (28)

Thus, d21 is invariant under the control law (27). Further, it

can be checked that p∗
2b is not an equilibrium of (27) due to

the adjustment term. We prove the following result on stability

of the agent 2.

Proposition 2. Under the control law (27), the equilibrium

p∗
2a = p∗

1 − d21g
∗
21 corresponding to g21 = g∗

21 is globally

asymptotically stable and almost globally exponentially stable.

Proof: We consider the solution p2 of the nonsmooth

system (27) in the Filippov sense [44], [45]. For almost all

time,

ṗ2 ∈ −Pg21
g∗
21 − k‖g21 − g∗

21‖Pg21
(K[sgn](Pg21

g∗
21) + n) ,

(29)

where K[f ](x) denotes the Fillipov set-valued mapping of

f(x) [44]. Consider the Lyapunov function V = 1
2‖p2−p∗

2a‖2,

which is continuously differentiable, radially unbounded and

positive definite. Then at each point p2 ∈ R
d, ∂V = (p2 −

p∗
2a). Based on [44, Theorem 2.2], V̇ exists almost everywhere

(a.e.) and V̇ ∈a.e. ˙̃V , where

˙̃V =
⋂

ξ∈∂V

ξ⊤ṗ2

=− (p2 − p∗
2a)

⊤
Pg21

g∗
21

− k‖g21 − g∗
21‖ (p2 − p∗

2a)
⊤
Pg21

(K[sgn](Pg21
g∗
21) + n)

=− (p2 − p∗
2a)

⊤Pg21

d21
(p2 − p∗

2a)

− kd21‖g21 − g∗
21‖(Pg21

g∗
21)

⊤ (K[sgn](Pg21
g∗
21) + n) .

Define η := Pg21
g∗
21 = [η1, . . . , ηd]

⊤, we have

˙̃V ≤− (p2 − p∗
2a)

⊤Pg21

d21
(p2 − p∗

2a)

− kd21‖g21 − g∗
21‖
(
η⊤K[sgn](η)− |η⊤n|

)
. (30)

From the property of sgn function, we can write

η⊤K[sgn](η) =

d∑

i=1

ηkK[sgn](ηk).

Recall from [44] that

K[sgn](ηk) =







1 ηk > 0
[−1, 1] ηk = 0
−1 ηk < 0

.

Thus, ηkK[sgn](ηk) = |ηk| and

η⊤K[sgn](η) =
d∑

k=1

|ηk|. (31)
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Moreover,

|
d∑

k=1

ηknk | ≤
d∑

k=1

|ηknk| ≤
d∑

k=1

|ηk||nk| ≤
√
c

d∑

k=1

|ηk|,

where the last inequality follows from the fact that |nk| ≤√
∑d

k=1 n
2
k =

√
c < 1. Therefore,

˙̃V ≤− (p2 − p∗
2a)

⊤Pg21

d21
(p2 − p∗

2a)

− k(1−√
c)d21‖g21 − g∗

21‖
d∑

k=1

|ηk|

≤ − (p2 − p∗
2a)

⊤Pg21

d21
(p2 − p∗

2a) ≤ 0. (32)

It follows that
˙̃V = 0 if and only if p2 = p∗

2a or p2 = p∗
2b.

Since ṗ2|p2=p∗

2b
6= 0, based on LaSalle’s invariance principle

for nonsmooth system [44, Theorem 3.2], every trajectory of

(29) asymptotically converges to p∗
2a.

Next, let α be the angle between p∗
2a − p2 and g∗

21 as

depicted in Fig. 6, we have α ∈ [0, π/2]. Further, we can write

‖Pg21
(p2 − p∗

2a)‖ = sinα‖p2 − p∗
2a‖. For all p2(0) 6= p∗

2b,

we have α(0) > 0. Since p2 → p∗
2a asymptotically, we have

α(t) ≥ α(0) > 0, ∀t > 0. It follows from (32) that

V̇ ≤ −(p2 − p∗
2a)

⊤Pg21

d12
(p2 − p∗

2a)

= − sin2 α

d21
‖p2 − p∗

2a‖2

≤ −2 sin2 α(0)

d21
V = −κV ≤ 0,

where κ = 2d−1
21 sin2 α(0) > 0. Therefore, the equilibrium

p2 = p∗
2a is globally asymptotically stable and almost globally

exponentially stable.

