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Iridescence is an optical phenomenon whereby colour changes with the

illumination and viewing angle. It can be produced by thin film interference

or diffraction. Iridescent optical structures are fairly common in nature, but

relatively little is known about their production or evolution. Herewe describe

the structures responsible for producing blue-green iridescent colour in

Heliconius butterflies. Overall the wing scale structures of iridescent and

non-iridescent Heliconius species are very similar, both having longitudinal

ridges joined by cross-ribs. However, iridescent scales have ridges composed

of layered lamellae,which act asmultilayer reflectors. Differences in brightness

between species can be explained by the extent of overlap of the lamellae

and their curvature as well as the density of ridges on the scale. Heliconius

are well known for their Müllerian mimicry. We find that iridescent structural

colour is not closely matched between co-mimetic species. Differences appear

less pronounced in models of Heliconius vision than models of avian vision,

suggesting that they are not driven by selection to avoid heterospecific court-

ship by co-mimics. Ridge profiles appear to evolve relatively slowly, being

similar between closely related taxa, while ridge density evolves faster and

is similar between distantly related co-mimics.

1. Introduction
Structural colour and in particular iridescent structural colour is widely distribu-

ted in nature, for example, in beetle elytra, the shells of molluscs, bird feathers,

plants and butterfly wings [1]. It most often arises from one of two phenomena,

diffraction or thin-film interference. In most butterflies studied to date, structural

colours are produced by thin-film interference [2–4],when light is reflected off the

upper and lower surfaces of thin films ofmaterial, in this case cuticle, composed of

chitin [5], with a different refractive index (n ¼ 1.56) from that of the surrounding

medium (air). This creates an optical path difference between scattered light

waves that gives rise to interference. The reflected colour will depend on the

angle of incidence and thickness of the air and chitin layers. On butterfly wings

these thin cuticle layers are present within flat scales around 100 mm in size,

arranged in rows of, usually, twodifferent forms of scale: cover scales overlapping
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ground scales. The surface of each scale comprises a lattice

of raised longitudinal ridges joined together by cross-ribs

(figure 1) [2]. The longitudinal ridges can be composed of

layered lamellae, which are responsible for producing irides-

cence in some butterflies [3,6,7]. Little is known about the

developmental processes that give rise to layered thin film

structures in butterflies [7]. By comparing closely related

species that differ in their structural colour we can identify

how aspects of scale structure and development have evolved

to optimize the reflected colour appearance [8]. An improved

understanding of scale structure development could provide

useful insights for replicating biological nanostructures for

commercial or technological applications [9].

The neotropical Heliconius butterflies have been widely

studiedover the last 150years, largely because of their intriguing

diversity in colour and pattern and the near perfect mimicry

between closely related species [10]. These studies have demon-

strated that Heliconius colour patterns are under strong positive

frequency-dependent selection due to predator avoidance of

local warning patterns [11,12], which also drives mimicry

between species. Colour patterns also have an important role

in mate choice and mate recognition in these species, with

changes in colour pattern resulting in divergentmate preference

and also playing a role in driving speciation in this system [13].

The diversity of colour and pattern in this group also makes

them an ideal system for understanding the mechanisms and

genetic pathways controlling colour and pattern production

[14,15]. The culmination of many years of genetic work has

been the identification of a small number of genes that, between

them, explain most of the diversity in pigmentation patterning

both within and between species [16–19].

By contrast, very little is known about the production of

structural colours in Heliconius. Several species exhibit an

angle-dependent iridescent blue or green colour that is also

mimetic between species [20,21] and involved in mate

choice [22]. These colours are relatively uncommon within

the greater than 40 species of Heliconius and appear to have

evolved multiple times [23]. Iridescent blue colour is found in

all members of one monophyletic group of seven species, the

‘iridescent specialists’ (Heliconius antiochus, H. leuchadia,

H. sara, H. hewitsoni, H. sapho, H. congener and H. eleuchia),

suggesting that it likely evolved in the common ancestor of

this group between 2 and 5 million years ago (figure 2)

[23,24]. Similar colours in other Heliconius species likely have

a more recent origin. For example, H. cydno has an iridescent

blue colour, which is largely absent from its sister species

(H. timareta andH.melpomene). This suggests it evolved recently

in this species (fewer than 1million years ago), likely as a result

of the co-mimicry betweenH. cydno andH. sapho orH. eleuchia.

Furthermore, subspecies of the co-mimicsH. erato andH.melpo-

mene from the western slopes of the Andes in Colombia and

Ecuador both have an iridescent blue colour, which is absent

from all other populations of these species that are widespread

across South and Central America, suggesting a very recent

origin (probably within the last 100 000 years [22,23]). The

differences in structural colour between subspecies of H. erato/

melpomene are genetically determined and not plastic responses

to environmental differences, as they are maintained when the

butterflies are reared under common conditions in captivity

andhybridsbetween subspecies are intermediate in colour [25].
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Figure 1. The general structures seen on a Heliconius wing scale. The domi-

nant structures are the ridges, these in turn comprise the ridge lamellae,

which can be overlapping as is seen in this instance. Micro ribs (mr) are

found on the walls of the ridges, some continue as cross ribs, connecting

the ridges together. The trabeculae (t) act as connections to the lower

lamina. Image is of the tip region of a blue H. eleuchia wing scale, but

these broad features were found on all scales.
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Figure 2. Phylogenetic relationships of the species and subspecies investigated

in this work (based on [23]). Blue branches indicate the inferred presence of

iridescent blue colour. Note the mimicry between distantly related species

pairs H. cydno and H. eleuchia, and between H. melpomene and H. erato.

Wing photographs were taken with consistent lighting conditions and camera

settings. Here we focus on the blue/black wing regions only.
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Here we characterize the structures responsible for produ-

cing iridescence in five subspecies, Heliconius erato cyrbia

(Godart, 1819), Heliconius sara sprucei Bates, 1864, Heliconius

eleuchia primularis Butler, 1869, Heliconius cydno alithea

(Hewitson, 1869) and Heliconius melpomene cythera (Hewitson,

1869), likely corresponding to four independent evolutionary

origins of this type of colour. The sampled individuals were

from western Ecuador where there are mimetic relationships

between H. cydno alithea and H. eleuchia primularis and

between H. erato cyrbia and H. melpomene cythera. We also

investigated the non-iridescent subspecies Heliconius erato

demophoon Ménétriés, 1855 and Heliconius melpomene rosina

(Boisduval, 1870) from Panama, which are the most

closely related non-iridescent populations of H. erato and

H. melpomene [26], to identify the structural transitions that

have occurred and give rise to iridescence in these two

species. The apparent multiple recent evolutionary origins

of iridescence make this group ideal to address the question of

how iridescent colours evolve. In addition, the presence

of mimicry between species allows us to ask how easily

such colours can evolve towards a single evolutionary

optimum structure or if there are subtle differences in

architecture that give similar iridescent optical effects.

