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We present the structural and magnetic properties of fully epitaxial Fe(110)/MgO(111)/GaN(0001)

tunnel barrier structures grown by molecular beam epitaxy. In-situ reflection high-energy electron

diffraction and ex-situ X-ray diffraction measurements indicate epitaxial Fe(110) films on top of an

epitaxial 2 nm MgO(111) tunnel barrier on GaN(0001). X-ray reflectivity measurements confirm a

roughness of approximately 0.3 nm and 0.7 nm for the MgO/GaN and the Fe/MgO interfaces,

respectively. Results of in-situ magneto-optical Kerr effect measurements indicate that 1 nm thick

Fe film shows signs of in-plane ferromagnetism at room temperature. Vibrating sample magnetom-

eter measurements determine the saturation magnetisation of the 5 nm thick film to be

16606 100 emu/cm3 and show that this system has a predominant uniaxial anisotropy contribution

despite the presence of cyclic twinned crystals. We estimate the values of effective uniaxial (Keff
U )

and cubic (Keff
1 ) anisotropy constants to be 117006 170 erg cm�3 and �33006 700 erg cm�3 by

fitting the angular dependence of the magnetising energy. Published by AIP Publishing.

https://doi.org/10.1063/1.5022433

I. INTRODUCTION

Epitaxial growth of ferromagnetic (FM) layers on semi-

conductor (SC) substrates is of paramount importance for

creating sharp interfaces. These enable highly efficient spin

transport through the structures without unwanted interface

scattering and thus are a prerequisite for a high tunneling

magneto-resistance (TMR) ratio.1,2

In the past three decades, epitaxial FM/SC heterostruc-

tures such as Fe/GaAs(001)3,4 were extensively studied, in

particular, for the realisation of the spin field-effect transistor

(FET).5 The injection, manipulation, and detection of a spin-

polarized current in a SC material have the promising advan-

tage of combining magnetic storage with electronic readout

in a single device with multiple functionalities.6 This paved

the way for spintronics and new technologies such as the

magnetic random access memory to emerge. An important

obstacle in the realisation of the proposed spin FET was

identified as the conductivity mismatch which exists between

a FM metal and a SC which limits drastically the spin injec-

tion efficiencies.7 This problem can be addressed by several

possible means such as the insertion of an oxide tunneling

barrier between the FM metal and the SC material.8

Magnesium monoxide (MgO) has recently attracted much

attention because epitaxial single crystalline MgO thin films

act as a spin filter by favouring spin transport through similar

symmetry states while suppressing others as predicted theo-

retically.1,2 The spin filtering effect of MgO has been mea-

sured experimentally,9,10 while the magnetic properties of

the FM metal remained relatively unperturbed.11,12 Gallium

nitride (GaN), a wide-band gap semiconductor with EGs

¼ 3.2 eV at 300K and less commonly known with a high

thermal stability,13 has found many applications in opto-

electronics, high-frequency, and high-power microelectron-

ics.14 However, it is also an attractive substrate for spin

transport15 as spin lifetimes of 20 ns were previously mea-

sured16 and a few hundred ns at room temperature (RT) were

predicted for electrons injected into GaN,17 which are three

orders of magnitude larger than the spin lifetimes in GaAs.

In this paper, we present, to the best of authors’ knowl-

edge, the first experimental investigation of fully epitaxial

Fe/MgO/GaN heterostructures grown by molecular beam

epitaxy (MBE). The aim is to study the structural and mag-

netic properties of epitaxial ultra-thin Fe films on MgO tun-

nel barriers grown epitaxially on the GaN(0001) surface and

hence to ascertain their potential for electrical spin transport

device fabrication.

II. EXPERIMENTAL PROCEDURE

The growth and in-situ measurements were carried out

in a ultra-high vacuum (UHV) “multiple technique” molecu-

lar beam epitaxy (MBE) chamber, combining low-energy

electron diffraction (LEED), reflection high-energy electron

diffraction (RHEED), and longitudinal magneto-optical Kerr

effect (MOKE) set-up, at a base pressure of 3� 10�10 mbar.