Theorem 2. Under Assumptions 1-3, if agent 2 employs the

control law (27) and agent i (3 ≤ i ≤ n) employs the control

law (24), the formation globally asymptotically reaches the

desired formation satisfying all bearing vectors in B.

Proof: The proof involves the same steps as in Sec-

tion III-B. The only difference is agent 2 always reaches p∗
2a

from any initial condition. Thus, pi → p∗
ia, ∀ 3 ≤ i ≤ n, or

i.e, the LFF formation globally asymptotically converges to

the desired formation satisfying all bearing vectors in B.

IV. BEARING-BASED CONTROL OF LFF FORMATIONS

WITHOUT A GLOBAL ORIENTATION

In this section, we extend the result in the previous section

to a more general setup. The model of each agent in this

section is given in R
3 × SO(3), thus including both position

and orientation of the agent.

A. Problem formulation

Consider a group of n autonomous agents in the three-

dimensional space R
3. The position, linear velocity, and an-

gular velocity of agent i given in a global reference frame are

denoted as pi, ui, and wi ∈ R
3, respectively. Each agent

i maintains a local reference frame iΣ; the linear and the

angular velocity of agent i expressed in iΣ are given by

ui
i = [ui

x, u
i
y, u

i
z]

⊤ and wi
i = [wi

x, w
i
y, w

i
z]

⊤, respectively. Let

Ri ∈ SO(3) be the rotation from iΣ to a global reference

frame gΣ, we have det(Ri) = 1 and RiR
⊤
i = I3. The

position and orientation dynamics of agent i written in the

global reference frame are

ṗi = Riu
i
i (33)

Ṙi = RiSi, (34)

where

Si =





0 −wi
z wi

y

wi
z 0 −wi

x

−wi
y wi

x 0





is a skew-symmetric matrix. Note that from (33)-(34), the

dynamics of agent i is now defined in R3×SO(3). We follow

the Assumptions 1-3 of Problem 1 on the sensing graph and

the initial position of the agents. Further, we assume that in

addition to the local bearing vectors gi
ij = R⊤

i gij , agent i
can also obtain the relative orientation R⊤

i Rj with regard

to each neighboring agent j. Finally, we adopt the following

assumption on the initial orientations of the agents.

Assumption 4. The initial orientations of all agents are

contained within a closed ball B̄r(R1) of radius r less than

π/2. Equivalently, the symmetric part of R⊤
1 Ri(0) is positive

definite, ∀i = 2, . . . , n [46].

At this point, we can formulate the following problem.

Problem 2. Given an n-agent system with initial position

p(0) and orientations {Ri(0)}i∈V satisfying Assumptions 1-

4, design ui
i and wi

i for agent i ∈ V based on local bearing

measurements and relative orientation measurements such

that {Ri(t)}i∈V converges to R1(0) and gi
ij → g∗

ij for all

g∗
ij ∈ B.

B. Proposed control strategy

To solve Problem 2, we propose a two-layer control strategy

for the n-agent system. The two layers will be referred to as

the orientation alignment layer and the formation control layer.

On the orientation alignment layer, we use a consensus algo-

rithm to synchronize all agents’ orientations. Simultaneously,

on the formation control layer, we implement the bearing-only

control law proposed earlier in Problem 1 in each agent’s

local frame to achieve the desired formation. Note that this

two-layer control strategy was also used in distance-based

formation control problems with different setups [5], [6], [21],

[47].

1) The orientation alignment layer: The following orienta-

tion alignment control law for each agent i (1 ≤ i ≤ n) is

adopted in this paper:

Si = −
∑

j∈Ni

(R⊤
j Ri −R⊤

i Rj). (35)

The control law (35) is adopted from the attitude synchro-

nization control law in [46], [48], [49]. Since R⊤
j Ri =

(R⊤
i Rj)

⊤, the control law (35) requires only the local relative
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orientations of agent i with regard to its neighbors, i.e.,

communication between agents is not needed [49].

