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Abstract

Word Sense Disambiguation is a key step for many Natural Language Processing tasks (e.g. sum-

marization, text classification, relation extraction) and presents a challenge to any system that

aims to process documents from the biomedical domain. In this paper, we present a new graph-

based unsupervised technique to address this problem. The knowledge base used in this work is

a graph built with co-occurrence information from medical concepts found in scientific abstracts,

and hence adapted to the specific domain. Unlike other unsupervised approaches based on static

graphs such as UMLS, in this work the knowledge base takes the context of the ambiguous terms

into account. Abstracts downloaded from PubMed are used for building the graph and disam-

biguation is performed using the Personalized PageRank algorithm. Evaluation is carried out over

two test datasets widely explored in the literature. Different parameters of the system are also

evaluated to test robustness and scalability. Results show that the system is able to outperform

state-of-the-art knowledge-based systems, obtaining more than 10% of accuracy improvement in

some cases, while only requiring minimal external resources.

Keywords: Word Sense Disambiguation, Graph-Based Systems, Unsupervised Machine

Learning, Unified Medical Language System, Natural Language Processing, Information

Extraction.

1. Introduction

The vast amount of unstructured textual information available in the biomedical sciences has

created the need for automatic systems to access, retrieve and process these documents [1]. How-

ever, this is made more difficult by the range of lexical ambiguities they contain, including different

meanings of general terms or the different extended forms of acronyms and abbreviations. For ex-

ample, the word “surgery” may refer to the branch of medicine that applies operative procedures
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to treat diseases, or to one of those operative procedures. Also, the acronym “BSA” could refer to

multiple expansions such as “Bovine Serum Albuminum” and “Body Surface Area”. There exist

many different types of lexical ambiguity in biomedical documents, which represents an additional

challenge when performing WSD in this domain [2]: words and phrases with more than one possi-

ble meaning, abbreviations with more than one possible expansion, or names of genes which may

also contain ambiguity when standard naming conventions are not followed (the names of more

than one thousand gene terms are standard English words [3]).

In this work, we present an unsupervised technique for addressing the Word Sense Disam-

biguation (WSD) problem in the biomedical domain. This technique, based on the mathematical

background developed in [4], relies on the creation of a co-occurrence graph from a set of docu-

ments. This graph represents relations between pairs of words or concepts that appear frequently

in the same document.

The contributions of this paper are to introduce a novel graph-based approach for WSD in

the biomedical domain and, by evaluating it using datasets containing a range of ambiguities,

demonstrate that it outperforms alternative approaches that do not make use of external knowledge

sources.

The rest of the paper is organised as follows. Section 2 provides background on different

approaches to biomedical WSD found in the literature. Section 3 describes the proposed system,

detailing the different steps involved in the disambiguation process. Evaluation is carried out using

two datasets (see Section 4) with the results described in Section 5. Finally, conclusions and future

work are found in Section 6.

2. Previous Work

Regardless of whether we refer to general or specific domains, such as the biomedical one, it

is commonly accepted in the literature [5, 6, 1] that most WSD algorithms fall into one of the fol-

lowing categories: techniques that need labelled training data, and knowledge-based techniques.

The first category, also called supervised techniques, usually applies machine learning (ML) al-

gorithms to labelled data to develop a model, based on features extracted from the context of the

ambiguous words. The development of these features requires a comprehensive understanding of

the problem being addressed [7]. We can find many different studies which address general WSD

under this supervised point of view, through the use of classical machine learning algorithms [8],

and in the last few years also adapting new techniques such as word embeddings [9]. When it

comes to the biomedical domain, many works also belong to this category, making use of different

ML approaches to address the problem [10, 11, 12, 13], although the bottleneck caused by the

scarcity of labelled resources remains a major problem. Other semi-supervised works attempt to

relieve this issue by introducing “pseudo-data” to the training examples [14, 15].

Knowledge-based methods use external resources as sources of information for performing

WSD. As it happens with supervised methods, general WSD have been also addressed under this

point of view. In particular, graph-based techniques using WordNet [16] as main knowledge base

have been proved to present successful results in this kind of tasks [17, 18]. The dominant knowl-

edge source in the biomedical domain is the Unified Medical Language System (UMLS) Metathe-

saurus [19], which assigns a Concept Unique Identifier (CUI) to each medical concept. These
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concepts are then linked to other CUIs depending on the different relations between them [20].

Some methods directly convert this database into a graph [21], and use this graph for performing

the disambiguation. Other works directly use information from the UMLS database for extracting

additional information: In [22] second-order vectors are created by extracting textual information

about each of the possible senses of an ambiguous term from UMLS. The method introduced in

[23] makes use of information from the UMLS database through a statistical analysis. In this work,

the knowledge base is used for calculating the probability P (wj|ci), of finding a word wj in any

of the lexical forms related to a concept ci, or to concepts linked to it in the database. Once that

these probabilities have been found, the most suitable CUI related to an ambiguous term found in

a context (tipically, the abstract of a biomedical paper, as we will observe in the definition of the

test datasets) can be determined. For performing this disambiguation, the authors apply a method

similar to Naı̈ve Bayes which makes use of the words in the contexts, and those word-concept

probabilities previously calcualted, for ranking the candidate CUIs for the ambiguous terms. Al-

though this work presents some similarities to our system (for example, the statistical treatment of

co-occurrences), the source of knowledge used for disambiguation is directly the UMLS database,

while in our case, we built our own knowledge base in an unsupervised way from a corpus of

biomedical documents.

Hence, and as we will explain later in more detail, the structured knowledge source that we

use in the disambiguation phase of our method (the co-occurrence graph) is built automatically,

exploiting the UMLS database to convert text from the original document set to medical concepts.

However, this step can be seen as independent from the disambiguation process itself. We do not

make use of any other external structured source of information in subsequent steps since the graph

in which the disambiguation algorithm relies is directly built from those documents containing

medical concepts. We will compare the results obtained by our system with other state-of-the-art

knowledge-based systems addressing the same problem.

3. System Description

The co-occurrence graph used by the approach presented here is based on the hypothesis that

documents are consistent, i.e., there is a strong tendency for the concepts found in a document to

be related. Since this may not be true for all the concepts in the document, statistical analysis is

applied to identify those concepts in documents that do not fulfill this hypothesis. In this analysis,

only those pairs of concepts frequently co-occurring in the same documents are linked in the graph.

This technique for building the co-occurrence graph has been previously used for general WSD

tasks, such as Cross-Lingual WSD [24], with successful results, which suggests that a similar

approach could also lead to competitive results in domain-specific WSD. The proposed technique

can also be used for analysing the implications of including new potentially useful aspects to the

WSD task in the biomedical domain, such as multilinguality [25]. In that work, information from

multilingual corpora is added to the co-occurrence graphs used in the disambiguation process, for

testing whether the use of smaller multilingual corpora is able to achieve similar results than those

obtained through the use of big monolingual corpora.