An epitaxial 2.1 lm thick GaN(0001) layer was grown

directly on c-plane sapphire (Al2O3) substrates by metal

organic chemical vapour deposition using a Thomas Swan

6� 2 in. close-coupled showerhead reactor. By keeping aa)Author to whom correspondence should be addressed: ai222@cam.ac.uk
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high threading dislocation density of 2� 109 per cm2 (Fig. 1)

for the GaN layer, the wafer bow after growth is minimal

with a convex radius of curvature of about 62.5m, as mea-

sured by in-situ optical monitoring (Laytec EpiCurve). High

resolution X-ray diffraction (XRD) measurements with Cu

Ka radiation of the (0004) GaN reflection (not shown)

yielded 2h¼ 72.8952� and hence the lattice spacing

d¼ 1.2966 Å and c¼ 5.1864 Å. The bulk value for the

relaxed lattice parameter is c¼ 5.1851 Å (ICDD-PDF #

500792). Therefore, the estimated tensile strain in the out-of-

plane direction is dc/c¼ 2.5� 10�4 and the compressive

strain in-plane is da/a¼�4.9� 10�4. We can hence con-

clude that the GaN layer is as close as possible to its bulk

value and that the impact of strain on the structural and mag-

netic properties of the subsequently grown MgO and Fe

layers has been minimised as far as possible. The grown sub-

strates were then transferred in atmosphere to the MBE

chamber.

Before being introduced into the UHV MBE chamber,

the GaN(0001) surface was cleaned with acetone and isopro-

panol in an ultrasonic bath for 5 min in each solvent. After

this, the substrate was rinsed in de-ionized water and dry-

blown with N2 gas. After transferring the GaN substrate to

the MBE chamber through a load-lock, the substrate temper-

ature was increased to 250 �C for 30min in order to obtain a

clean and ordered surface. For the epitaxial growth of the

MgO tunnel barrier, we followed in parts the detailed growth

study on MBE MgO growth as published by Losego et al.18

After the surface preparation, a 2 nm thick MgO layer was

grown by evaporating directly from a high-purity (99.999%)

single MgO crystal, contained in a Ta crucible. The deposi-

tion rate for MgO growth was 0.3 monolayer per minute

(ML/min) in 4.2� 10�8 mbar partial pressure of oxygen

(O2), while the substrate was kept at RT. After the MgO

deposition, Fe layers with thicknesses ranging from nomi-

nally 1 to 5 nm were deposited at RT from a 99.999% pure

Fe source in an e-beam evaporator at a growth rate of 0.6

ML/min. The base pressure of the chamber was around

2� 10�10 mbar, and the O2 partial pressure was estimated to

be at least below 1� 10�9 mbar during the Fe deposition

according to our previous calibration. A quartz microbal-

ance, calibrated against X-ray reflectivity (XRR) with an

accuracy of �610% in the thickness estimation, was

employed to monitor the deposition rate in-situ. To prevent

the oxidation of the Fe film for ex-situ measurements, the

sample was finally capped with a protective 7 nm Au layer.

All in-situ MOKE measurements were performed at RT and

prior to the Au capping layer deposition. Ex-situ characteri-

zation of the sample was conducted by X-ray diffraction

(XRD) and X-ray reflectivity (XRR) for its structural and

interface properties on a Bruker D8 Discover diffractometer.

Ex-situ magnetic measurements at RT were performed by

using a Microsense (model EVX) vibrating sample magne-

tometer (VSM).

III. RESULTS AND DISCUSSION

Fe(110)/MgO(111) epitaxial films were epitaxially

grown on a GaN(0001) substrate. Figure 2(a) presents a hex-

agonal LEED pattern of the GaN(0001) surface, acquired at

the beam energy of 180 eV after the surface preparation.

LEED was used to check the crystalline order of our sub-

strates and film surfaces. We obtained sharp spots exhibiting

hexagonal symmetry as expected for a GaN(0001) surface,

with a low background intensity. Figures 2(b)–2(h) present

the evolution of the RHEED patterns for the sample before,

during and after MgO and Fe deposition. The incident elec-

tron beam at the energy of 15 keV was parallel to the “a”

axis, GaN ½1120�ð0001Þ.
The RHEED pattern with faint Kikuchi lines from the

GaN(0001) surface, as shown in Fig. 2(b), indicates a high

quality, smooth, and long range ordered single crystalline

surface in agreement with the LEED image [Fig. 2(a)]. From

the RHEED image shown in Fig. 2(c), taken after the deposi-

tion of 2 nm MgO, we observe the epitaxial growth of the

tunnel barrier MgO. There are two possible orientations of

the growth of rocksalt-structure MgO on wurtzite-structure

GaN according to Craft et al.19 One possibility is the

MgO h110i directions which lie along the GaN h1120i direc-
tions and the other one is the MgO h110i directions which lie

along the GaN h1100i directions. The two orientations are

nearly degenerate from a lattice match perspective with

6.9% tensile against 7.4% compressive stress, respectively.