Because the leader has no neighbor, we let Ṙ1 = 0. Thus,

the orientation of the leader is time invariant, i.e., R1(t) =
R1(0), ∀t > 0.

From (34), the angular velocity in the global reference frame

can be rewritten as follows

Ṙi = −
∑

j∈Ni

Ri(R
⊤
j Ri −R⊤

i Rj). (36)

Unlike [5], [6], [21], [47] where the interaction graphs are

assumed to be undirected, the alignment (35) is performed

in a directed graph G built up via a Henneberg construction,

i.e., a rooted directed graph with a root at vertex v1. This

setup leads to a different result. When the interaction graph is

bidirectional, the final orientation is determined by all agents’

initial orientations [49]. However, when the graph is directed

and has a rooted spanning tree, the aligned orientation is

determined by the orientations of the agent locating at the

root of the graph, as stated in the following lemma.

Lemma 8. [49], [50, Theorem 3.2] Assume that G has

a rooted spanning tree. If there is R ∈ SO(3), such that

the orientations of all agents initially are contained within a

closed ball B̄r(R) of radius r less than π/2 centered around

R, then the controller (35) is a synchronization controller, i.e.,

R⊤
i Rj → I3 asymptotically for all i, j ∈ V .

The following result is implied from Lemma 8 and Corol-

lary 2 in [46].

Lemma 9. Under Assumption 4 and the orientation align-

ment control law (34), if the directed graph G is built up

by a Henneberg construction, all agents’ orientations will

asymptotically converge to the leader’s orientation, i.e., for

i = 2, . . . , n, Ri(t)
⊤R1 → I3 asymptotically, as t → ∞.

Proof: Since the graph G is built up by a Henneberg

construction, it has a rooted spanning tree. Thus, all conditions

of Lemma 8 are satisfied and orientations of all agents will

converge to a common aligned orientation. Under the control

law (35), R1(t) = R1(0), for all time t > 0, and thus Ri(t) →
R1, as t → ∞.

2) The formation control layer: In this layer, we use a

locally implemented version of the control laws in Section III.

The leader is stationary, i.e., u1
1 = 0. The first follower’s

position control law written in its local reference frame 2Σ is

designed as3

u2
2 = −Pg2

21

(I3 +R⊤
2 R1)g

∗
21. (37)

For each follower agent i (3 ≤ i ≤ n), the position control

law written in iΣ is

ui
i = −

∑

j∈Ni

Pgi
ij
(I3 +R⊤

i Rj)g
∗
ij , (38)

3The global stabilization control law (27) cannot be used here since it uses
global information.

where Pgi
ij

= I3 − gi
ij(g

i
ij)

⊤ is the orthogonal projection

matrix. Using the following derivation

RiPgi
ij
(I3 +R⊤

i Rj)g
∗
ij

= Ri(I3 −R⊤
i gijg

⊤
ijRi)(I3 +R⊤

i Rj)g
∗
ij

= RiR
⊤
i (I3 − gijg

⊤
ij)Ri(I3 +R⊤

i Rj)g
∗
ij

= Pgij
(Ri +Rj)g

∗
ij ,

and equations (33) and (38), we can express the dynamics of

agent 2 in the global frame as follows:

ṗ2 = −2Pg21
R1g

∗
21

︸ ︷︷ ︸

:= f2(p, t)

+Pg21
(R1 −R2)g

∗
21

︸ ︷︷ ︸

:= h2(p, t)

. (39)

Similarly, the dynamics of an agent i (i = 3, . . . , n) can be

expressed in gΣ as

ṗi = −
∑

j∈Ni

Pgij
(Ri +Rj)g

∗
ij

= −2
∑

j∈Ni

Pgij
R1g

∗
ij

︸ ︷︷ ︸

:= fi(p, t)

+
∑

j∈Ni

Pgij
(2R1 −Ri −Rj)g

∗
ij

︸ ︷︷ ︸

:= hi(p, t)

.