2. Material and methods

2.1. Butterfly specimens
Specimens of the iridescent butterflies, H. erato cyrbia, H. sara,

H. eleuchia, H. cydno alithea and H. melpomene cythera,

were collected in and around the Mashpi reserve in Ecuador
(0.178N, 78.878 W) between May 2014 and February 2017.
One Heliconius sara sara (Fabricius, 1793) individual was also
collected from Gamboa, Panama (9.128 N, 79.708 W), along
with specimens of the non-iridescent H. melpomene rosina and
H. erato demophoon. Species and subspecies identification was
based on Brown [27] and Warren et al. [28]. For comparison,
we also obtained a species with a known lower lamina reflector,
the peacock butterfly (Aglais io), obtained from the company
World of Butterflies and Moths (UK). All remaining specimens
are preserved at the University of Sheffield.

2.2. Optical microscopy
We obtained images using a Nikon Eclipse ME600 optical
microscope, using 20� or 50� objective lenses and a PixeLINK
PL-A742 camera. A calibration grid (Reichert) was used to calibrate
the length scales in the images. For the peacock butterfly, we used a
mercury vapour lamp to give sufficient intensity in the UV/blue
part of the spectrum.

We also obtained images of the Heliconius species using a
Zeiss Axioscope optical microscope with a 100� objective lens
and mounted AxioCam MR5. AxioVision software was used to
obtain extended focus images by integrating information taken
from images at multiple focal planes. We imaged the surface of
H. erato cyrbia further using a Zeta-20 Optical Profiler, which
characterizes the colourand the three-dimensional surface structure.

2.3. Scanning electron microscopy
Scanning electron microscopy (SEM) samples were prepared by
cutting small regions of the wings and adhering them to SEM
stubs using conductive silver paint (AGAR, UK). These were
coated with a few nanometres of gold (AGAR) using vacuum
evaporation and imaged on a JEOL JSM-6010LA together with
InTouchScope software.

We made cross sections through the vertical ridge profile of
H. erato demophoon and H. sara, as representative non-iridescent
and iridescent Heliconius structures, respectively. The samples
were sputter coated with a few nanometres of gold–palladium
prior to mounting in a FEI Nova 600 Nanolab dual-beam focused
ion beam (FIB) and SEM. Initial studies on these samples showed
marked charging effects so individual scales were removed by
bonding them to the lift-out needle of the FIB and transferr-
ing them to a clear section of the stubs. A protective layer of
platinum was deposited by evaporation on the surface of each
scale using FIB-induced deposition. The scaleswere then sectioned
using a gallium ion beam and imaged using the SEM column of
the system.

2.4. Raman microscopy
To assess the pigment content of the scales, we performed Raman
microscopy on single cover scales, using a Renishaw inVia
measurement system (Renishaw, UK). The butterfly scales were
brought into focus using the white light source and then fine-
adjusted to optimize the signal counts for the focus using the
argon-ion laser (514.5 nm) source.

2.5. Scanning probe microscopy
A Digital Instruments Dimension 3100 scanning probe micro-
scope (SPM) was used in atomic force microscopy (AFM)
tapping mode, together with either a Nanoscopew IIIa or IV
controller. AFM data were taken using standard tapping mode
tips (Bruker) with a resonance near 320 kHz, lowered down on
either the centre or the edge of a single undamaged wing scale
in the sample. The data were subsequently flattened and
analysed, to produce two-dimensional surface topography
height images (with height represented as a colour scale) and
rendered three-dimensional surfaces using the software Gwyd-
dion and ImageSXM. Fourier analysis was performed on the
scale SPM scans and the ridge spacing extracted from the inte-
grated Fourier transform to give an image-averaged ridge
spacing over the 10 mm square image.

2.6. Small angle X-ray scattering
Transmission small angle X-ray scattering (SAXS) of the butterfly
wings was measured at the ID02 beamline (ESRF—the European
synchrotron, Grenoble, France). The camera was a Rayonix MX-
170HS CCD detector and we used X-rays with a wavelength of
0.1 nm, a beam size of 20 mm by 20 mm and a sample-to-detector
distance of 30.98 m. Between 8 and 17 measurements were col-
lected over 10–20 mm from one wing of each species/subspecies.

The two-dimensional detector images were masked to account
for the beam stop and edges of the detector, corrected for
dark, spatial distortion, normalized by transmitted flux and
subsequently radially integrated to give the one-dimensional
scattering plots of scattered intensity, I, as a function ofmomentum
transfer q, where q ¼ (4psinu)/l, 2u being the scattering angle.
Based on our interpretation of the scale structure (figure 1) and
correlating this with the X-ray scattering pattern, we were able to
use a particular peak position in the one-dimensional scattering
pattern to measure the ridge spacing (as shown in electronic
supplementary material, figure S1).

2.7. Optical reflectance spectroscopy
Reflectance measurements were taken for four individuals of each
taxon from both the hindwing and forewing. Samples were
prepared by sticking either whole wings or pieces of
wings to glass slides using a cyanoacrylate-based adhesive. The
sample slide was fixed to an optical mount on a rotation
stage. Measurements were taken at normal incidence and at
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angles parallel to the orientation of thewing scales (determined by
optical microscopy as being parallel to the wing veins). Rotations
were performed so that the distal part of the wing moved away
from the probe, because this produced the brightest reflectance
(figure 3). Measurements were taken every 28–58 to determine
the angle of brightest peak reflection for each specimen.

Reflectance spectra were captured using a spectrometer
(Ocean Optics USB2000þ, USA) connected through a bifurcated

fibre-optic probe to a PX-2 pulsed xenon light source, the third
end of the probe clamped perpendicular to the wing. Measure-
ments were normalized to the reflectance of a diffuse white
standard (polytetrafluoroethylene, Labsphere Spectralon 99% at
400–1600 nm). The SpectraSuite (Ocean Optics) software was
used to collect and average 20 individual scans, with a boxcar
width of 4 nm and an integration time of 1 s per scan for all
sample reflectance measurements.