Craft et al., while mentioning that it is difficult to speculate

about a chemical preference between these two possibilities,

obtained only the 6.9% tensile strain epitaxial in-plane rela-

tion. The atomic row spacing of our MgO film obtained from

the RHEED patterns, as seen in Table I, also indicates the

former case, with the following epitaxial relationship:

ð111ÞMgOjjð0001ÞGaN; ½101�MgOjj½1120�GaN. The sche-

matic is shown in Fig. 3.

We infer that the Fe films grow epitaxially on the MgO

film from Figs. 2(d)–2(h).20,21 With increasing Fe film thick-

ness, the intensity of the specular spots increases relative to

the other features, implying that the surface becomes thicker.

Figure 2(h) shows the presence of additional streaks (indi-

cated by black lines) which point to in-plane cyclic twinned

(in-plane triplets) Fe crystals. The epitaxial relationships

can be assumed as 110ð Þh001iFejj 111ð Þh110iMgO . Hauch

FIG. 1. 53 5 lm2 atomic force micrograph of the surface of the GaN(0001)

template. Black spots indicate dislocations. The bar on the right indicates

the contrast scale.
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et al.22 and Lazarov et al.23 studied the growth of Fe(110)

films on MgO(111) and reported the same epitaxial relations.

The spacing between the streaks is inversely propor-

tional to the atomic row spacing of the film. Hence, the cor-

responding lattice spacing can be estimated by measuring

the streak separation. The observed values of the lattice

spacing/atomic row spacing determined from the RHEED

images are shown in Table I. The lattice spacing along GaN

1120½ � calculated from the RHEED patterns corresponds

well to the theoretical values calculated from the schematics

shown in Fig. 3. The proposed growth of our heterostructure,

including the observed cyclic twinned (triplets) Fe crystal

domains (green) on MgO(111) (red), is shown on the back-

ground GaN(0001) lattice. Despite the insertion of the MgO

barrier, the crystallographic relations of Fe and GaN remain

unaltered as compared to the epitaxial Fe/GaN(0001)

structures.24–26

X-ray diffraction patterns were collected with a Bruker

D8 Discover high-resolution X-ray diffractometer. Figure 4

shows the XRD scan of the completed heterostructure. Sharp

diffraction peaks from the GaN(0002) and (0004) as well as

Al2O3(0006) and Au(111) planes are visible in the XRD pat-

tern. The MgO film is too thin (2 nm) for a visible XRD peak

TABLE I. Relative RHEED streak separation and corresponding lattice

spacing (measured and bulk) along GaN 1120½ �.

Relative

RHEED spacing

Measured atomic

row spacing (Å)

Bulk atomic

row spacing (Å)

GaN 1 2.76 (assumed) 2.76

MgO 1.16 0.1 2.56 0.3 2.58

Fe (1.26 0.1)

and (1.46 0.1)

(2.36 0.2)

and (2.06 0.1)

2.34 and 2.03

FIG. 3. Schematic diagram of three Fe lattices (green) on MgO (111) lattice

planes (red) overlayed on a c-plane GaN lattice (black).

FIG. 2. (a) Hexagonal LEED pattern at 180 eV of the GaN(0001) surface

before deposition. The arrow depicts the crystallographic in-plane direction.

RHEED patterns taken at 15 keV beam energy along the [1120] direction of

the GaN substrate of (b) the GaN(0001) surface before deposition and (c)

after deposition of 2 nm MgO, and (d)–(h) for 1, 2, 3, 4, and 5 nm thick Fe

layers. The missing spots of the 4 nm film (g) are likely due to the misalign-

ment of the electron beam.