Then, the position dynamics of the n-agent system can be

expressed in the following compact form

ṗ = f(p) + h(p, t), (40)

where f(p) = [f⊤1 , . . . , f⊤n ]⊤, h(p, t) = [h⊤
1 , . . . ,h

⊤
n ]

⊤ and

f1 = 0, h1 = 0. We will analyze the system (40) in the next

section using the results on almost global ISS stability [35].

Note that the approach in the next section is similar to [21].

C. Stability analysis

1) The input to the nominal system: Observe that in the

compact form (40), h(t) can be considered as an input to the

nominal system

ṗ = f(p). (41)

We have the following lemma on h(t).

Lemma 10. Under Assumptions 1-4, the input h(t) from the

orientation alignment layer to the formation control layer is

bounded. Moreover, h(t) asymptotically converges to 0 as t →
∞.

Proof: This proof is similar to the proof of [21, Lemma

12] and will be omitted.

2) The first follower: The dynamics of agent 2 (the first

follower) is given by

ṗ2 = f2(p2) + h2(t)

= −2Pg21
R1g

∗
21 +Pg21

(R1 −R2)g
∗
21 (42)

Ṙ2 = −R2(R
⊤
1 R2 −R⊤

2 R1). (43)

We have the following lemma on the unforced system ṗ2 =
f2(p2), whose proof is similar to the proof of Lemma 4.

Lemma 11. The unforced system ṗ2 = f2(p2) has two

equilibria. The first equilibrium p2 = p∗
2a corresponding

to g21 = R1g
∗
21 is almost globally asymptotically stable.
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The second equilibrium p2 = p∗
2b corresponding to g21 =

−R1g
∗
21 is (exponentially) unstable.

In fact, every initial condition, other than the unstable equi-

libirium point, is in the region of attraction of the equilibirium

point p∗
2a.

Lemma 12. The system (42) has two equilibria. The equi-

librium p2 = p∗
2a is almost globally asymptotically stable.

The equilibrium p2 = p∗
2b is exponentially unstable. All

trajectories with p2(0) 6= p∗
2b, R2(0) 6= R1 asymptotically

converge to the stable equilibrium.

Proof: We first prove the system (42) satisfies the ultimate

boundedness property. Consider the potential function V =
1
2‖p2 − p∗

2a‖2 which is positive definite, radially unbounded

and V = 0 if and only if p2 = p∗
2a. Then,

V̇ = (p2 − p∗
2a)

⊤ṗ2

= −2(p2 − p∗
2a)

⊤Pg21
R1g

∗
21 + (p2 − p∗

2a)
⊤h2

= −2(p2 − p∗
2a)

⊤Pg21

d21
(p2 − p∗

2a) + (p2 − p∗
2a)

⊤h2

≤ −2 sin2 α(0)

d21
‖p2 − p∗

2a‖2 + ‖p2 − p∗
2a‖‖h2‖

≤ −κV + 2d21‖h2‖, (44)

where κ = 4d−1
21 sin2 α(0), and α is the angle between

p∗
2a − p2 and g∗

21. Since ‖p2 − p∗
2a‖ is bounded, it follows

from equation (44) that the system (42) satisfies the ultimate

boundedness property [35, Proposition 3].

When h2(t) = 0, the unforced system has two isolated

equilibria with properties given in Lemma 11. Since the system

(42) satisfies Assumptions A0-A2 in [35] and the ultimate

boundedness property, (42) is almost globally ISS with respect

to the equilibrium p2 = p∗
2a based on [35, Proposition 2].

Since h2(t) → 0 as proved in Lemma 10, the equilibrium

p2 = p∗
2a of (42) is almost globally asymptotically stable [34,

Theorem 2].

3) The second follower: The second follower’s dynamics

is given by

ṗ3 = f3(p3,p2) + h3(t)

= −2Pg31
R1g

∗
31 − 2Pg32

R1g
∗
32 + h3(t). (45)

Lemma 13 is about the unforced systems:

ṗ3 = f3(p3,p
∗
2a) (46)

ṗ3 = f3(p3,p
∗
2b). (47)

Lemma 13. The system (46) has a globally asymptotically

stable equilibrium p∗
3a where g31 = R1g

∗
31 and g32 = R1g

∗
32.