Figure 1 illustrates the complete system, which we have named “Bio-Graph”: In part a), we

can observe the creation of the knowledge base, which requires a preliminary annotation step. In
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Figure 1: Construction of the co-occurrence graph (part a) and disambiguation of a test instance (part b).

this step, the text of each of the documents in the original set is transformed into medical concepts

(UMLS CUIs). This new document set is then used for building the co-occurrence graph, through

the statistical analysis that will be detailed later on. Part b) of the figure represents the disambigua-

tion of a test instance. In this process, the ambiguous target term (represented by X in the figure) is

located in the text, and its possible senses (X1, X2, ..., Xn) are extracted from a dictionary. Then,

the text of the test instance is mapped onto CUIs. With this information (CUIs from context and

possible senses) we can feed the co-occurrence graph and apply a disambiguation algorithm that

will select, among those possible solutions, the most suitable sense of the ambiguous term in that

context.

In this section, the annotation phase, as well as all the steps involved in the disambiguation,

are detailed.

3.1. Annotation

The first step in the creation of the co-occurrence graph is to annotate the biomedical con-

cepts that appear in the documents. These concepts will eventually become the nodes of the

co-occurrence graph which forms the knowledge base used by our system. The annotation step

consists in transforming the plain text that can be found in the medical documents, into CUIs that

represent equivalent medical concepts. This step could be carried out by manual annotation, al-

though in our case we perform it automatically, through the Metamap program [26], which allows

us to split the text inside a document into phrases, and map each of those phrases onto a set of

UMLS CUIs. This program offers the possibility of using a disambiguation server which helps the

user to select a candidate for each phrase in the text. We make use of this server when annotating

the documents that will be used for building the document graphs. Only unsupervised methods

have been selected in the configuration of the disambiguation server, among those provided by

the Metamap program, in order to maintain the unsupervised nature of the system throughout all
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the process, while avoiding introducing too much noise to the co-occurrence graph. A baseline

containing the results obtained by the disambiguation server considered in our experiments will

be reported in subsequent sections. As we will see, the quality of this disambiguation is far from

the results achieved in this work. We maintain the default values for the rest of the configuration

parameters when running the Metamap program.

3.2. Graph Construction

The annotation step provides a set of documents, each of them containing a list of biomedical

concepts represented by their UMLS CUIs. The next step is to determine the statistical significance

of the co-occurrence of each possible pair of concepts inside this set of documents. For this

purpose, we define a null model in which CUIs would be randomly and independently distributed

among the documents of a corpus. We then compare the actual co-occurrences of each pair of

CUIs against this null model (their probability of co-occurrence by pure chance) and select those

that present a high statistical significance (low probability of being generated by the null model).

More specifically, we calculate a p-value p for the co-occurrence of each pair of CUIs in our

corpus. If p lies below a threshold next to 0, the co-occurrence is considered to be statistically

significant, and hence those CUIs are considered to be related, and linked in the graph.

We consider two CUIs c1 and c2 appearing in n1 and n2 number of documents respectively

(total number of documents is n). We calculate in how many ways those CUIs could co-occur in

exactly k documents, by dividing the document collection in four different types of documents:

k documents containing both c1 and c2, n1 − k documents containing only c1, n2 − k containing

only c2, and n − n1 − n2 + k containing neither c1 nor c2. The number of possible combinations

is given by the multinomial coefficient:

(

N

k, n1 − k, n2 − k

)

(1)

The probability of those CUIs exactly co-occurring k times by pure chance is given by:

p(k) =

(

N

n1

)−1(

N

n2

)−1(

N

k, n1 − k, n2 − k

)

(2)

if max{0, n1 + n2 −N} ≤ k ≤ min{n1, n2} and zero otherwise.

To write equation (2) in a way that could be computationally more convenient, the notation

(a)b ≡ a(a − 1) · · · (a − b + 1) is introduced. For any a ≥ b, and without loss of generality, we

assume that n1 ≥ n2 ≥ k. Then,

p(k) =
(n1)k(n2)k(N − n1)n2−k

(N)n2
(k)k

=
(n1)k(n2)k(N − n1)n2−k

(N)n2−k(N − n2 + k)k(k)k
,

(3)

where, in the second form, we used the identity (a)b = (a)c(a − c)b−c, valid for any a ≥ b ≥ c.
Finally, equation (3) can be rewritten as
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p(k) =

n2−k−1
∏

j=0

(

1−
n1

N − j

)

×

k−1
∏

j=0

(n1 − j)(n2 − j)

(N − n2 + k − j)(k − j)
.

(4)

The following p-value p for the co-occurrence of two CUIs can now be defined:

p =
∑

k≥r

p(k), (5)

where r is the number of documents of our actual corpus in which we can find c1 and c2
together. As we stated before, if p lies below a determined threshold next to 0, the co-occurrence

is statistically significant and a link between c1 and c2 is created in the graph. P-values of 0.01 and

0.05 are conventionally used when testing statistical significance. We have used a p-value of 0.01

for all the experiments described here. We also carried out additional analysis of the behaviour

of our approach when more restrictive p-values are used (see Section 5.4). The weight of the link

between two nodes i and j can be quantified in a practical way by defining it as wij = log (p0/pij),
where p0 is the selected threshold for the co-occurrence graph and pij is the p-value calculated

using equation 5 and defining r as the actual number of co-occurrences between nodes i and j.

Hence, the weight of the link will be proportional to the order-of-magnitude difference between p
and p0.

It is important to notice that the approach described here has the advantage that it does not

assume that word frequencies are normally distributed, unlike some alternative measures of lexical

co-occurrence [27]. For example, a chi-squared method would assume data to follow a gaussian

distribution, which is not valid for many cases, especially when the number of co-occurrences is

small. Our data only approximate gaussian for very large values, so chi-squared would not be

recommended in this case. Hence we directly calculate how our actual data deviate from the null

model proposed.

3.3. Disambiguation

Once that we have built our co-occurrence graph, we need to define a disambiguation algo-

rithm. This algorithm will allow us to determine the most suitable sense (CUI) of an ambiguous

concept (acronym or term) given its context, among all the possible senses provided by a dictio-

nary. In other general WSD tasks, the selection or construction of this dictionary is a key point for

assuring the good performance of a system [28]. In this particular task, the dictionary that contains

the possible senses of every target word is publicly available.

The disambiguation algorithm that we have selected for performing this last step is the Person-

alized PageRank algorithm, initially introduced in [29]. This algorithm is based on the PageRank

algorithm [30] which has been successfully applied to WSD tasks [31]. The PageRank algorithm

is used over a graph for ranking the importance of each of its nodes. It is based on the relative

structural importance of each node of the graph, represented by its incoming and outgoing edges.
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The algorithm models, for each node, the probability of a random surfer over the graph ending on

it. PageRank values for the whole graph can be calculated through the following formula:

P = cMP + (1− c)v, (6)

where P is the vector that contains the PageRank values for each node, c is a constant called

“damping factor” usually set to 0.85, M is the matrix containing the values of the out-degrees

of the nodes and v is a N × 1 stochastic vector, being N the number of nodes in the graph. In

this work, we will maintain the default value of the damping factor, this is, c = 0.85. Hence,

the first element of the formula represents the movement of the random surfer between connected

nodes, and the second one its probability of teleporting to any node without following the edges

of the graph. By means of v, the probability of randomly jumping into a node of the graph can be

distributed among the nodes of the graph in different ways. The Personalized PageRank approach

makes use of this vector v for assigning higher probabilities to specific nodes of the graph. These

probabilities will then spread along the graph, resulting in higher PageRank values for those nodes

more influenced by the initial nodes highlighted in v.