H. melpomene cythera

H. melpomene rosina

H. cydno

H. erato cyrbia

H. erato demophoon

H. eleuchia

H. sara

wavelength (nm)

re
fl

ec
ta

n
ce

 (
%

)

−18
−16
−14
−12
−10
−8
−6
−4
−2

0
2
4
6
8
10
12
16
18
20

0
2
4
6
8
10
12
14
16
18
20

0
2
4
6
8
10
16
20
24

0
2
4
6
10
12
14

0
2
4
6
8
10
12
14

0
2
4
6
8
10
12
14
16

18
20
22
24
26
28
30

0
2
4
6
8
10

+
_

5

0

10

15

20

25

5

0

10

15

20

25

re
fl

ec
ta

n
ce

 (
%

)

5

0

10

15

20

25

5

0

10

15

20

25

re
fl

ec
ta

n
ce

 (
%

)

5

0

10

15

20

25

5

0

10

15

20

25

re
fl

ec
ta

n
ce

 (
%

)

5

0

10

15

20

25

300 400 500 600 700

wavelength (nm)

300 400 500 600 700

wavelength (nm)

300 400 500 600 700

wavelength (nm)

300 400 500 600 700

wavelength (nm)

300 400 500 600 700

wavelength (nm)

300 400 500 600 700

wavelength (nm)

300 400 500 600 700

Figure 3. Representative reflectance profiles taken from one individual forewing of each of the seven taxa with varying angles. Angles are relative to incident with

wings rotated along an anterior–posterior axis and positive angles being towards the proximal end of the wing and negative angles towards the distal end, as

shown in the lower right panel. Negative angles are only shown for H. erato cyrbia to illustrate that the patterns are not symmetrical, due to the asymmetry of the

structures when rotated along this axis.
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2.8. Analysis of spectral data and visual system

modelling
Processing and visualization of the reflectance spectra were per-
formed using the R package PAVO v. 1.1 [29]. The data were
smoothed (using the procspec function with fixneg set to zero
and span set to 0.3) and then normalized by subtracting the
minimum reflectance of a spectrum from all wavelengths (i.e.
setting the minimum to zero, using procspec, ‘min’). For some
individuals, we had multiple measurements per wing, in
which case we averaged these measurements using the aggspec

function.
We used bird and butterfly visual models to compare the

reflectance spectra and determine how similar the iridescent
colour of different species appears to the butterflies themselves
and their predators. We calculated von Kries-transformed recep-
tor quantum catches (using vismodel), for two visual systems [30].
Firstly, the average avian violet sensitive model within PAVO
v. 1.1, which has four photoreceptors (peak sensitivities 416,
478, 542 and 607 nm). Most avian predators of Heliconius are
thought to have this type of visual system [21]. The model also
included transmission through blackbird ocular media [31],
although this had little effect on the results. Secondly, we used
a Heliconius visual system model, which has four photoreceptors
[32], with receptor sensitivities from intracellular recordings by
McCulloch et al. [33] (peak sensitivities 355 nm—UV1,
390 nm—UV2, 470 nm—B and 555 nm—L). We first calculated
relative receptor quantum catches under standard daylight for
both systems, which were used for tetrahedral colour space
analysis [34].

Secondly, absolute receptor quantum catches were used
to calculate discriminability between each butterfly individual
for forewings and hindwings separately under standard daylight
(illum ¼ ‘D65’) and forest shade (illum ¼ ‘forestshade’). We used
five different visual models: avian violet sensitive, Heliconius

type I (tetrachromatic, H. erato female type), Heliconius type II
(trichomatic, H. erato and H. sara male type), Heliconius type III
(tetrachromatic, H. sara female type) and Heliconius type IV (tri-
chomatic, H. melpomene type) [35]. For the avian and Heliconius

type I and II models we followed Finkbeiner et al. [36]. Specifi-
cally, for the avian visual model, we used a Weber fraction of
0.06 and relative cone abundances of VS ¼ 0.25, S ¼ 0.5, M ¼ 1,
L ¼ 1. For the Heliconius models, we used a Weber fraction of
0.05 and relative photoreceptor abundances of UV1 ¼ 0.09,
UV2 ¼ 0.07, B ¼ 0.17, L ¼ 1 for type I, and UV2 ¼ 0.13, B ¼ 0.2,
L ¼ 1 for type II. Type III and IV relative photoreceptor abun-
dances were calculated from the percentages of ommatidial
types multiplied by the proportion of photoreceptor types
within each ommatitial type, from McCullock et al. [35]. For
type III these were UV1¼ 0.09, UV2¼ 0.13, B¼ 0.2, L¼ 1 and
for type IV these were UV1¼ 0.07, B¼ 0.26, L¼ 1. Achromatic
discriminability was based on the long wavelength photoreceptor
in all cases.

2.9. Genotyping Heliconius sara individuals
To confirm the taxonomic identity of the H. sara individuals we
sequenced a 745-bp fragment of the mitochondrial CoI gene,
which has previously been shown to be species diagnostic for
mostHeliconius species [37], for five individuals sampled inEcuador
and one sampled in Panama (including all those used for reflectance
and scale structure measurements). We used previously described
protocols for polymerase chain reaction amplificationwith oligonu-
cleotide primers Patlep and Jerry followed by Sanger sequencing
[38]. Thesewere thenalignedwithexistingsequences fromGenBank
using BioEdit Sequence Alignment Editor v. 7.2.5. We generated a
phylogenetic tree using the neighbour joining method in MEGAv.
6.06 with 1000 bootstrap replicates.

3. Results and discussion

3.1. Structural features responsible for iridescent colour

in Heliconius
As expected, reflectance measurements taken from the blue/

black region of the wings of all five species showed strong

angle-dependent effects, with both brightness and wavelength

of peak reflectance changing with angle (figure 3). In contrast,

the ‘non-iridescent’ subspecies, H. erato demophoon and

H. melpomene rosina, had very little visible light reflected from

their wings, which changed very little with angle. In general,

reflectance from both the fore- and hindwing was similar

(figures 4 and 5), suggesting that similar structures are respon-

sible, although the forewing was generally brighter than the

hindwing, perhaps suggesting some slight structural differ-

ence between the wings or possibly a difference in the

density of scales on the wings or a pigmentation difference.

The general layout of an iridescent scale is shown in

figure 1, with the long continuous ridges spaced by perpen-

dicular cross-ribs. It is possible to see the trabeculae, which

extend down into the scale. The ridges are structured with

micro-ridges (mr) perpendicular to the length of the ridge.