The system (47) has an unstable equilibrium p∗
3b where g31 =

−R1g
∗
31 and g32 = −R1g

∗
32.

Proof: The result follows from Lemma 6.

Lemma 14. The cascade system (42), (45) has two equilibria.

The equilibrium p2 = p∗
2a, p3 = p∗

3a is almost globally

asymptotically stable. The equilibrium p2 = p∗
2b, p3 = p∗

3b

is unstable. All trajectories starting out of the undesired

equilibrium asymptotically converge to the stable equilibrium.

Proof: As in Lemma 12, we firstly prove that the system

(45) satisfies the ultimate boundedness property if p2(0) 6=
p∗
2b. Consider the Lyapunov function V = 1

2‖p3 − p∗
3a‖, the

derivative of V is given by

V̇ =− 2(p3 − p∗
3)

⊤(Pg31
R1g

∗
31 +Pg32

R1g
∗
32 − h3)

=− 2(p3 − p∗
3)

⊤

(
Pg31

‖z∗31‖
+

Pg32

‖z∗32‖

)

(p3 − p∗
3)

+ (p3 − p∗
3)

⊤ Pg32

‖z∗32‖
(p2 − p∗

2a) + (p3 − p∗
3)

⊤h3

≤− 2(p3 − p∗
3)

⊤M(p3 − p∗
3)

+ ‖p3 − p∗
3‖
(‖Pg32

‖
‖z∗32‖

‖p2 − p∗
2a‖+ ‖h3‖

)

≤− 2κ‖p3 − p∗
3‖2 + ‖p3 − p∗

3‖
(

2d21
‖z∗32‖

+ ‖h3‖
)

,

(48)

where κ > 0 as defined in Lemma 6. Further, in equation

(48), ‖h3‖ is bounded from Lemma 10. Thus, if ‖p3 − p∗
3a‖

is large enough, the second term is O(‖p3 − p∗
3a‖) while

the first term is O(−‖p3−p∗
3a‖2), and V̇ < 0. Consequently,

‖p3−p∗
3a‖ is bounded and we can choose m3 such that m3 >

max
t≥0

‖p3 − p∗
3a‖. It follows that

V̇ ≤ −2κV + 2d21‖z∗32‖−1m3 +m3‖h3‖,

or the system (45) satisfies the ultimate boundedness property.

When h3(t) = 0, the unforced system has two isolated

equilibria with properties given in Lemma 13. Since the

system (45) satisfies Assumptions A0-A2 and the ultimate

boundedness property, (45) is almost globally ISS with respect

to the equilibrium p3 = p∗
3a [35, Proposition 3].

Because h3(t) → 0 as proved in Lemma 10, the equilibrium

p3 = p∗
3a of (42) is almost globally asymptotically stable [34,

Theorem 2].

4) The overall system: Consider the n-agent system (40)

ṗ = f(p) + h(p, t),

We have the following lemma whose proof follows from

Lemma 11 and repetitively applying Lemma 12.

Lemma 15. The unforced system ṗ = f(p) has two equilibria.

The first equilibrium p = p∗
a corresponding to gij = R1g

∗
ij ,

∀g∗
ij ∈ B is almost globally asymptotically stable. The second

equilibrium p = p∗
b corresponding to gij = −R1g

∗
ij , ∀g∗

ij ∈
B is unstable.

Finally, the main result of this section is given in the

following Theorem.

Theorem 3. Consider the system (33)–(34). Under Assump-

tions 1-4 and the proposed control laws (35), (37) and (38),

Ri → R1 (i = 1, . . . , n) and p → p∗
a asymptotically if

initially R2(0) 6= R1,p2(0) 6= p∗
2b.

Proof: We have Ri → R1, ∀i = 1, . . . , n according

to Lemma 9. The convergence of p to the target formation

follows from Lemma 12, Lemma 14, and by invoking mathe-

matical induction as in Theorem 1.
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V. REGULATING THE TARGET FORMATION

In this section, we study two strategies to regulate the LFF

formations given that the n-agent system starts from a forma-

tion which is bearing congruent to the desired formation. First,

we propose a strategy to control the formation’s orientation

by switching the leader’s orientation. Second, we show that

by controlling the distance between the leader and the first

follower, we can control the formation scale.

