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ABSTRACT

We consider the problem of detecting and quantifying the periodic component of
a function given noise-corrupted observations of a limited number of input/output
tuples. Our approach is based on Gaussian process regression, which provides a
flexible non-parametric framework for modelling periodic data. We introduce a novel
decomposition of the covariance function as the sum of periodic and aperiodic kernels.
This decomposition allows for the creation of sub-models which capture the periodic
nature of the signal and its complement. To quantify the periodicity of the signal,
we derive a periodicity ratio which reflects the uncertainty in the fitted sub-models.
Although the method can be applied to many kernels, we give a special emphasis to
the Matérn family, from the expression of the reproducing kernel Hilbert space inner
product to the implementation of the associated periodic kernels in a Gaussian process
toolkit. The proposed method is illustrated by considering the detection of periodically
expressed genes in the arabidopsis genome.

Subjects Data Mining and Machine Learning, Optimization Theory and Computation

Keywords RKHS, Harmonic analysis, Circadian rhythm, Gene expression, Matérn kernels

INTRODUCTION
The periodic behaviour of natural phenomena arises at many scales, from the small

wavelength of electromagnetic radiations to the movements of planets. The mathematical

study of natural cycles can be traced back to the nineteenth century with Thompson’s

harmonic analysis for predicting tides (Thomson, 1878) and Schuster’s investigations on the

periodicity of sunspots (Schuster, 1898). Amongst the methods that have been considered

for detecting and extracting the periodic trend, one can cite harmonic analysis (Hartley,

1949), folding methods (Stellingwerf, 1978; Leahy et al., 1983) which are mostly used in

astrophysics and periodic autoregressive models (Troutman, 1979; Vecchia, 1985). In this

article, we focus on the application of harmonic analysis in reproducing kernel Hilbert

spaces (RKHS) and on the consequences for Gaussian process modelling. Our approach

provides a flexible framework for inferring both the periodic and aperiodic components of

sparsely sampled and noise-corrupted data, providing a principled means for quantifying

the degree of periodicity. We demonstrate our proposed method on the problem of

identifying periodic genes in gene expression time course data, comparing performance

with a popular alternative approach to this problem.
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Harmonic analysis is based on the projection of a function onto a basis of periodic

functions. For example, a natural method for extracting the 2π-periodic trend of a

function f is to decompose it in a Fourier series:

f (x)→ fp(x)= a1sin(x)+a2cos(x)+a3sin(2x)+a4cos(2x)+··· (1)

where the coefficients ai are given, up to a normalising constant, by the L2 inner product

between f and the elements of the basis. However, the phenomenon under study is often

observed at a limited number of points, which means that the value of f (x) is not known

for all x but only for a small set of inputs {x1,...,xn} called the observation points. With this

limited knowledge of f , it is not possible to compute the integrals of the L2 inner product

so the coefficients ai cannot be obtained directly. The observations may also be corrupted

by noise, further complicating the problem.

A popular approach to overcome the fact that f is partially known is to build a

mathematical model m to approximate it. A good model m has to take into account as

much information as possible about f . In the case of noise-free observations it interpolates

f for the set of observation points m(xi)= f (xi) and its differentiability corresponds to the

assumptions one can have about the regularity of f . Themain body of literature tackling the

issue of interpolating spatial data is scattered over three fields: (geo-)statistics (Matheron,

1963; Stein, 1999), functional analysis (Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004)

andmachine learning (Rasmussen & Williams, 2006). In the statistics andmachine learning

framework, the solution of the interpolation problem corresponds to the expectation of

a Gaussian process, Z , which is conditioned on the observations. In functional analysis,

the problem reduces to finding the interpolator with minimal norm in a RKHS H. As

many authors pointed out (for example Berlinet & Thomas-Agnan (2004) and Scheuerer,

Schaback & Schlather (2011)), the two approaches are closely related. Both Z and H are

based on a common object which is a positive definite function of two variables k(.,.). In

statistics, k corresponds to the covariance of Z and for the functional counterpart, k is the

reproducing kernel of H. From the regularization point of view, the two approaches are

equivalent since they lead to the same model m (Wahba, 1990). Although we will focus

hereafter on the RKHS framework to design periodic kernels, we will also take advantage

of the powerful probabilistic interpretation offered by Gaussian processes.

We propose in this article to build the Fourier series using the RKHS inner product

instead of the L2 one. To do so, we extract the sub-RKHS Hp of periodic functions in H

and model the periodic part of f by its orthogonal projection onto Hp. One major asset

of this approach is to give a rigorous definition of non-periodic (or aperiodic) functions

as the elements of the sub-RKHSHa =H⊥
p . The decompositionH=Hp⊕Ha then allows

discrimination of the periodic component of the signal from the aperiodic one. Although

some expressions of kernels leading to RKHS of periodic functions can be found in the

literature (Rasmussen & Williams, 2006), they do not allow to extract the periodic part of

the signal. Indeed, usual periodic kernels do not come with the expression of an aperiodic

kernel. It is thus not possible to obtain a proper decomposition of the space as the direct

sum of periodic and aperiodic subspaces and the periodic sub-model cannot be rigorously

obtained.
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Figure 1 Plots of the benchmark test functions, observation points and fitted models. For an improved
visibility, the plotting region is limited to one period. The RMSE is computed using a grid of 500 evenly
spaced points spanning [0,3], and the values indicated on each subplot correspond respectively to
COSOPT, the periodic Gaussian process model and linear regression. The Python code used to generate
this figure is provided as Jupyter notebook in Supplemental Information 3.