In this case, the nodes that will be powered up in vector v are those that represent CUIs that

appear in the context of the target concept we want to disambiguate. Hence, before performing the

disambiguation step, we need to convert the plain text of each test instance onto the set of CUIs that

represent all the medical concepts that can be found in the text, also using the Metamap program.

When a term in the text is ambiguous, Metamap assigns all the possible CUIs that may correspond

to it. When it comes to a target concept, this set of possible CUIs becomes the ambiguity that our

system is trying to solve, since no disambiguation is selected in the Metamap program in this step.

The rest of the configuration parameters in Metamap are set to their default values.

Once that we have all the CUIs that belong to the context of the target concept, we build

v as a N × 1 vector whose values will be vi = 1

C
if node i represents a CUI of the context,

and 0 otherwise, being C the total number of CUIs found in the context of the target concept.

After performing the Personalized PageRank algorithm, we will select the node with highest rank,

among those representing possible senses of the target concept.

3.4. Example of Disambiguation

In this section an example of successful disambiguation illustrates the behavior of the Per-

sonalized PageRank (PPR) disambiguation on our co-occurrence graph, and compares it with the

result obtained by running PPR over a graph directly built from the UMLS database. In this

UMLS graph, two nodes are linked together if a relation between them can be found in the UMLS

database. Figure 2 shows this example divided in two parts: the top part of the figure presents

a test instance which contains the target word “culture”, to be disambiguated. A look-up to the

dictionary tells us that the two different senses (CUIs) of “culture” between which our system

should discriminate are “C0430400”, referred to a microbial culture (laboratory process), and

“C0010453”, referred to a culture from an anthropological point of view. Then, we obtain all the

CUIs that represent concepts from the context of the test instance by applying Metamap to the

text.

The second part of the figure (bottom part) illustrates the differences of applying the disam-

biguation process using our co-occurrence graph, or the UMLS graph. In our co-occurrence graph
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Figure 2: Example of disambiguation. Extraction of the target and context CUIs (top part) and comparison between

the disambiguation algorithm over the co-occurrence graph and the UMLS graph (bottom part).

the correct sense of “culture” (“C0430400”) is much more related to context CUIs than the other

sense (“C0010453”). Hence, the disambiguation algorithm selects this more connected sense to be

the most appropriate for this test instance. However, when using the UMLS graph we can observe

that both senses are poorly connected to the CUIs in the context (which will result in a higher ran-

domness when selecting a sense). In fact, the wrong sense is connected to one CUI in the context,

while the correct sense is not connected to any of the CUIs in the context. Because of that, the

disambiguation algorithm mistakenly selects the CUI “C0010453” to be the most appropriate for

this test instance.

4. Datasets

This section describes the datasets used to evaluate our system.

4.1. Acronym Corpus

The Acronym corpus [32] contains 55,655 abstracts downloaded from Medline. Each of these

abstracts contains an ambiguous acronym from a set of 21 originally developed in [33] and widely

used in previous research. These acronyms each consist of at least 3 letters and are associated

with between 2 and 5 extended forms (which are considered as senses). The dictionary for the

target concepts is then created using the CUIs that correspond to their possible extended forms.

The corpus is split into three different test datasets, containing 100 instances, 200 instances and

300 instances per ambiguous acronym, respectively. We will refer to those datasets as “A100”,

8



“A200” and “A300”. However, not all the 21 acronyms are present in every dataset, since some of

them were removed from the test datasets due to an insufficient number of instances in the main

corpus. Also, some acronyms such as “ACE”, “ASP” and “CSF” were also removed from the

initial datasets, in order to reduce their imbalance, since most of their test instances belonged to

the same extended form. As a result, the A100, A200 and A300 datasets contain 18, 16 and 14

different ambiguous acronyms respectively. The final dataset obtained after this pre-processing is

the same used by other state-of-the-art techniques to which we compare our system.

Data acquisition: Since the corpus was initially created for a supervised system, all the ab-

stracts are annotated with the extended form that corresponds to the acronym found in the text.

In this work, we present an unsupervised system that does not need these annotations, however,

we need to acquire data to build our co-occurrence graph. This data will be represented by the

abstracts from the original corpus that are not included in any of the three test datasets. Hence,

our co-occurrence graph will be created from a set of 50,143 abstracts, which will be previously

mapped onto CUIs from the UMLS database, as explained in Section 3.1.

4.2. NLM Corpus

The second corpus we will use to evaluate the performance of our system is the NLM-WSD

corpus [34]. In contrast to the Acronym corpus, this corpus is composed of general ambiguous

terms. It contains 50 terms with 100 instances per term. These instances are also abstracts down-

loaded from Medline, and manually annotated with the CUI that represents the correct sense for

the target term in each instance. However, during the creation of the corpus, annotators could

select to mark as “None” those instances for which none of the possible senses applied. We have

removed those instances, so the final test dataset, which will be referred to as “NLM”, contains

3,983 instances and 49 terms (since all the instances were marked as “None” for the term “associa-

tion”). As with the Acronym corpus, this the same pre-processing is applied to the state-of-the-art

techniques against which our system is compared.

Data acquisition: In this case, given that the NLM-WSD corpus is a test dataset itself, we

do not have a set of documents to build the co-occurrence graph. Accordingly, we downloaded

our own set of abstracts from Medline, using the Entrez interface [35]. We performed a search

for each ambiguous term of the test dataset, restricting the results to 1,000 abstracts per term. In

order to avoid downloading abstracts that could appear in the test dataset, we have only down-

loaded abstracts from year 2014. For maintaining the unsupervised nature of our technique, we

do not specify in any way the sense of the ambiguous term for performing the search, so in the

downloaded abstracts any possible sense of the target term can be found. The total number of

abstracts in this set is 35,282. Although we downloaded 1,000 possible abstracts for each of the

50 ambiguous terms in the dataset, there are abstracts containing more than one term, and hence

the reduction of the number of documents.

4.3. Dataset Properties

Table 1 resumes the characteristics of the datasets used for evaluation.

We can observe that for datasets “A200” and “A300” there is one abstract missing (given the

number of ambiguous terms, and instances per term, they should have 3,200 and 4,200 instances

respectively). This missing abstract was no longer available for download from Medline. The
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A100 A200 A300 NLM

Instances 1,800 3,199 4,199 3,983

Amb. terms 18 16 14 49

Min/Max # senses 2 / 4 2 / 4 2 / 4 2 / 5

Avg # senses 2.61 2.5 2.57 2.24

Table 1: Statistics for the different test datasets: number of instances, number of ambiguous terms (or acronyms),

minimum and maximum number of senses for a term and average number of senses per term.

average number of possible senses is higher in the Acronym corpus than in the NLM corpus,

although the total number of ambiguous terms is quite higher in this last corpus.

5. Evaluation

This section presents the results obtained by the approach described here and compares them

with other state-of-the-art systems. An exhaustive analysis of the parameters of the system is also

performed, in order to study how the results vary depending on their values.