In the vertical axis, we see ridge lamellae. In general, the

overall scale morphology was similar between iridescent

blue and black scales (figures 4 and 5). However, the irides-

cent scales have ridge lamellae that appear to overlap in

vertical layers, which is not observed in the non-iridescent

taxa. It is this series of chitin/air/chitin lamellae repeat struc-

tures that we propose causes the iridescence in the Heliconius

butterflies we have examined. This is in agreement with a

recent analysis of wing scale structure in H. sara [39]. This

type of structure has been described in other butterfly species

previously [2], most notably as producing the bright blue

colour of Morpho butterflies [3].

Optical microscopy showed that reflected blue colour in all

five Heliconius species was highly localized to the ridges

(figure 6; electronic supplementary material, figure S2). In

some other nymphalid butterflies, such as the peacock butter-

fly,Aglais io, the lower lamina of the scale has been shown to act

as an optical thin film and reflect blue light [40]. Optical micro-

scope images from the blue eye spots of the peacock butterfly

were very different from those taken from the five Heliconius

species, with reflected colour seen in many places across the

scale rather than localized to the ridges, supporting our asser-

tion that the blue colour seen in these Heliconius species is not

due to lower lamina reflection. In addition, Raman spectra of

the blueHeliconius cover scales showa high amount ofmelanin

present, of a similar order to that seen in the blackwing regions

of the non-iridescent taxa (figure 7), which is also consistent

with the fact that the iridescent wing regions appear black at

certain angles (figure 3). This melanin would likely inhibit

any reflection being discernible from the lower lamina;

indeed, most butterfly scales that derive blue colour from the

lower lamina have little or no pigment present [42].

Images of individual H. erato cyrbia scales show that both

cover and ground scale types are similar in appearance and

reflect blue colour equally (electronic supplementary material,

figure S2), suggesting that layering of the scales on the wing

does not have a major influence on colour production, as it

does in some butterflies [3,39].

To examine the ridges in cross section, we used a focused

ion beam to section them without the need macroscopically
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to cut and possibly damage the scale structure. The ridge

structure of the non-iridescent H. erato demophoon appears

non-periodic with a near-smooth triangular profile

(figure 8a,c). In contrast, the ridge structure of bright irides-

cent H. sara showed approximately two regular periodic

chitin protrusions (figure 8b,d ), which we propose are

responsible for the iridescence. The air space and chitin

layers were 119+ 6 nm and 85+ 7 nm, respectively. In

total, this reveals the period for the structure to be 204+

10 nm and yields an effective (average) refractive index of

1.22. These values can be used to give the reflected wave-

length of 499+18 nm [43], in good agreement with the

measured reflectance peak for H. sara (Ecuador, figure 4

and table 1).

3.2. Comparison of optical and structural features

between Heliconius species
Opticalmicroscopyalso revealeddifferences between iridescent

Heliconius species.Heliconius sarahas longnear-continuous lines

of colour whereas H. erato cyrbia, H. melpomene cythera and

H. cydno have punctuated colour along the length of the

ridges (figure 6; electronic supplementary material, figure S2).

These optical differences can be explained by observed
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Figure 4. Reflectance spectra and scanning electron micrographs of wing scales for H. erato group species. Reflectance spectra are from the angle of maximum reflec-

tance and are shown as the mean and standard deviation of measurements from four individuals, for both the forewing (red/solid line) and hindwing (blue/dashed line)

for each species/subspecies. Scanning electron micrographs show one representative region for each species. White bars are 1 mm. (Online version in colour.)
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differences in ridge morphology between species. In the SEM

images of H. sara the ridges are essentially flat and uninter-

rupted, while in all other taxa the ridge lamellae are more

steeply sloped and hence are not continuous and appear to

have a variable number of layers of lamellae long their length

(figure 4). This suggests that the observed breaks in the lines

of colour along the ridges are due to parts of the ridges where

the lamellae either do not overlap or where the spacing of the

overlapping layers is not of the correct periodicity to cause

constructive interference of a visible wavelength.

There was substantial variation between individuals

within some of the species for the angle at which maximum

reflectance was observed (table 1). This is most likely due to

the wing surfaces being uneven. Nevertheless, there were

some apparent differences between species, with H. eleuchia

and H. sara generally showing maximum reflectance at

angles closer to normal incidence (08) than H. erato cyrbia

and H. melpomene cythera. Figure 9a shows ridge profiles for

each of the seven taxa extracted from SPM data from wings

in their natural state. For H. sara and H. eleuchia the structures

were fairly flat, which likely explains why the angle of maxi-

mum reflection is close to normal incidence. H. erato cyrbia

and H. melpomene cythera have more angled ridge lamellae,

with the angle of peak reflectance occurring when the wing

is rotated such that the beam and detector are perpendicular

to these. Rotating the wing in the opposite direction pro-

duced very low reflection (figure 3), as in this direction the

light beam does not fall perpendicular to the lamellae.

There were also considerable differences in brightness

between the five iridescent taxa, with H. sara and H. erato

cyrbia being the brightest and H. cydno showing the weakest

reflectance (figures 4, 5 and table 1). The SPM data suggested

two major features of scale morphology giving rise to this

variation. Firstly, as noted above, the planar nature of the

H. sara ridges likely contributes to the brighter overall optical

effect, because colour is reflected across the entire length of

the ridge, with good uniformity in the ridge optical nanos-

tructure. The taxa with the weakest iridescent colour, H.

cydno and H. melpomene cythera, have curved ridge profiles,

which reduces the uniformity of the lamellae layers. In this

respect, they are somewhat similar to the non-iridescent

taxa, which also have highly curved ridge profiles

(figure 9a). Secondly, ridge reflectors were much more den-

sely packed in H. sara (ridge spacing at 723 nm) and H.

erato cyrbia (887 nm) than the other species, where spacing

was above 1 mm, when measured using SPM over 100 mm2

(table 1). The SPM data show that the ridge height is fairly

consistent between taxa (figure 9c–f ), suggesting that these

species do not produce brighter colours by substantially

increasing the number of layers of lamellae.
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Figure 5. Reflectance spectra and scanning electron micrographs of wing scales for H. melpomene group species. See figure 4 caption for details. (Online version

in colour.)
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Ridge spacing was also inferred from the SAXS patterns

(electronic supplementary material, figure S1), and correlated

with peak reflectance (Pearson correlation from mean values,

r ¼ 20.829, p ¼ 0.021; table 1 and figure 10). These ridge spa-

cing values were derived from many measurements, each an

average over 400 mm2, so are likely to be better estimates of

the average ridge spacing than the SPM measurements,

which will be subject to individual scale variability. This com-

parison also confirmed that the H. melpomene clade species

(H. cydno and H. melpomene cythera) achieve lower reflectance

for a given ridge density than the H. erato clade species

(H. sara, H. eleuchia and H. erato cyrbia).

