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Hamiltonian path analysis of viral genomes
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Cryo-electron microscopy (EM) is undergoing a revolution,
enabling the study of viral pathogens in unprecedented detail.
The asymmetric EM reconstruction of bacteriophage MS2 at
medium resolution (8.7 Å) by Koning et al.1, and the subsequent
reconstruction at even higher resolution (3.6 Å) by Dai et al.2

revealed the structures of both the protein shell and the asym-
metric genomic RNA and the unique maturation protein (A). It is
the start of a wave of such structural data for viruses, and calls for
the development of new analytical tools to describe the results.
One approach is Hamiltonian path analysis (HPA) that we
introduced to describe repeated, sequence-specific contacts
between the MS2 genome and its protein shell3. Here, we describe
how HPA is consistent with the new structures and, in turn, how
it extends our understanding beyond the structural data alone.

Koning et al.’s and Dai et al.’s reconstructions of MS2 reveal
multiple contacts between genomic RNA and the viral capsid.
These mimick the contacts seen by crystallography of virus-like
particles carrying multiple copies of the high-affinity RNA
packaging signal in this virus, the translational repressor (TR) that
functions also as assembly initiation signal4. TR occurs only once
in the MS2 genome, but insights into the roles played by RNA-
coat protein (CP) contacts during assembly5 together with normal
mode analysis6 and structural studies suggest that many different
stem loops (SLs) in the viral genome should be able to bind CP
and thus promote virion formation, i.e., act as RNA packaging
signals (PSs). HPA has enabled us to identify such sites within the
MS2 genome7, which is important, because it underlies the
development of a new paradigm for ssRNA virus assembly based
on multiple PSs, that seems to occur very widely in nature8–11.

HPA is a mathematical abstraction of virus assembly pathways,
simultaneously encoding the order in which capsomers are
recruited to the growing capsid shell along different assembly
pathways. It captures geometric constraints on PS positions in the
linear genomic sequence that arise from the relative positions of
the RNA-CP-binding sites in the inner capsid surface (Fig. 1). SLs
in close proximity in the linear genomic sequence acting as PSs
must occupy proximal CP-binding sites on the inner capsid
surface. SLs distal in the genomic sequence can also potentially be
neighbours on the capsid surface, provided that the RNA segment
between them occupies the capsid interior so as to bring them
into proximity. Such constraint sets are akin to those of a
large Sudoku puzzle, and HPA collectively tests them against

experimental data. In particular, in HPA a polyhedron is used to
represent all possible connections between neighbouring CP-PS
contacts, with vertices at the binding sites and edges representing
these (possible) connections. Each CP-PS contact is unique, i.e.,
can only occur once. We therefore represent the order in which
these contacts are formed pictorially as an inscribed self-avoiding
path on the polyhedron (see Fig. 1 bottom for an example of such
a path). We stress that, in mathematics terms, this path is only
'topologically equivalent' to the more complicated 3D path taken
by the RNA, meaning that the connectivity between binding sites
with reference to the linear genomic sequence is the same in both
cases (see Fig. 1 top, illustrating how a genomic fragment con-
taining three PSs could map into 3D biology; PDB ID: 1ZDH12).
We explicitly assume that the RNA genome is highly branched,
since we predict these contacts to be with SLs located within the
MS2 genome7, as seen in the new reconstruction. The Hamilto-
nian path concept is thus an abstraction of discrete 3D contact
sites into a linear path that should be understood in the same
spirit as the simple lines between atoms in molecular structures
are shorthand for the much more complex electronic arrange-
ments of covalent bonds. We note that HPA does not require all
possible RNA-CP sites to be occupied. Indeed, testing all possible
SLs in the ensemble of putative PS candidates against all complete
Hamiltonian paths would be a complex task, and indeed is not
always possible as different interaction patterns can occur in the
vicinity of asymmetric features such as the A-protein13.

An application of HPA to MS27 has revealed that binding sites
are differentially constrained across the capsid surface, implying
that some (highly constrained) ones are likely to be present in
almost every particle, while others (mostly low affinity ones) are
more likely to vary across different particles, thus predicting that
the RNA conformation in contact with the protein shell will
exhibit some similar structural characteristics in every viral par-
ticle. This astonishing conclusion is consistent with both Koning
et al.’s and Dai et al.’s reconstructions of MS2, identifying a core
set of contacts that are present in every particle. Dai et al.
explicitly identified 15 RNA SLs in contact with CP and one in
contact with the A-protein. Our HPA in Dykeman et al.7 has
predicted all of these 15 RNA-CP contacts as shown in Fig. 2. The
additional PSs that were also identified by HPA are pre-
dominantly of lower affinity to CP, and are therefore not expected
to be present in every particle. The results of HPA are also in
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Fig. 1 Hamiltonian path representation of MS2 genome organisation. a Two consecutive PS sites in the linear genomic sequence are mapped on adjacent
binding sites in the inner capsid surface. The stem loops (PDB ID: 5TC1) and the backbone connecting them were reported in ref. 2. The coat protein shell is
shown as ribbons based on the icosahedrally averaged X-ray structure (PDB ID: 1ZDH12). b These neighbouring PS contacts are represented by HPA as a
short segment of an inscribed path connecting binding sites in the capsid interior, irrespective of their relative distance in the linear genomic RNA and the
tertiary structure of the RNA fragment connecting them
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Fig. 2 PSs in the MS2 genome predicted by HPA analysis and confirmed by cryo-EM. The secondary structure of the MS2 genome is shown as a series of
stem-loops (SLs), with the 15 SLs seen in the TR binding sites of the phage coat protein dimers in the asymmetric cryo-EM reconstruction2, and predicted
to be PSs via HPA (Dykeman et al7), indicated by magenta boxes. Other SLs in the genome share characteristic MS2 coat protein recognition motifs with
these 15 PSs, and were also proposed to be PSs. It is possible that at least some of these also contact coat protein dimers during PS-mediated assembly, but
disengage thereafter and thus are not visible in the virion. Genomic SLs are numbered increasing in the 5′-to-3′ direction, preceded by their genetic locus,
i.e. 5′UTR (untranslated region) (5U#), A protein (A#), CP (C#), replicase (R#) and 3′UTR (3U#).
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excellent agreement with the RNA-CP-binding sites identified via
cross-linking immunoprecipitation (CLIP) experiments14

The HPA has been key in identifying the nature of the RNA-
CP contacts in MS2, and thus is fundamental to our under-
standing of the virion structure. It has played a central role in
establishing the packaging signal hypothesis3,9–11,15–18, and in
understanding how PSs cooperatively promote efficient virus
assembly16. This suggests that HPA should be useful also for the
study of the many other viruses, whose complete structures are
likely to emerge in the near future from modern EM studies. Such
structures will also highlight those viruses that exploit the mul-
tiple RNA packaging signal-mediated assembly mechanism.
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