5.1. System Results and Comparison

As we stated in previous sections, a co-occurrence graph was built for each of the evaluation

corpus: the Acronym corpus (whose graph was used for evaluating the three test datasets, “A100”,

“A200” and “A300”) and the NLM-WSD corpus. The performance metric used to evaluate system

performance in all experiments is accuracy: number of correctly disambiguated instances divided

by the total number of instances in the test dataset, expressed in %. Table 2 shows the accuracy

achieved by our system in each of the test datasets. In order to analyse the impact of the selected

co-occurrence graph when evaluating the system, we have also included the results obtained by

cross-testing our graphs, this is, using the graph created with abstracts from the Acronym corpus

for evaluating the “NLM” dataset, and vice versa. Finally, a joint graph was created combining

the 50,143 abstracts of the “non-test” Acronym corpus and the 35,282 abstracts of the acquired

“NLM-WSD related” corpus. The results of applying this joint graph to all the test datasets are

also shown in the table.

Datasets

A100 A200 A300 NLM

Acronym Graph 82.11 79.87 82.64 74.24

NLM Graph 61.83 59.59 58.83 75.45

Joint Graph 82.78 80.06 82.57 78.36

Table 2: Results (accuracy in %) for the co-occurrence graph-based system, for each of the graphs (Acronym corpus,

NLM-related acquired corpus and joint graph), in each of the different test datasets. Bold highlights the best result

obtained for each of the test datasets.

Results show that the graph created with abstracts from the Acronym corpus produces simi-

lar results on the three acronym test datasets. Regarding the cross-testing experiment, the results

obtained using the Acronym-based graph over the NLM dataset are similar to those obtained by
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using the NLM-based graph over the NLM dataset. However, the NLM-based does not perform

as well in the cross-testing scenario, i.e. when applied to the Acronym datasets. This may be due

to a greater specificity of the Acronym corpus, in which the different CUIs among which the dis-

ambiguation algorithm has to choose (representing extended forms of the acronyms), correspond

to more specific concepts. On the other hand, terms in the NLM-WSD corpus are much more

general. Hence, it is possible that some of the target CUIs of the Acronym corpus do not even

appear in the graph created from NLM-related abstracts. Also, it is likely that any graph created

from a large enough set of abstracts (such as the one created with acronym-based abstracts) con-

tains enough information about CUIs representing the general concepts of the “NLM” dataset to

perform a good disambiguation. Finally, we can observe that results obtained with the joint graph

improve those obtained with simpler graphs for all but one of the datasets. This suggests that the

combined information that can be found inside the joint graph is useful to better represent the

connections between concepts and hence help to improve the overall disambiguation. We have

conducted some additional experiments comparing the accuracy obtained using either the NLM-

based Graph or the Joint Graph, both built with the same number of documents, and the achieved

results confirm this intuition: 75.42% of accuracy of the Joint Graph against 69.12% of the NLM-

based Graph for 10,000 documents, 77.45% against 71.48% for 20,000 documents, and 77.78%

against 72.93% for 30,000 documents.

5.2. Comparison with Previous Approaches

Table 3 shows a comparison between the results obtained with our co-occurrence graph-based

system (“Bio-Graph” in the table) as well as other knowledge-based and unsupervised systems that

present results for the same datasets. The “NLM” dataset is more commonly used for evaluation

than the Acronym datasets in the literature.

The first two rows of the table show results obtained using two different baselines: in the

first row, we have the “Most Frequent Sense” (MFS) approach, which can be considered as a

supervised baseline, and represents the accuracy achieved by a system that classifies every instance

as belonging to the most common CUI for its ambiguous term. As we can observe, the MFS value

for the NLM dataset is high demonstrating that it is imbalanced (i.e. for many of the ambiguous

terms most of the instances belong to the same CUI). Also, we show results obtained by running

the Metamap program against the test dataset, and making use of the disambiguation server under

the same conditions we used for annotating the documents when building the co-occurrence graph,

as explained in Section 3.1. As we can observe, the results for the NLM dataset are quite low in

comparison with the accuracy achieved by our system. Since the Metamap program does not offer

any disambiguation for acronyms, this second baseline does not offer results for the A100, A200

and A300 datasets.

Results from our system are compared against different WSD systems, mentioned in Section

2: The PPR+UMLS system [21] uses a graph-based similar approach, which makes use of a fixed

graph built from the UMLS database, as described in the example shown in Figure 2. Although in

the original work it is only applied to the “NLM” dataset, we have also reproduced this technique

for testing the Acronym datasets, in order to obtain a better comparison. The AEC (Automatic

Extracted Corpus) system [36] is a semi-supervised approach that automatically downloads and

annotates abstracts for training a machine learning system. The JDI (Journal Descriptor Indexing)
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Datasets

A100 A200 A300 NLM

MFS 69.00 69.10 68.70 84.71

Metamap — — — 49.13

PPR+UMLS 56.33 56.99 58.02 68.10

AEC — — — 68.36

JDI — — — 74.75*

MRD — — — 63.89

2MRD 88.00 90.00 89.00 55.00

Bio-Graph 82.78 80.06 82.57 78.36

Table 3: Comparative of results (accuracy in %) for state-of-the-art systems (see text) and the system reported in this

work (Bio-Graph), for each of the different test datasets. Bold highlights the best unsupervised results obtained for

each of the test datasets.

method [37] makes use of semantic type vectors that represent each possible sense of an ambiguous

term and computes their distance to a vector representing the test instance. Although it obtains

good results for the NLM corpus, it only takes into account those senses belonging to different

semantic types, hence many instances of the NLM corpus were removed in this experiment. That

is the reason why results obtained by this system are marked with an asterisk in the table. Finally,

the MRD and 2MRD techniques are applied in [38] and [39] over the NLM corpus, while results

achieved by the 2MRD technique over the Acronym datasets are presented in [22].

As we can observe in the table, our system outperforms all the state-of-the-art knowledge-

based and unsupervised methods when applied to the NLM dataset, and even semi-supervised

ones. Regarding the improvements obtained by our method with respect to the one that uses

relations from the whole UMLS graph (PPR+UMLS), which can be considered the most similar

approach to ours, we consider that contextual information obtained from actual abstracts in the

process of building the graph is able to better represent knowledge that may eventually lead to

correctly disambiguate a term inside a different abstract. Relations from the UMLS graph can be

useful, but they do not necessarily imply that two related terms are likely to co-occur in the same

document. The second-order vector technique (2MRD) outperforms our system in the Acronym

corpus. However, while this technique makes use of additional information from UMLS (extended

definitions of the possible senses), the main contribution of our method is that our disambiguation

phase is completely based on the co-occurrence graph created from the abstracts, so it does not

need additional information from the UMLS database.

Table 4 shows the word by word analysis of results for the NLM-WSD test dataset, for all the

analysed methods, except the 2MRD system, for which we have not found those detailed results.

The Bio-Graph system is able to overcome the other systems in 24 out of 49 cases. The JDI

system offers the best result in 12 cases, AEC and MRD are able to achieve the best result in 8

cases, and finally the Personalized PageRank technique over the UMLS graph outperforms the

rest of the systems for 5 particular words. These results prove the strength of our technique across

most of the words in the test dataset, which eventually leads to the best overall accuracy achieved

by Bio-Graph.