There were also differences between species in the wave-

length of the peak reflectance (hue), with H. sara being the

greenest (figure 4 and table 1). These differences are presum-

ably due to differences in the spacing of the ridge lamellae

layers, although data from further cross sections of the

ridge structures are needed to confirm this. Our prediction

is that the spacing of the lamellae layers will be greater in

H. sara than in the other iridescent species, leading to

constructive interference of longer wavelengths.

3.3. Colour differences between species and

visual modelling
Our measured wavelength of peak reflectance for H. sara was

considerably longer than that reported previously for samples

collected from Panama [21]. We, therefore, measured a H. sara

sara from Panama, which had a wavelength peak similar to

those measured by Thurman & Seymour [21] (electronic sup-

plementary material, figure S3), suggesting that this is a

regional difference in H. sara. To confirm that we were not in

fact measuring two different species, we genotyped our

H. sara individuals from Ecuador and Panama for the COI

gene and compared them to existing Heliconius sequences for

this gene. Of the five genotypedH. sara individuals from Ecua-

dor, three were identical to the reference H. sara sequence on

GenBank, and they showed between 98.3% and 98.5% identity

to the individual from Panama. In addition, all sampledH. sara

individuals grouped together robustly in a phylogenetic

tree (electronic supplementary material, figure S4), strongly

supporting a single species designation.

Heliconius sara may have shifted to being more green in

appearance in this population west of the Andes in Ecuador

because none of its main co-mimics (H. leucadia, H. antiochus

and H. congener and H. wallacei) are present in this area

[27,44]. The only mimic that is present is H. doris, but the blue

colour in this species is not of the same type [39]. Heliconius

doris is also polymorphic, with blue, green and red forms.

In order to better understand the selective pressures driv-

ing the evolution of these traits, we used visual models to

assess and quantify the extent of similarity in colour between

co-mimetic taxa. Birds are thought to be themain visual preda-

tors of Heliconius and as such to be the main force driving

10 mm 10 mm

(a)

(c)

(b)

Figure 6. Optical microscope images showing that the blue colour localizes to the ridge structures in Heliconius. (a) Extended focus, dark field microscopy image of

part of two scales on a H. erato cyrbia wing. (b) For comparison, part of two blue scales on the wing of Aglais io, a known lower lamina reflector. (c) True colour

three-dimensional image from the Zeta-20 Optical Profiler, of scales on a H. erato cyrbia wing.
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mimicry between species [10,45]. Birds are tetrachromatic, with

four different photoreceptor types that allow colour

discrimination along four axes. Avian visual systems can be

broadly classed into two types, violet and UV sensitive,

based on the peak absorbance of their shortest wavelength

sensitive opsin [46,47]. The main butterfly predators in

South America belong to the tyrant flycatcher (Tyrannidae)

and jacamar (Galbulidae) families [45], both of which have

visual systems that are sensitive to violet but not ultraviolet

colours [46].

Wing colours are also important cues for the butterflies

themselves, particularly in mate choice [10]. The visual sys-

tems of butterflies are very different from those of birds [33].

In particular, the Heliconius butterflies have undergone a

duplication of the UV sensitive opsin, allowing them to see

additional colours in the UV range [32]. This raises the possi-

bility that some differences in colour between co-mimics

may be visible to the butterflies but not avian predators. This

would presumably be a selective advantage, allowing the

butterflies to distinguish conspecifics frommimics, and so pre-

vent wasted effort courting non-conspecifics, while gaining

the protection benefits of mimicry. We would, therefore,

predict co-mimics to be less discriminable in models of bird

vision when compared to butterfly vision. However, the

results of visual modelling found the opposite to be the case

(figure 11). Under both ideal daylight and forest shade lighting

8000
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Figure 7. Single scale Raman spectra measurements from cover scales. The melanin peak appears at wavenumbers 1588 and 1408 cm21 [41], this signal being due

to the in-plane stretching of the aromatic rings and linear stretching of the C–C bonds within the rings, and is also accompanied by components from the C–H

vibrations in both the methyl and methylene groups. The measured blue wing regions of H. erato cyrbia, H. cydno and H. eleuchia contain similar melanin

concentrations to the black wing regions of H. erato demophoon and H. melpomene rosina.

2 mm
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Figure 8. Focused ion beam interrogation of the surface of a H. erato demophoon cover scale (a) and a H. sara cover scale (b) showing crenelated like structures

perpendicular to the ridge surface. In (c) and (d ) the vertical ridge profile is highlighted in white to appreciate the difference between non-iridescent H. erato

demophoon (c) and iridescent H. sara (d ).
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Figure 9. (a) The ridge profile extracted from a single ridge for each of the seven taxa using AFM scans. The inset shows an AFM tip scanning along a cover scale

ridge structure. (b) A representative AFM image of the surface of a blue iridescent region for H. cydno showing the saw tooth like ridge discontinuities. The blue

dashed line highlights the ridge profile shown in (a), while the orange dashed line shows the ridge heights, shown in (c– f ) for two iridescent and two

non-iridescent subspecies. (Online version in colour.)

Table 1. Summary of reflectance parameters and ridge spacing measurements for all taxa.

species

ridge

spacing from

AFM (nm)

ridge spacing

from SAXS

(nm)b

wavelength of

peak reflectancea

(nm)

full width at

half maximuma

(nm)

angle of

maximum

reflectance (88888)a

maximum

reflectance

valuea (%)b

H. erato cyrbia 887 812+ 28 369+ 8 177+ 12 11.8+ 4.9 19.4+ 9.3

H. erato demophoon 1149 1063+ 39 ≏700 n.a. n.a. 2.4+ 1.4

H. sara (Ecuador) 723 742+ 28 497+ 7 191+ 5 10.0+ 7.2 30.6+ 10.1

H. sara (Panama) — — 443+ 3 274+ 2 3.5+ 0.7 15.9+ 2.1

H. eleuchia 1159 889+ 73 455+ 12 172+ 1 6.0+ 3.5 14.4+ 5.3

H. cydno 1143 929+ 58 390+ 2 192+ 20 6.7+ 3.0 3.4+ 1.1

H. melpomene cythera 1242 823+ 22 362+ 10 180+ 9 16.7+ 4.6 6.4+ 2.4

H. melpomene rosina 1253 1025+ 82 ≏700 n.a. n.a. 1.9+ 0.7

aMeasurements are from within the bird/butterfly visible range (300–700 nm) from forewings given as mean values from four individuals+ s.d., except for

H. sara from Panama, where only a single individual was measured and values are means of three measurements.
bThese values are plotted in figure 10.