FIG. 4. X-ray diffraction pattern of the sample (7 nm Au/5 nm Fe/2 nm

MgO/GaN(0001)). The inset shows X-ray reflectometry data of the same

sample. The black open squares represent the measured XRR data and the

red line represents the best fit.
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to appear. The small broad peak at �44.5� can be either

Au(200) or Fe(110) or a superposition of both. If the Au

would be polycrystalline the (200) peak should be half of

(111) but this is not the case. So the scan is indicative of

either a Au(111) textured or an Fe(110) film growth.

The X-ray reflectivity measurement was performed to

estimate the thickness and interface roughness of the depos-

ited films. The results obtained were fitted using the LEPTOS

software. Obtained thickness and roughness values correspond

well with the design values, as presented in Table II.

In-situ MOKE hysteresis loops of the Fe films were col-

lected during the growth at RT with an applied field range of

500Oe in the longitudinal geometry. To improve the signal-

to-noise ratio, each loop presented was obtained by averag-

ing over 100 times. Figures 5(a)–5(f) show the hysteresis

loops and the measured coercivity of the 1 nm to 5 nm thick

Fe films. As can be seen from Fig. 5, the hysteresis loop of

the 1 nm Fe film demonstrates signs of ferromagnetism at

RT with an in-plane magnetisation. As the thickness of the

Fe layer, t, increases from 2 nm to 5 nm, the hysteresis loop

area becomes wider and the coercivity increases. Interface

defects, acting as pinning sites for the magnetisation rever-

sal, could be the reason for the high coercivity of the 1 nm

film compared to the thicker films. The coercivity value

obtained for the 5 nm film was similar to the values reported

previously.26,27

In order to study the competing magnetic anisotropies and

to estimate the magneto-crystalline anisotropy constants, we

performed VSM measurements at different in-plane angles u

for the 5 nm sample. The saturation magnetisation (M
s
) of the

Fe film, measured at RT, was found to be 16596 100 emu/

cm3, close to the bulk value of 1714 emu/cm3. Figure 6 shows

two VSM hysteresis curves taken along one of the a ½1120�
and m ½1100� directions of the GaN(0001), demonstrating easy

and hard axis switching, respectively.

In order to investigate the magnetic anisotropy in more

detail, the VSM hysteresis loops were taken at every three

degrees of the sample angle. Figures 7(a) and 7(b) show the

polar plots of the squareness ratio (M
r
/M

s
) and coercivity

(Hc) of the 5 nm thick Fe film, respectively. The squareness

shows a clear uniaxial trend. The coercivity displays a simi-

lar uniaxial pattern, but with an underlying six-fold anisot-

ropy, loosely aligning with the hexagonal symmetry of the

base GaN substrate.

The magnetising energy, xm, was determined by the

method used in Bayreuther et al.28 First, the M-H loops were

made anhysteretic by shifting the up- and down-sweep scans

by the corresponding coercivity. Field values of the anhyste-

retic loops were then integrated from zero magnetisation to

TABLE II. The values of density, thickness, and roughness as estimated

from XRR measurements.

Material Density (g/cm3) Thickness (nm) Roughness (nm)

Au 19.28 7.3 0.6

Fe 7.88 5.7 1.0

MgO 3.57 2.0 0.7

GaN 6.09 … 0.3

FIG. 5. In-situ MOKE loops (a)–(e)

for 1, 2, 3, 4, and 5 nm thick Fe layers

grown on MgO(111)/GaN(0001). (f)

Variation in MOKE coercivity versus

Fe films thickness. The dotted line rep-

resents a guide to the eye.
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positive saturated moments, as in
ÐMs

0
H:dM, to obtain the

values of xm. The angular dependence of the magnetizing

energy is displayed in Fig. 8 (black open squares). The over-

all magnetic anisotropy seems mainly uniaxial, with small

variations which may represent the minor fourfold or sixfold

contributions from the Fe(110) lattice.

In order to obtain anisotropy constants, Eq. (1) from

Bayreuther et al.28 was used to fit the magnetising energy

xBay
m uð Þ ¼ �

Keff
1

4
sin2 2uþ wð Þ þ Keff

U sin2 uþ wð Þ þ const:;

(1)

where Keff
1 and Keff

U are effective cubic and uniaxial anisot-

ropy constants, u is the angle between magnetisation and the

½1100] GaN direction (corresponding to the zero sample

angle), and w is the angle between the magnetic easy axis

and the sample zero angle. As can be seen in Fig. 8, a reason-

able fit is obtained with the values of Keff
1 and Keff

U

being�33006700 erg cm�3 and 117006170 erg cm�3,

respectively. The about fourfold difference in the magnitude

of the anisotropy constants confirms that the magnetic

anisotropy is predominantly uniaxial.