Tables 5, 6 and 7 present a detailed description of the results obtained by the analysed systems
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NLM-WSD

Word PPR+UMLS AEC JDI MRD Bio-Graph Baseline (MFS)

adjustment 0.3550 0.6237 0.6923 0.2308 0.6882 0.6667

blood pressure 0.4800 0.3700 0.2020 0.4343 0.5000 0.5300

cold 0.2840 0.3895 N/A 0.6044 0.7579 0.9053

condition 0.4890 0.7065 0.8370 0.3370 0.9783 0.9783

culture 0.7700 0.6000 0.9700 0.8200 0.9500 0.8900

degree 0.9380 0.8923 0.7077 0.4923 0.9692 0.9692

depression 0.9410 0.9529 0.9176 0.9941 1.0000 1.0000

determination 0.9490 0.1392 1.0000 0.9936 0.9494 1.0000

discharge 0.6930 0.7067 0.5556 0.9861 0.8400 0.9867

energy 0.2760 0.4000 0.7732 0.4536 0.8200 0.9900

evaluation 0.5000 0.5000 0.5800 0.5800 0.5000 0.5000

extraction 0.2760 0.7471 0.9535 0.2907 0.8621 0.9430

failure 0.7240 0.8621 1.0000 0.5862 0.1379 0.8621

fat 0.9590 0.8356 0.9296 0.9718 0.0274 0.9726

fit 0.1110 0.8889 1.0000 0.8387 1.0000 1.0000

fluid 0.9200 0.4800 0.3608 0.6082 0.8600 1.0000

frequency 0.9890 0.6064 0.1809 0.9362 1.0000 1.0000

ganglion 0.6400 0.8600 0.9130 0.9565 0.9300 0.9300

glucose 0.9000 0.7800 0.7347 0.2755 0.9100 0.9100

growth 0.3700 0.3700 0.6500 0.6700 0.6200 0.6300

immunosuppression 0.6200 0.5700 0.7083 0.4896 0.7300 0.5800

implantation 0.8470 0.9490 0.9053 0.8316 0.8673 0.8265

inhibition 0.2220 0.8384 0.9899 0.9697 0.9899 0.9899

japanese 0.6460 0.6329 0.8947 0.9211 0.9241 0.9367

lead 0.9310 0.8276 0.1724 0.3793 0.9310 0.9310

man 0.4460 0.6522 N/A 0.3187 0.6413 0.6304

mole 0.2740 0.4405 0.9398 0.8916 0.9881 0.9881

mosaic 0.6600 0.8144 0.7273 0.5795 0.4639 0.5360

nutrition 0.3260 0.3708 0.4719 0.3933 0.2697 0.5056

pathology 0.2830 0.6061 0.8182 0.3939 0.1717 0.8586

pressure 0.9790 0.5208 0.8172 0.9836 0.9688 1.0000

radiation 0.5310 0.7449 0.7917 0.6979 0.6224 0.6122

reduction 0.5450 0.9091 0.8182 0.8182 0.7273 0.8182

repair 0.7650 0.8529 0.8358 0.8358 0.8971 0.7647

resistance 0.6670 1.0000 1.0000 0.3333 0.0000 1.0000

scale 0.8460 0.7231 0.0615 0.0615 0.9846 1.0000

secretion 0.9900 0.4600 0.9798 0.3535 0.9900 0.9900

sensitivity 0.2750 0.7255 0.2745 0.8431 0.9608 0.9608

sex 0.8500 0.6000 N/A 0.5455 0.8900 0.8000

single 0.8200 0.8900 0.9300 0.0400 0.9600 0.9900

strains 0.9680 0.9570 1.0000 0.9780 0.9785 0.9892

support 0.8000 1.0000 0.9000 0.3000 0.2000 0.8000

surgery 0.9700 0.1900 0.8990 0.9394 0.7800 0.9800

transient 0.9900 0.9100 0.9600 0.9900 0.9900 0.9900

transport 0.6910 1.0000 1.0000 0.9780 0.9894 0.9894

ultrasound 0.8300 0.7400 0.7813 0.6667 0.8400 0.8400

variation 0.7500 0.6900 0.3500 0.7600 0.8100 0.8000

weight 0.5660 0.6604 N/A 0.4717 0.3208 0.5472

white 0.6330 0.5111 0.6517 0.4831 0.6444 0.5444

Accuracy all 0.6589 0.6836 0.7475* 0.6389 0.7836 0.8471

Table 4: Word by word comparative of results (accuracy in %) obtained by the analysed systems over the NLM-WSD

test dataset, as well as by the Most Frequent Sense baseline (last column). Bold highlights the accuracy achieved by

the best system for each of the words in the dataset, without considering the baseline. Last row shows the overall

accuracy, with the best system also highlighted with bold typeface.
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for each of the three Acronym test datasets (A100, A200 and A300), respectively. The accuracy

achieved by the systems for each of the acronyms in the datasets is shown, as well as the overall

accuracy obtained by each system.

A100

Acronym 2MRD PPR+UMLS Bio-Graph Baseline (MFS)

ANA 0.8400 0.8500 0.7800 0.5800

APC 0.8800 0.7200 0.9800 0.3940

BPD 0.9600 0.3000 0.9700 0.4670

BSA 0.9500 0.8800 0.9400 0.8640

CAT 0.8800 0.5600 0.9500 0.5520

CML 0.8100 0.7500 0.9200 0.9170

CMV 0.9800 0.9700 0.9800 0.9670

DIP 0.9800 0.7900 0.9600 0.7510

EMG 0.8800 0.6900 0.1200 0.8840

FDP 0.6500 0.2300 0.9500 0.7850

LAM 0.8600 0.4800 0.9600 0.4830

MAC 0.9400 0.1500 0.6400 0.6430

MCP 0.7300 0.4100 0.6000 0.5020

PCA 0.7800 0.7200 0.9700 0.6890

PCP 0.9700 0.4200 0.9900 0.5780

PEG 0.8900 0.1600 1.0000 0.9410

PVC 0.9500 0.2300 0.2300 0.7820

RSV 0.9700 0.8300 0.9600 0.7670

Accuracy all 0.8800 0.5633 0.8278 0.6900

Table 5: Word by word comparative of results (accuracy in %) obtained by the analysed systems over the A100 test

dataset. Bold highlights the accuracy achieved by the best system for each of the words in the dataset. Last row shows

the overall accuracy, with the best system also highlighted with bold typeface.