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
15:

20170948

10

 on May 3, 2018http://rsif.royalsocietypublishing.org/Downloaded from 

http://rsif.royalsocietypublishing.org/


and for both forewings and hindwings, co-mimetic species

were more discriminable with the avian visual model than

any of the Heliconius models. Achromatic discriminabilites

were similar for the birds and butterflies, but very high for

both taxa, suggesting that both visual systems could easily dis-

criminate species based on brightness. This suggests that the

lack of perfect mimicry between species is not due to selection

for conspecific recognition, and instead may be due to devel-

opmental constraint in the ability to rapidly evolve specific

photonic structures.

This result is surprising, given that the Heliconius species

largely differ along the blue–UV axis. This can be seen in a

colour space analysis, where the species do appear more dis-

tinct in Heliconius visual space than in avian visual space

(electronic supplementary material, figure S5). The reason the

discriminability analysis finds poorer discrimination with the

Heliconius visual systems is that it takes into account relative

photoreceptor densities: the Heliconius visual system has rela-

tively fewer photoreceptors sensitive in the blue/UV range,

even though it has more types within this range. Nevertheless,

the visual models are a simplification of the visual systems and

little is known about precisely how the relative abundances

and distribution of photoreceptor types will influence colour

discrimination [48,49].

Recent work by McCulloch et al. [35] has shown that a

change occurred in the visual system on the branch leading to

the ‘iridescent specialists’ including H. sara and H. eleuchia,

suggesting that the evolution of iridescence and the change of

the visual system occurred around the same time. This change

only occurred in the female visual systems: the males of both

H. erato and H. sara do not express the UV1 opsin (type II

visual system), while females of both species do (type I and

type III visual systems inH. eratoandH. sara females respectively)

[35]. In the visual models, the male type II system is less able

to discriminate the co-mimics (figure 11; electronic supplemen-

tary material, figure S5), suggesting that iridescent colour may

have a more important role in female than male mate choice.

In the H. melpomene clade, both sexes have a trichromatic visual

system, lacking the UV2 opsin (type IV visual system) [35], but

their predicted discrimination ability is better than the type II

visual systems, suggesting that the UV1 opsin is more useful

for discriminating these colours. We also note that the discrimi-

nation ability of the Heliconius visual systems is slightly better

under forest shade lighting conditions than under standard day-

light, while the opposite is true of the avian visual system

(figure 11), which may suggest an advantage to these types of

colours in more shaded environments.

There are other aspects of these iridescent signals that are

not captured by visual modelling. Firstly, both the brightness

and wavelength of peak reflectance change with angle

(figure 3). This may mean that differences that are obvious

to predators when measured on stationary wings may not

be perceived as such on live, moving individuals. Secondly,

the layered thin film reflectors that produce the iridescent

colour are also known to produce polarization of the reflected

light [22,24,49,50]. This can be detected by butterflies

[22,51,52], but probably not by avian predators. Therefore,

the differences in the ridge reflectors that we have documen-

ted between species could allow species discrimination by

producing different polarization signals, even though the col-

ours seem less readily discriminated by the butterflies than

avian predators.

3.4. Evolutionary insights into the biological process

of constructing a ridge reflector
Within Heliconius it appears that modification of the scale

ridges to produce multilayer reflectors has occurred multiple

times. Nevertheless, co-mimetic species do not appear to

have achieved perfect mimicry in these structural colours,

suggesting that there are developmental constraints in the

evolutionary ability to modify the ridge reflectors. The

brightest iridescence and highest degree of modification of

the scale ridges is seen in H. sara, which belongs to a clade

of all iridescent species, which likely evolved iridescence sev-

eral million years ago. This suggests that structural changes

have accumulated gradually over evolutionary time to pro-

duce brighter structural colour in this group. In contrast,

H. erato is remarkable in that it appears to have very recently

evolved relatively bright structural colour.

There appear to be three key features that determine the

variation in hue and brightness of structural colour in these

species: ridge density, curvature of the lamellae that make up

the ridges and layering of the lamellae. Ridge density appears

to evolve relatively rapidly, with mimetic species having

similar ridge density (table 1 and figure 10). In contrast, ridge

curvature appears to be more slowly evolving in these species,

with distinct differences observed between the two major

clades: the H. erato clade species (H. erato, H. eleuchia and

H. sara) all appear to have flatter ridge profiles, while the

H. melpomene clade species (H. melpomene and H. cydno) have

more curved ridge profiles (figure 9). This also holds for the

non-iridescent taxa: H. erato demophoon appears to have a less

curved ridge profile thanH.melpomene rosina. This may explain

why H. erato cyrbiawas able to rapidly evolve bright iridescent
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Figure 10. Taxa with lower ridge spacing (higher ridge density) have higher

peak reflectance. The slope of the relationship is greater for taxa in the

H. erato group (H. e. demophoon, H. e. cyrbia, H. sara, H. eleuchia) than

for taxa in the H. melpomene group (H. cydno, H. m. cythera,

H. m. rosina), likely due to differences in the structure of the ridges them-

selves, as observed with SEM and AFM. Co-mimetic pairs H. e. cyrbia/

H. m. cythera and H. eleuchia/H. cydno have similar ridge density. Values

are mean+ s.d. for each species/subspecies, as shown in table 1. Ridge spa-

cing is calculated from SAXS data from 8–17 measurements across one wing

of each species/subspecies. Reflectance values are from four individuals of

each species/subspecies.
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a threshold of 2 is also indicated with a dotted line). Five visual systems are compared: avian violet sensitive (avian), Heliconius type I (heli.I, tetrachromatic,

H. erato female type), Heliconius type II (heli.II, trichomatic, H. erato, H. sara and presumed H. eleuchia male type), Heliconius type III (heli.III, tetrachromatic,
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structural colour, while H. melpomene cythera and H. cydno

appear not to have been able to.

Previous work on other butterflies has shown that the

ridges form between longitudinal actin filaments during

development [54–56]. Less is known about what causes fold-

ing of the ridges in order to produce the ridge lamellae.

Ghiradella [56,57] has proposed that they could be produced

by buckling of the ridges under mechanical stress and that

the actin filaments may also be responsible for producing

this stress. This would be consistent with results from

Dinwiddie et al. [54] who showed that actin also played a

critical role in the elongation of the cell. The Heliconius butter-

flies provide an ideal system to understand these processes

better through comparisons of scale development and

molecular genetics.
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Florestas Neotropicais. Campinas, Brazil:

Universidade Estadual de Campinas.