Further attempts were made to improve the fitting so as

to address the observed signs of four- and six-fold contribu-

tions in the magnetising energy. We employed the expres-

sion that Gao et al.29 used successfully to describe the

sixfold magnetic anisotropy of their 30 nm-thick Fe(110)

film grown on GaN(0001). The expression involves three

different terms to address the three twinned Fe(110) domains

x3D Gao
m uð Þ ¼ A� xGao

m uð Þ þ B� xGao
m uþ

2p

3

� �

þ C

� xGao
m uþ

4p

3

� �

: (2)

With

xGao
m uð Þ ¼ �

1

32
K1 7þ 4cos2u� 3cos4uð Þ

þ
1

128
K2 2þ 2cos2u� 2cos4u� cos6uð Þ

þ
1

2048
K3 123þ 88cos2u� 68cos4uð

� 24cos6uþ 9cos8uÞ; (3)

where A, B, and C are the weighted area factors for the three

domain types, and K1, K2, and K3 are the cubic anisotropy

constants. We then replaced this expression with the effec-

tive cubic term in Eq. (1) to obtain the following fitting

equation:

xUniþ3D Gao
m uð Þ ¼ K

eff
U sin2 uþ wð Þ þ x3D Gao

m uþ wð Þ

þ const: (4)

As can be seen in Fig. 8, Eq. (4) seems to better address

the higher order angular dependencies, where the values

of A, B, and C are 0.306 0.06, 0.006 0.40, and

0.706 0.46 and K1, K2, and K3 are 63006 3800 erg cm�3,

(�2.66 2.7)� 105 erg cm�3, and (1.46 1.8)� 105 erg cm�3.

However, the numerical fit was found not to converge and the

obtained area factors were significantly different from the

equal area fractions of 0.33. It is also notable that the values

of the cubic constants K1, K2, and K3 deviate considerably

from the values obtained in Gao et al., as 4.7� 105 erg cm�3,

2.2� 104 erg cm�3, and 4.7� 105 erg cm�3, respectively.

From this result, we conclude that the contribution of the

higher order cubic components is negligible in our film, and

the magnetic anisotropy is predominantly uniaxial. We spec-

ulate that the observed uniaxial anisotropy is an interfacial

effect from the MgO/Fe interface, and a thickness-

dependence study is necessary to quantify its effect. In addi-

tion, electron backscatter diffraction measurements would be

insightful in determining the correct area fractions of each

FIG. 6. The VSM hysteresis loops along one of the a ½1120� and m ½1100�
axes of GaN(0001). Easy axis switching was observed along one of the a-

axes, while the hard axis switching was measured along one of the m-axes.

FIG. 7. Polar plots of the squareness

ratio (a) and the coercivity (b) for the

5 nm thick Fe film. Zero degree corre-

sponds to one of the GaN m axes.

103901-5 Khalid et al. J. Appl. Phys. 123, 103901 (2018)



Fe(110) domains. For this thickness (5 nm) regime, the

strongly uniaxial magnetic anisotropy could be useful in devi-

ces where pinning of the magnetisation is desirable.

IV. CONCLUSIONS

We have studied the structural and magnetic properties

of epitaxial Fe films grown on GaN(0001) with MgO(111) as

a tunnel barrier. RHEED images indicated ordered and

smooth Fe(110)/MgO(111) films as well as the presence of

cyclic twinned crystals (triplets) of Fe on top of MgO(111)

with the epitaxial relation as 110ð Þh001iFe k 111ð Þh110i
MgO k 0001ð Þh1210iGaN. In-situ MOKE results indicated

an in-plane ferromagnetism at RT for the thinnest Fe film

studied (1 nm). VSM analysis yielded a magnetic moment of

16596 100 emu cm�3, close to the bulk value. The magnetic

anisotropy was predominantly uniaxial as obtained from the

magnetising energy calculation. Using phenomenological

model, effective uniaxial (Keff
U ) and cubic (Keff

1 ) anisotropy

constants were estimated to be 117006 170 erg cm�3 and

�33006 700 erg cm�3.
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