A. Controlling the formation’s orientation

As proved in Section IV, under the two-layer control strat-

egy, the n-agent system (33)-(34) almost globally asymptoti-

cally converges to the desired formation p∗
a corresponding to

gij = R1g
∗
ij , ∀(i, j) ∈ E . The desired formation’s orientation

with regard to the global reference frame is thus determined by

the leader’s orientation. When the actual formation is identical

with the desired formation gij = g∗
ij , Ri = R1 for all

1 ≤ i ≤ n, the leader can control the overall formation’s

orientation with regard to the global reference frame by

switching its orientation R1 to a new orientation R′
1. The

new orientation must satisfy the following assumption.

Assumption 5. The new orientation R′
1 is contained within a

closed ball B̄r(R1) of radius r less than π/2, or equivalently,

the symmetric part of (R′
1)

⊤R1 is positive definite.

Corollary 1. Under Assumptions 1–3 and control laws 36-

(38), if initially, the formation is at a desired equilibrium

satisfying gij(0) = R1g
∗
ij , ∀g∗

ij ∈ B, Ri(0) = R1, ∀i =
1, . . . , n, and agent 1 switches its orientation to R′

1 satisfying

Assumption 5, the formation asymptotically converges to a for-

mation with the same formation scale satisfying gij = R′
1g

∗
ij ,

∀g∗
ij ∈ B.

Proof: Since the new orientation R′
1 satisfies Assump-

tion 5, after the leader switches its orientation, the convergence

of all other agents’ orientations to R′
1 is guaranteed and thus

Ri → R′
1, 2 ≤ i ≤ n.

The new desired formation has to satisfy gij = R′
1g

∗
ij ,

∀g∗
ij ∈ B. Because g21(0) = R1g

∗
21, R2(0) = R1, after the

leader switches its orientation, agent 2 cannot be at the new

undesired equilibrium, i.e., g21(0) 6= −R′
1g

∗
21, R2(0) 6= R′

1.

Therefore, the convergence of the formation to the new desired

formation follows immediately from Theorem 3.

B. Rescaling the formation

In practice, it may be desired to control the scale of the

formation. If only the bearing information is measured, there is

apparently no basis to control the size of the overall formation.

Suppose the formation is in its desired shape. Further, assume

that one distance, d12, between the leader and first follower,

for which there is an associated desired distance constraint d∗,

can be measured by the leader. It turns out that by controlling

d12, the whole other distances in the LFF formation will be

controlled. The scale adjustment control law is proposed as

ṗ1 = α1(d
2
12 − (d∗)2)(p2 − p1), (49)

where α1 > 0 is a control gain.

Proposition 3. Under Assumptions 1–3, if the LFF formation

is initially in a desired formation, agent 1 moves under the

control law (49) and other agents move under the control law

(37)-(38), then the LFF formation asymptotically converges to

a new desired formation with formation scale specified by d∗.

Proof: Firstly, since the formation is assumed to be ini-

tially at a desired formation, all local orientations are aligned

and will not be changed with time.

Secondly, the first follower is initially in its desired position,

that is g21(0) = R1g
∗
21, and it will not move (ṗ2 = 0) because

the motion of the leader preserves g21. This fact follows from

∂g21

∂p1
ṗ1 =

Pg21

d12
α1(d

2
12 − (d∗)2)(p2 − p1)

= α1
d212 − (d∗)2

d12
Pg21

z12 = 0. (50)

We prove that d21 converges to d∗ exponentially fast. To

this end, consider the distance dynamics

d

dt
(d212) =2α1(d

2
12 − (d∗)2)z⊤21(p2 − p1)

=− 2α1d
2
12(d

2
12 − (d∗)2). (51)

Consider also the Lyapunov function V = 1
4 (d

2
12 − (d∗)2)2

which is positive definite, continuously differentiable and

radially unbounded. Further, V = 0 if and only if d12 = d∗.