28. Warren AD, Davis KJ, Stangeland EM, Pelham JP,

Willmott KR, Grishin NV. 2016 Illustrated lists of

American butterflies. See http://www.butterflieso

famerica.com (accessed on 2 August 2017).

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
15:

20170948

13

 on May 3, 2018http://rsif.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/10.1038/nature01941
http://dx.doi.org/10.1038/nature01941
http://dx.doi.org/10.1364/AO.30.003492
http://dx.doi.org/10.1098/rspb.1999.0794
http://dx.doi.org/10.1242/jeb.02051
http://dx.doi.org/10.1364/OE.19.024061
http://dx.doi.org/10.1111/j.1365-2435.2006.01100.x
http://dx.doi.org/10.1111/j.1365-2435.2006.01100.x
http://dx.doi.org/10.1002/jmor.1052020106
http://dx.doi.org/10.1002/jmor.1052020106
http://dx.doi.org/10.1098/rsif.2005.0071
http://dx.doi.org/10.1098/rsif.2005.0071
http://dx.doi.org/10.1038/nnano.2007.152
http://dx.doi.org/10.1111/jeb.12672
http://dx.doi.org/10.1111/jeb.12672
http://dx.doi.org/10.1098/rspb.2012.1968
http://dx.doi.org/10.2307/2409217
http://dx.doi.org/10.1038/35077075
http://dx.doi.org/10.1038/35077075
http://dx.doi.org/10.1038/sj.hdy.6800873
http://dx.doi.org/10.1111/j.1525-142X.2009.00358.x
http://dx.doi.org/10.1111/j.1525-142X.2009.00358.x
http://dx.doi.org/10.1126/science.1208227
http://dx.doi.org/10.1126/science.1208227
http://dx.doi.org/10.1073/pnas.1204800109
http://dx.doi.org/10.1038/nature17961
http://dx.doi.org/10.1038/nature17961
http://dx.doi.org/10.1016/j.cois.2016.05.013
http://dx.doi.org/10.1126/science.1179141
http://dx.doi.org/10.1111/jzo.12305
http://dx.doi.org/10.1038/423031a
http://dx.doi.org/10.1038/423031a
http://dx.doi.org/10.1093/sysbio/syv007
http://dx.doi.org/10.1242/jeb.02713
http://dx.doi.org/10.1073/pnas.0306243101
http://dx.doi.org/10.1073/pnas.0306243101
http://www.butterfliesofamerica.com
http://www.butterfliesofamerica.com
http://www.butterfliesofamerica.com
http://rsif.royalsocietypublishing.org/


29. Maia R, Eliason CM, Bitton P-P, Doucet SM,

Shawkey MD. 2013 pavo: an R package for the

analysis, visualization and organization of spectral

data. Methods Ecol. Evol. 4, 906–913. (doi:10.1111/

2041-210X.12069)

30. Vorobyev M, Osorio D, Bennett ATD, Marshall NJ,

Cuthill IC. 1998 Tetrachromacy, oil droplets and

bird plumage colours. J. Comp. Physiol. A 183,

621–633. (doi:10.1007/s003590050286)

31. Hart NS, Partridge JC, Cuthill IC, Bennett ATD. 2000

Visual pigments, oil droplets, ocular media and

cone photoreceptor distribution in two species of

passerine bird: the blue tit (Parus caeruleus L.) and

the blackbird (Turdus merula L.). J. Comp. Physiol. A

186, 375–387. (doi:10.1007/s003590050437)

32. Bybee SM, Yuan F, Ramstetter MD, Llorente-

Bousquets J, Reed RD, Osorio Daniel, Briscoe AD.

2012 UV photoreceptors and UV-yellow wing

pigments in Heliconius butterflies allow a color

signal to serve both mimicry and intraspecific

communication. Am. Nat. 179, 38–51. (doi:10.

1086/663192)

33. McCulloch KJ, Osorio D, Briscoe AD. 2016

Determination of photoreceptor cell spectral

sensitivity in an insect model from in vivo

intracellular recordings. J. Vis. Exp. e53829. (doi:10.

3791/53829)

34. Stoddard MC, Prum RO. 2008 Evolution of avian

plumage color in a tetrahedral color space: a

phylogenetic analysis of new world buntings.

Am. Nat. 171, 755–776. (doi:10.1086/587526)

35. McCulloch KJ, Yuan F, Zhen Y, Aardema ML, Smith

G, Llorente-Bousquets J, Andolfatto P, Briscoe AD.

2017 Sexual dimorphism and retinal mosaic

diversification following the evolution of a

violet receptor in butterflies. Mol. Biol. Evol. 34,

2271–2284. (doi:10.1093/molbev/msx163)

36. Finkbeiner SD, Fishman DA, Osorio D, Briscoe AD.

2017 Ultraviolet and yellow reflectance but not

fluorescence is important for visual discrimination of

conspecifics by Heliconius erato. J. Exp. Biol. 220,

1267–1276. (doi:10.1242/jeb.153593)

37. Nadeau NJ et al. 2014 Population genomics of

parallel hybrid zones in the mimetic butterflies,

H. melpomene and H. erato. Genome Res. 24,

1316–1333. (doi:10.1101/gr.169292.113)

38. Dasmahapatra KK, Silva-Vásquez A, Chung J-W,

Mallet J. 2007 Genetic analysis of a wild-caught

hybrid between non-sister Heliconius butterfly

species. Biol. Lett. 3, 660–663. (doi:10.1098/rsbl.

2007.0401)

39. Wilts BD, Vey AJM, Briscoe AD, Stavenga DG. 2017

Longwing (Heliconius) butterflies combine a

restricted set of pigmentary and structural

coloration mechanisms. BMC Evol. Biol. 17, 226.

(doi:10.1186/s12862-017-1073-1)

40. Stavenga DG, Leertouwer HL, Wilts BD. 2014

Coloration principles of nymphaline butterflies: thin

films, melanin, ommochromes and wing scale

stacking. J. Exp. Biol. 217, 2171–2180. (doi:10.

1242/jeb.098673)

41. Parnell AJ et al. 2015 Spatially modulated structural

colour in bird feathers. Sci. Rep. 5, 18317. (doi:10.

1038/srep18317)

42. Stavenga DG, Matsushita A, Arikawa K. 2015

Combined pigmentary and structural effects tune

wing scale coloration to color vision in the

swallowtail butterfly Papilio xuthus. Zool. Lett. 1,

14. (doi:10.1186/s40851-015-0015-2)

43. Kinoshita S. 2008 Structural colors in the realm of

nature, pp. 215–263. Singapore: World Scientific.