As we can observe, the behaviour of all the systems is consistent across the three test datasets

(A100, A200 and A300). Our system is able to obtain the best accuracy for most of the acronyms

in the dataset. More specifically, Bio-Graph obtains the best result for 10 out of 18 acronyms for

the A100 dataset, 8 out of 16 for the A200 dataset, and 8 out of 14 for the A300 dataset. The

2MRD system is only able to obtain the best accuracy for a similar number of cases in the A200

dataset. However, although our system presents high results for many particular cases, achieving

good accuracy values for almost all the considered acronyms, it also presents very low accuracy

for some cases (particularly, ”EMG” and ”PVC”), probably due to the nature of the corpus used for

building the co-occurrence graph, which may suffer from lack of valuable information regarding

those acronyms. This fact causes a lower overall accuracy when compared to the 2MRD system.
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A200

Acronym 2MRD PPR+UMLS Bio-Graph Baseline (MFS)

ANA N/A N/A N/A N/A

APC 0.8700 0.7500 0.9650 0.3940

BPD 0.9500 0.2650 0.9800 0.4670

BSA 0.9300 0.8800 0.9100 0.8640

CAT 0.8700 0.5600 0.9500 0.5520

CML 0.8400 0.7650 0.9300 0.9170

CMV 0.9800 0.9700 0.9850 0.9670

DIP 0.9800 0.7950 0.9600 0.7510

EMG 0.8900 0.7050 0.1150 0.8840

FDP N/A N/A N/A N/A

LAM 0.8700 0.4850 0.9650 0.4830

MAC 0.9500 0.1450 0.6550 0.6430

MCP 0.6700 0.4100 0.6150 0.5020

PCA 0.7900 0.7286 0.9749 0.6890

PCP 0.9600 0.4200 0.5800 0.5780

PEG 0.8900 0.1600 1.0000 0.9410

PVC 0.9500 0.2500 0.2500 0.7820

RSV 0.9800 0.8300 0.9750 0.7670

Accuracy all 0.9000 0.5699 0.8006 0.6910

Table 6: Word by word comparative of results (accuracy in %) obtained by the analysed systems over the A200 test

dataset. Bold highlights the accuracy achieved by the best system for each of the words in the dataset. Last row shows

the overall accuracy, with the best system also highlighted with bold typeface.

A300

Acronym 2MRD PPR+UMLS Bio-Graph Baseline (MFS)

ANA N/A N/A N/A N/A

APC 0.8700 0.7633 0.9600 0.3940

BPD 0.9500 0.2600 0.9767 0.4670

BSA 0.9200 0.8700 0.9100 0.8640

CAT 0.8700 0.5633 0.9367 0.5520

CML 0.8300 0.7833 0.9300 0.9170

CMV 0.9800 0.9733 0.9900 0.9670

DIP N/A N/A N/A N/A

EMG 0.8800 0.7067 0.1167 0.8840

FDP N/A N/A N/A N/A

LAM 0.8800 0.4867 0.9533 0.4830

MAC 0.9500 0.1500 0.6433 0.6430

MCP 0.6800 0.4033 0.6267 0.5020

PCA 0.7900 0.7391 0.9766 0.6890

PCP 0.9600 0.4233 0.5767 0.5780

PEG 0.8800 0.1733 0.9967 0.9410

PVC N/A N/A N/A N/A

RSV 0.9800 0.8267 0.9667 0.7670

Accuracy all 0.8900 0.5802 0.8257 0.6870

Table 7: Word by word comparative of results (accuracy in %) obtained by the analysed systems over the A300 test

dataset. Bold highlights the accuracy achieved by the best system for each of the words in the dataset. Last row shows

the overall accuracy, with the best system also highlighted with bold typeface.

5.3. The effect of sense frequency: performance on the MSH-WSD dataset

The MSH-WSD dataset [39] is a test dataset also widely used in biomedical domain. It consists

of 203 ambiguous entities (106 ambiguous abbreviations, 88 ambiguous terms and 9 combinations
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of both). Apart from the inclusion of acronyms, the main difference with the NLM-WSD is the

fact that its instances are very balanced. For each possible sense of each ambiguous term of abbre-

viation, the dataset contains approximately the same number of instances (around 100). In order

to perform a more exhaustive evaluation of our method, we have also performed disambiguation

experiments over the MSH-WSD dataset.

Similarly to the NLM-WSD dataset, all the documents in the MSH-WSD dataset have been

annotated with the correct sense of the ambiguous term that they contain. Hence, the steps we have

followed for acquiring data for building the co-occurrence graph have been the same as with the

NLM-WSD dataset. This is, we have downloaded a number of abstracts for each ambiguous term,

so each abstract can refer to any of the possible senses of the term (including those not considered

in the MSH-WSD dataset). The total number of abstracts in this MSH-related corpus is 57,802.

Table 8 shows the accuracy of the already described unsupervised systems when applied to the

MSH-WSD dataset, in comparison with the Bio-Graph system.

MSH-WSD

MFS 54.50

AEC 84.48

JDI 65.51

MRD 81.18

2MRD 78.37

Bio-Graph 71.52

Table 8: Comparative of results (accuracy in %) for state-of-the-art systems (see text) and the system reported in this

work (Bio-Graph), for the MSH-WSD dataset. Bold highlights the best unsupervised results obtained for each of the

test datasets.

The table shows that the performance of the Bio-Graph system when applied to the disam-

biguation of the MSH-WSD dataset is lower than for other datasets. Regarding these results, some

further analysis have been conducted on the MSH-WSD dataset, in order to determine the reason

of the lower performance of Bio-Graph. Considering that our method relies on the use of a back-

ground corpus for building the co-occurrence graph, enough information should be found in this

background corpus regarding all the possible senses of an ambiguous term, for the co-occurrence

graph to correctly disambiguate it. Also, the number of documents containing each of the possible

senses should be similar (this is, the background corpus should be properly balanced), otherwise

the co-occurrence graph will be likely to present a bias towards the selection of those senses with

higher presence in the corpus.

Following this intuition, a word-by-word analysis of these statistics has been performed, in

order to compare the frequency of each ambiguous term and possible sense both in the Medline

database and in the automatically acquired MSH-related corpus. This analysis is shown in Table

9.

The first five rows correspond to terms or abbreviations in the MSH-WSD dataset for which

our system performs significatively worse than the abovementioned 2MRD system, selected for

this analysis due to its overall higher similarity to the Bio-Graph system. The second five rows

correspond to terms or abbreviations for which our system performs significatively better than the
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Systems Medline MSH-related

Term Bio-Graph 2MRD Term frequency (min) Balance ratio Term frequency (min) Balance ratio

AA 0.5025 0.9899 34,503 (249) 0.1707 523 (4) 0.0077

CCD 0.2979 0.9929 5011 (43) 0.3945 13 (2) 0.1818

Cortex 0.5076 0.9495 174,069 (291) 0.0077 807 (4) 0.0050

FTC 0.5533 0.9848 1312 (157) 0.5358 135 (4) 0.0305

Pneumocystis 0.4975 0.8586 8557 (849) 0.2108 70 (0) 0

Lactation 0.8782 0.6919 21,886 (1083) 0.0849 437 (197) 0.8208

Nurse 0.8081 0.6616 68,619 (291) 0.0194 686 (240) 0.5381

POL 0.9506 0.7346 9667 (65) 0.0980 242 (109) 0.8195

SARS 0.7374 0.5808 5481 (802) 0.4456 603 (289) 0.9204

Tolerance 0.8485 0.6717 122,691 (9348) 0.9294 208 (84) 0.6774

Table 9: Excerpt from the word by word comparative of results regarding the MSH-WSD dataset. Second and third

columns show the accuracy obtained by our system and by the 2MRD system, respectively. Fourth and fifth columns

show frequency statistics in Medline (see text). Sixth and seventh columns show frequency statistics in the MSH-

related corpus (see text).