We have

V̇ = −α1d
2
12(d

2
12 − (d∗)2)2 < 0, ∀d12 6= d∗,

and V̇ = 0 if and only if d221 = (d∗)2. Since V̇ ≤ 0, it follows

that d212 is bounded and the variable d12 increases or decreases

monotonically to the desired distance d∗12. Thus, there exists

κ = α1 mint≥0 d
2
12(t) > 0 and

V̇ = −α1d
2
12(d

2
12 − (d∗)2)2 ≤ −κV ≤ 0.

It follows that d12 converges to d∗ exponentially fast [40].

The remaining proof for convergence of other followers is

similar to the proof of Theorem 1.

Consequently, the formation scale asymptotically converges

to the desired one, which is fully determined by the distance

between the leader and the first follower as discussed in

Lemma 3.

VI. SIMULATION RESULTS

In this section, we consider an eight-agent system with an

LFF graph as depicted in Fig. 2. The desired bearing vectors

were chosen satisfying Assumption 3 and such that the desired

formation is a cube in R
3.

A. Simulation 1: Achieving the desired formation

In this simulation, the leader’s initial conditions are p1(0) =
[0, 0, 0]⊤, R1(0) = I3. Other agents’ orientations were ran-

domly chosen such that Assumption 4 is satisfied. Agent 1

is placed at the origin. Agent 2’s initial position is chosen at

p2(0) = [1,
√
3, 0]⊤, which is not an undesired equilibrium.

Figure 7 depicts trajectories and orientations of eight agents.

The initial orientations and the final orientations are colored
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Fig. 7: Simulation 1: Achieving the desired formation with

orientation alignment.

black and red, respectively. Observe that agent 1 does not

move in this simulation, and d21(t) = d21(0) = 2, ∀t ≥ 0. In

the final formation, all orientations are aligned and all desired

bearing vectors are satisfied. Thus, the simulation result is

consistent with Theorem 3.

B. Simulation 2: Rotating formation by switching leader’s

orientation

This simulation continues from the end of Simulation 1,

i.e. eight agents have taken up the desired formation shape

described in the previous simulation. Agent 1 switches its

orientation from I3 to

R′
1 =





0.7071 0 0.7071
0.3536 0.8660 −0.3536
−0.6124 0.5000 0.6124



 ,

which satisfies Assumption 5. Figure 8 depicts trajectories

and orientations of eight agents after agent 1 switched its

orientation. The final formation is rotated by R′
1 from the

initial formation and all agent’s local orientations converge

to R′
1. Agent 1 does not move in this simulation. Also,

the formation’s scale does not change during the system’s

evolution and d21(t) = 2, ∀t ≥ 0.

C. Simulation 3: Rescaling the formation

This simulation continues from the end of Simulation 2.

The leader starts to control the scale. It is shown in Fig. 9

that the formation is rescaled to the desired formation scale,

and d21(t) → d∗ = 1. Agent 1 moves along a straight line

toward agent 2 while agent 2 does not move since its bearing

constraint g∗
21 is always satisfied. Thus, the simulation result

is consistent with Proposition 3.

VII. CONCLUSIONS

This paper studied bearing-based leader-first follower (LFF)

formation control in an arbitrary dimensional space. The
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Fig. 8: Simulation 2: Rotating the target formation by switch-

ing the leader’s orientation.

stability of LFF formations under the proposed bearing-only

control law was extensively examined. As far as we know,

this is the first paper fully dedicated to the stability analysis

of a directed bearing-constrained formation in an arbitrary

dimensional space. Additionally, strategies to achieve the

desired formation without a common reference frame, to rotate

and to rescale the formation were also addressed.

Several problems in bearing-only based formation control

are still open. For example, a bearing-based persistence theory

on directed formations has not yet been developed. Further

studies on formations containing directed cycles may lead to

some ideas for solving this problem. We are also planning to

implement the control law in quadcopter systems with vision

sensors. Hardware implementation may raise many practical

issues in bearing-based formation control including agent’s

nonlinear dynamics, bearing measurement errors, and vision

sensor’s range.
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