(doi:10.1142/9789812709752_0009)

44. Rosser N, Phillimore AB, Huertas B, Willmott KR,

Mallet J. 2012 Testing historical explanations

for gradients in species richness in heliconiine

butterflies of tropical America. Biol. J. Linn. Soc.

105, 479–497. (doi:10.1111/j.1095-8312.2011.

01814.x)

45. Jiggins CD. 2017 The ecology and evolution of

Heliconius butterflies: a passion for diversity. Oxford,

UK: Oxford University Press.

46. Hart NS. 2001 The visual ecology of avian

photoreceptors. Prog. Retin. Eye Res. 20, 675–703.

(doi:10.1016/S1350-9462(01)00009-X)

47. Hart NS, Hunt DM. 2007 Avian visual pigments:

characteristics, spectral tuning, and evolution.

Am. Nat. 169, S7–S26. (doi:10.1086/510141)

48. Briscoe AD, Chittka L. 2001 The evolution of color

vision in insects. Annu. Rev. Entomol. 46, 471–510.

(doi:10.1146/annurev.ento.46.1.471)

49. Kelber A. 2016 Colour in the eye of the beholder:

receptor sensitivities and neural circuits underlying

colour opponency and colour perception. Curr. Opin.

Neurobiol. 41, 106–112. (doi:10.1016/j.conb.2016.

09.007)

50. Stavenga DG, Wilts BD, Leertouwer HL, Hariyama T.

2011 Polarized iridescence of the multilayered elytra

of the Japanese jewel beetle, Chrysochroa

fulgidissima. Phil. Trans. R. Soc. B 366, 709–723.

(doi:10.1098/rstb.2010.0197)

51. Vukusic P, Sambles JR, Lawrence CR. 2000 Structural

colour: colour mixing in wing scales of a butterfly.

Nature 404, 457. (doi:10.1038/35006561)

52. Kelber A. 1999 Why ‘false’ colours are seen by

butterflies. Nature 402, 251. (doi:10.1038/46204)

53. Kinoshita M, Sato M, Arikawa K. 1997 Spectral

receptors of Nymphalid butterflies.

Naturwissenschaften 84, 199–201. (doi:10.1007/

s001140050377)

54. Dinwiddie A, Null R, Pizzano M, Chuong L, Leigh

Krup A, Ee Tan H, Patel NH. 2014 Dynamics of

F-actin prefigure the structure of butterfly wing

scales. Dev. Biol. 392, 404–418. (doi:10.1016/

j.ydbio.2014.06.005)

55. Overton J. 1966 Microtubules and microfibrils in

morphogenesis of the scale cells of Ephestia

kühniella. J. Cell Biol. 29, 293–305. (doi:10.1083/

jcb.29.2.293)

56. Ghiradella H. 1974 Development of ultraviolet-

reflecting butterfly scales: how to make an

interference filter. J. Morphol. 142, 395–409.

(doi:10.1002/jmor.1051420404)

57. Ghiradella H. 1984 Structure of iridescent

lepidopteran scales: variations on several themes.

Ann. Entomol. Soc. Am. 77, 637–645. (doi:10.1093/

aesa/77.6.637)

rsif.royalsocietypublishing.org
J.
R.
Soc.

Interface
15:

20170948

14

 on May 3, 2018http://rsif.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/10.1111/2041-210X.12069
http://dx.doi.org/10.1111/2041-210X.12069
http://dx.doi.org/10.1007/s003590050286
http://dx.doi.org/10.1007/s003590050437
http://dx.doi.org/10.1086/663192
http://dx.doi.org/10.1086/663192
http://dx.doi.org/10.3791/53829
http://dx.doi.org/10.3791/53829
http://dx.doi.org/10.1086/587526
http://dx.doi.org/10.1093/molbev/msx163
http://dx.doi.org/10.1242/jeb.153593
http://dx.doi.org/10.1101/gr.169292.113
http://dx.doi.org/10.1098/rsbl.2007.0401
http://dx.doi.org/10.1098/rsbl.2007.0401
http://dx.doi.org/10.1186/s12862-017-1073-1
http://dx.doi.org/10.1242/jeb.098673
http://dx.doi.org/10.1242/jeb.098673
http://dx.doi.org/10.1038/srep18317
http://dx.doi.org/10.1038/srep18317
http://dx.doi.org/10.1186/s40851-015-0015-2
http://dx.doi.org/10.1142/9789812709752_0009
http://dx.doi.org/10.1111/j.1095-8312.2011.01814.x
http://dx.doi.org/10.1111/j.1095-8312.2011.01814.x
http://dx.doi.org/10.1016/S1350-9462(01)00009-X
http://dx.doi.org/10.1086/510141
http://dx.doi.org/10.1146/annurev.ento.46.1.471
http://dx.doi.org/10.1016/j.conb.2016.09.007
http://dx.doi.org/10.1016/j.conb.2016.09.007
http://dx.doi.org/10.1098/rstb.2010.0197
http://dx.doi.org/10.1038/35006561
http://dx.doi.org/10.1038/46204
http://dx.doi.org/10.1007/s001140050377
http://dx.doi.org/10.1007/s001140050377
http://dx.doi.org/10.1016/j.ydbio.2014.06.005
http://dx.doi.org/10.1016/j.ydbio.2014.06.005
http://dx.doi.org/10.1083/jcb.29.2.293
http://dx.doi.org/10.1083/jcb.29.2.293
http://dx.doi.org/10.1002/jmor.1051420404
http://dx.doi.org/10.1093/aesa/77.6.637
http://dx.doi.org/10.1093/aesa/77.6.637
http://rsif.royalsocietypublishing.org/

	Wing scale ultrastructure underlying convergent and divergent iridescent colours in mimetic Heliconius butterflies
	Introduction
	Material and methods
	Butterfly specimens
	Optical microscopy
	Scanning electron microscopy
	Raman microscopy
	Scanning probe microscopy
	Small angle X-ray scattering
	Optical reflectance spectroscopy
	Analysis of spectral data and visual system modelling
	Genotyping Heliconius sara individuals

	Results and discussion
	Structural features responsible for iridescent colour in Heliconius
	Comparison of optical and structural features between Heliconius species
	Colour differences between species and visual modelling
	Evolutionary insights into the biological process of constructing a ridge reflector
	Data accessibility
	Authors’ contributions
	Competing Interests
	Funding

	Acknowledgements
	References