2MRD system. We compare the statistics of the terms in the whole Medline database, as well

as in the MSH-related corpus that we created for evaluating our system in this dataset. For both

cases (Medline and MSH-related), we show the overall term frequency, including in parentheses

the frequency of the sense with fewer appearances, as well as the “balance ratio”, computed as

the ratio between the sense with higher frequency and the term with lower frequency, among

those selected for the evaluation dataset. This metric will come closer to 1 as the distribution of

frequencies of the senses of the given term is more balanced.

As we can observe, in those cases in which our system performs worse than the 2MRD system,

both the minimum frequency and the balance ratio in the MSH-related corpus are very low, espe-

cially when compared to the minimum frequency and the balance ratio of the Medline database.

On the other hand, those terms with better disambiguation accuracy present a more balanced distri-

bution of senses across the MSH-related corpus, and also a higher minimum and overall frequency

of appearance. This fact indicates that, for this particular dataset, and despite of obtaining a rela-

tively high number of documents for each ambiguous term when building the MSH-related corpus,

we are not gathering enough samples of some specific senses for the co-occurrence graph to cor-

rectly disambiguate the test instances that correspond to those senses. Hence, the annotation step

should be revisited in order to deal with this issue.

5.4. Parameter Analysis

In this section we explore the effect of varying the two parameters used by the approach de-

scribed here. The joint graph (built with abstracts from both the Acronym and the NLM-related

corpus) is used for the experiments described here.

The first parameter is the threshold for the p-value p (see Section 3.2). This threshold, denoted

by p0, establishes the highest accepted value for p in order to consider a co-occurrence to be

statistically significant, and hence create a link in the graph between the two co-occurring CUIs.

Figure 3 illustrates the behaviour of our system, in terms of accuracy for each test dataset, when

we vary p0, decreasing its value from p0 = 10−2 to p0 = 10−11. As previously stated (Section 3.2),

we have chosen a maximum value of 0.01. Experiments in which greater thresholds were used

showed that the resulting graphs are unmanageably large and that performance quickly decreases.
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Figure 3: Evolution of the accuracy (%) as the specified threshold for the p-value decreases (the restrictiveness of the

graph increases).

As we decrease the threshold, it is more difficult for a pair of CUIs to present a statistically

significant p-value, and hence the graph becomes more restrictive, reducing the number of edges.

The best results are obtained for the least restrictive graphs, while accuracy usually decreases as

we decrease p0. This is due to the removal of important edges representing relations between

concepts, as we increase the restrictiveness of the graph.

Figure 4 represents the behaviour of the system depending on the number of abstracts used for

building the co-occurrence graph. The complete set of abstracts used for building the joint graph

was randomized, and gradually larger subsets of those abstracts were used to build the graphs. As

we increase the number of abstracts, each subset contains all the abstracts of the previous one.

The overall accuracy increases with the number of abstracts used to build the graph, although

performance for each method quickly reaches a plateau. Results rapidly converge to an accuracy

of more than 80% in the A100, A200 and A300 datasets, and around 77% in the NLM dataset.

Fast convergence of the algorithm is a useful feature when resources are limited.

6. Conclusions and Future Work

This paper describes the application of a technique based on co-occurrence graphs for perform-

ing WSD in the biomedical domain. The knowledge base on which the system relies is automati-

cally created in an unsupervised way from a set of abstracts downloaded from the Medline database

and automatically mapped onto medical concepts. Unlike other state-of-the-art techniques, exter-

nal resources are not used for the disambiguation step. Evaluation on two widely used test datasets

shows that the reported method obtains consistent results that outperform most of the knowledge-

based systems addressing the same problem. Further experiments suggest that the convergence of

the method is fast regarding the number of abstracts used for building the graph. In addition, better
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Figure 4: Evolution of the accuracy (%) as the number of abstracts used for building the co-occurrence graph increases.

results are obtained with less restrictive graphs, since they incorporate to the co-occurrence graph

the most useful information about relations between concepts for performing the disambiguation.

Planned future work includes application of disambiguation algorithms that take into account

weights of links of the graph. Some of these algorithms could be used to create communities

(densely connected sub-graphs) of concepts that represent information about the possible senses

of an ambiguous term in a more accurate way. Finally, combining our method with techniques

derived from similar state-of-the-art systems may improve results further, especially for scenarios

in which the performance of our system is somehow limited, such as the particular cases of the

MSH-WSD dataset illustrated in Section 5.3.

7. Acknowledgments

This work has been partially supported by the Spanish Ministry of Science and Innovation

within the projects EXTRECM (TIN2013-46616-C2-2-R), PROSA-MED (TIN2016-77820-C3-

2-R) and EXTRAE (IMIENS 2017), as well as by the Universidad Nacional de Educacion a Dis-

tancia (UNED) through the FPI-UNED 2013 grant.

References

[1] G. K. Savova, A. R. Coden, I. L. Sominsky, R. Johnson, P. V. Ogren, P. C. de Groen, C. G. Chute, Word sense

disambiguation across two domains: Biomedical literature and clinical notes, Journal of Biomedical Informatics

41 (6) (2008) 1088 – 1100. doi:http://dx.doi.org/10.1016/j.jbi.2008.02.003.

[2] M. Stevenson, Y. Guo, Disambiguation in the biomedical domain: The role of ambiguity type, Journal of

Biomedical Informatics 43 (6) (2010) 972 – 981. doi:http://dx.doi.org/10.1016/j.jbi.2010.08.009.

[3] A. K. Sehgal, P. Srinivasan, O. Bodenreider, Gene terms and english words: An ambiguous mix, in: Proc. of the

ACM SIGIR Workshop on Search and Discovery for Bioinformatics, Sheffield, UK, Citeseer, 2004.

19



[4] J. Martinez-Romo, L. Araujo, J. Borge-Holthoefer, A. Arenas, J. A. Capitán, J. A. Cuesta, Disen-

tangling categorical relationships through a graph of co-occurrences, Phys. Rev. E 84 (2011) 046108.

doi:10.1103/PhysRevE.84.046108.

[5] M. J. Schuemie, J. A. Kors, B. Mons, Word sense disambiguation in the biomedical domain: an overview,

Journal of Computational Biology 12 (5) (2005) 554–565.

[6] E. Agirre, P. G. Edmonds, Word sense disambiguation: Algorithms and applications, Vol. 33, Springer Science

& Business Media, 2007.

[7] S. Moon, S. Pakhomov, G. B. Melton, Automated disambiguation of acronyms and abbreviations in clinical

texts: window and training size considerations, in: AMIA Annual Symposium Proceedings, Vol. 2012, Ameri-

can Medical Informatics Association, 2012, p. 1310.

[8] Y. K. Lee, H. T. Ng, An empirical evaluation of knowledge sources and learning algorithms for word sense dis-

ambiguation, in: Proceedings of the ACL-02 conference on Empirical methods in natural language processing-

Volume 10, Association for Computational Linguistics, 2002, pp. 41–48.

[9] I. Iacobacci, M. T. Pilehvar, R. Navigli, Embeddings for word sense disambiguation: An evaluation study, ACL,

2016.

[10] M. Joshi, S. Pakhomov, T. Pedersen, C. G. Chute, A comparative study of supervised learning as applied to

acronym expansion in clinical reports, in: AMIA Annual Symposium Proceedings, Vol. 2006, American Medical

Informatics Association, 2006, p. 399.

[11] H. Xu, M. Markatou, R. Dimova, H. Liu, C. Friedman, Machine learning and word sense disambiguation in the

biomedical domain: design and evaluation issues, BMC bioinformatics 7 (1) (2006) 334.

[12] S. Moon, B.-T. Berster, H. Xu, T. Cohen, Word sense disambiguation of clinical abbreviations with hyperdi-

mensional computing, in: AMIA Annual Symposium Proceedings, Vol. 2013, American Medical Informatics

Association, 2013, p. 1007.

[13] Y. Wu, J. Xu, Y. Zhang, H. Xu, Clinical abbreviation disambiguation using neural word embeddings, ACL-

IJCNLP 2015 (2015) 171.

[14] M. Stevenson, Y. Guo, Disambiguation of ambiguous biomedical terms using examples generated from the umls

metathesaurus, Journal of biomedical informatics 43 (5) (2010) 762–773.

[15] H. Xu, P. D. Stetson, C. Friedman, Combining corpus-derived sense profiles with estimated frequency informa-

tion to disambiguate clinical abbreviations, in: AMIA Annual Symposium Proceedings, Vol. 2012, American

Medical Informatics Association, 2012, p. 1004.

[16] C. Fellbaum, WordNet: An Electronic Lexical Database, Bradford Books, 1998.

[17] R. S. Sinha, R. Mihalcea, Unsupervised graph-basedword sense disambiguation using measures of word seman-

tic similarity., in: ICSC, Vol. 7, 2007, pp. 363–369.

[18] R. Navigli, M. Lapata, An experimental study of graph connectivity for unsupervised word sensedisambiguation,

IEEE transactions on pattern analysis and machine intelligence 32 (4) (2010) 678–692.

[19] B. L. Humphreys, D. A. Lindberg, H. M. Schoolman, G. O. Barnett, The unified medical language system,

Journal of the American Medical Informatics Association 5 (1) (1998) 1–11.

[20] R. Chasin, A. Rumshisky, O. Uzuner, P. Szolovits, Word sense disambiguation in the clinical domain: a compari-

son of knowledge-rich and knowledge-poor unsupervised methods, Journal of the American Medical Informatics

Association 21 (5) (2014) 842–849.

[21] E. Agirre, A. Soroa, M. Stevenson, Graph-based word sense disambiguation of biomedical documents, Bioin-

formatics 26 (22) (2010) 2889–2896. doi:10.1093/bioinformatics/btq555.

[22] B. T. McInnes, T. Pedersen, Y. Liu, S. V. Pakhomov, G. B. Melton, Using second-order vectors in a knowledge-

based method for acronym disambiguation, in: Proceedings of the Fifteenth Conference on Computational

Natural Language Learning, Association for Computational Linguistics, 2011, pp. 145–153.

[23] A. J. Yepes, R. Berlanga, Knowledge based word-concept model estimation and refinement for biomedical text

mining, Journal of biomedical informatics 53 (2015) 300–307.

[24] A. Duque, L. Araujo, J. Martinez-Romo, Co-graph: A new graph-based technique for cross-lingual word sense

disambiguation, Natural Language Engineering 21 (2015) 743–772. doi:10.1017/S1351324915000091.

[25] A. Duque, J. Martinez-Romo, L. Araujo, Can multilinguality improve biomedical word sense disambiguation?,

Journal of biomedical informatics 64 (2016) 320–332.

20



[26] A. R. Aronson, Effective mapping of biomedical text to the umls metathesaurus: The metamap program, Pro-

ceedings of the American Medical Informatics Association (AMIA) (2001) 17–21.

[27] D. B. Hitchcock, Yates and contingency tables: 75 years later., Journal lectronique d’Histoire des Probabilits et

de la Statistique [electronic only] 5 (2) (2009) 1–14; electronic only.

[28] A. Duque, J. Martinez-Romo, L. Araujo, Choosing the best dictionary for cross-lingual word sense disambigua-

tion, Know.-Based Syst. 81 (C) (2015) 65–75. doi:10.1016/j.knosys.2015.02.007.

[29] T. H. Haveliwala, Topic-sensitive pagerank, in: Proceedings of the 11th International Conference on World Wide

Web, WWW ’02, ACM, New York, NY, USA, 2002, pp. 517–526. doi:10.1145/511446.511513.

[30] S. Brin, L. Page, The anatomy of a large-scale hypertextual web search engine, in: COMPUTER NETWORKS

AND ISDN SYSTEMS, Elsevier Science Publishers B. V., 1998, pp. 107–117.

[31] E. Agirre, A. Soroa, Personalizing pagerank for word sense disambiguation, in: Proceedings of the 12th Con-

ference of the European Chapter of the Association for Computational Linguistics, EACL ’09, Association for

Computational Linguistics, Stroudsburg, PA, USA, 2009, pp. 33–41.

[32] M. Stevenson, Y. Guo, A. Al Amri, R. Gaizauskas, Disambiguation of biomedical abbreviations, in: Proceedings

of the Workshop on Current Trends in Biomedical Natural Language Processing, BioNLP ’09, Association for

Computational Linguistics, Stroudsburg, PA, USA, 2009, pp. 71–79.

[33] H. Liu, Y. A. Lussier, C. Friedman, Disambiguating ambiguous biomedical terms in biomedical nar-

rative text: An unsupervised method, Journal of Biomedical Informatics 34 (4) (2001) 249 – 261.

doi:http://dx.doi.org/10.1006/jbin.2001.1023.

[34] M. Weeber, J. G. Mork, A. R. Aronson, Developing a test collection for biomedical word sense disambiguation,

in: Proceedings of the AMIA 2001 Symposium, 2001, pp. 746–750.

[35] E. Sayers, A general introduction to the e-utilities.

[36] A. Jimeno-Yepes, A. R. Aronson, Knowledge-based biomedical word sense disambiguation: comparison of

approaches., BMC Bioinformatics 11 (2010) 569.

[37] S. M. Humphrey, W. J. Rogers, H. Kilicoglu, D. Demner-fushman, T. C. Rindflesch, Word sense disambiguation

by selecting the best semantic type based on journal descriptor indexing: preliminary experiment, J. Am. Soc.

Inform. Sci. Tech 57 (2006) 96–113.

[38] B. T. McInnes, An unsupervised vector approach to biomedical term disambiguation: integrating umls and

medline, in: Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics on

Human Language Technologies: Student Research Workshop, Association for Computational Linguistics, 2008,

pp. 49–54.

[39] A. J. Jimeno-Yepes, B. T. McInnes, A. R. Aronson, Exploiting mesh indexing in medline to generate a data set

for word sense disambiguation, BMC bioinformatics 12 (1) (2011) 223.

21