The last part of this introduction is dedicated to a motivating example. In ‘Kernels of

Periodic and Aperiodic Subspaces,’ we focus on the construction of periodic and aperiodic

kernels and on the associated model decomposition. ‘Application to Matérn Kernels’

details how to perform the required computations for kernels from the Matérn familly.

‘Quantifying the Periodicity t’ introduces a new criterion for measuring the periodicity of

the signal. Finally, the last section illustrates the proposed approach on a biological case

study where we detect, amongst the entire genome, the genes showing a cyclic expression.

The examples and the results presented in this article have been generated with

the version 0.8 of the python Gaussian process toolbox GPy. This toolbox, in which

we have implemented the periodic kernels discussed here, can be downloaded at

http://github.com/SheffieldML/GPy. Furthermore, the code generating the Figs. 1–3 is

provided in the Supplemental Information 3 as Jupyter notebooks.

Motivating example
To illustrate the challenges of determining a periodic function, we first consider a

benchmark of six one dimensional periodic test functions (see Fig. 1 and Appendix A).

These functions include a broad variety of shapes so that we can understand the effect of

shape on methods with different modelling assumptions. A set X = (x1,...,x50) of equally

spaced observation points is used as training set and a N (0,0.1) observation noise is

added to each evaluation of the test function: Fi = f (xi)+εi (or F = f (X)+ε with vector
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Figure 2 Examples of decompositions of a kernel as a sum of a periodic and aperiodic sub-kernels.

(A) Matérn 3/2 kernel k(.,5). (B) Periodic sub-kernel kp(.,5). (C) Aperiodic sub-kernel ka(.,5). For these
plots, one of the kernels variables is fixed to 5. The three graphs on each plot correspond to a different
value of the lengthscale parameter ℓ. The input space is D = [0,4π ] and the cut-off frequency is q = 20.
The Python code used to generate this figure is provided as Jupyter notebook in Supplemental Informa-
tion 3.

Figure 3 Decomposition of a Gaussian process fit. (A) full modelm; (B) periodic portionmp and (C)
aperiodic portionma. Our decomposition allows for recognition of both periodic and aperiodic parts. In
this case maximum likelihood estimation was used to determine the parameters of the kernel, we recov-
ered (σ 2

p ,ℓp,σ
2
a ,ℓa)= (52.96,5.99,1.18,47.79). The Python code used to generate this figure is provided as

Jupyter notebook in Supplemental Information 3.

notations). We consider three different modelling approaches to compare the facets of

different approaches based on harmonic analysis:

• COSOPT (Straume, 2004), which fits cosine basis functions to the data,

• Linear regression in the weights of a truncated Fourier expansion,

• Gaussian process regression with a periodic kernel.

COSOPT. COSOPT is a method that is commonly used in biostatistics for detecting

periodically expressed genes (Hughes et al., 2009; Amaral & Johnston, 2012). It assumes the

following model for the signal:

y(x)= α+β cos(ωx+ϕ)+ε, (2)

where ε corresponds to white noise. The parameters α, β, ω and ϕ are fitted by minimizing

the mean square error.
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Linear regression. We fit a more general model with a basis of sines and cosines with

periods 1,1/2...,1/20 to account for periodic signal that does not correspond to a pure

sinusoidal signal.

y(x)= α+
20
∑

i=1

βicos(2π ix)+
20
∑

i=1

γisin(2π ix)+ε. (3)

Again,model parameters are fitted byminimizing themean square error which corresponds

to linear regression over the basis weights.

Gaussian Process with periodic covariance function. We fit a Gaussian process model

with an underlying periodic kernel. We consider a model,

y(x)= α+yp(x)+ε, (4)

where yp is a Gaussian process and where α should be interpreted as a Gaussian random

variable with zero mean and variance σ 2
α . The periodicity of the phenomenon is taken into

account by choosing a process yp such that the samples are periodic functions. This can be

achieved with a kernel such as

kp(x,x
′)= σ 2exp

(

−
sin2

(

ω(x−x ′)
)

ℓ

)

(5)

or with the kernels discussed later in the article. For this example we choose the periodic

Matérn 3/2 kernel which is represented in Fig. 2B. For any kernel choice, the Gaussian

process regression model can be summarized by the mean and variance of the conditional

distribution:

m(x)= E[y(x)|y(X) = F ] = k(x,X)(k(X ,X)+τ 2I )−1F

v(x)=Var[y(x)|y(X) = F ] = k(x,x)−k(x,X)(k(X ,X)+τ 2I )−1k(X ,x)
(6)

where k = σ 2
α +kp and I is the 50×50 identity matrix. In this expression, we introduced

matrix notation for k: if A and B are vectors of length n and m, then k(A,B) is a n×m

matrix with entries k(A,B)i,j = k(Ai,Bj). The parameters of the model (σ 2
α ,σ 2,ℓ,τ 2) can

be obtained by maximum likelihood estimation.

The models fitted with COSOPT, linear regression and the periodic Gaussian process

model are compared in Fig. 1. It can be seen that the latter clearly outperforms the other

models since it can approximate non sinusoidal patterns (in opposition to COSOPT) while

offering a good noise filtering (no high frequencies oscillations corresponding to noise

overfitting such as for linear regression).

The Gaussian process model gives an effective non-parametric fit to the different

functions. In terms of root mean square error (RMSE) in each case, it is either the best

performing method, or it performs nearly as well as the best performing method. Both

linear regression and COSOPT can fail catastrophically on one or more of these examples.

Although highly effective for purely periodic data, the use of a periodic Gaussian

processes is less appropriate for identifying the periodic component of a pseudo-

periodic function such as f (x) = cos(x)+ 0.1exp(−x). An alternative suggestion is

Durrande et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.50 5/18

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.50


to consider a pseudo-periodic Gaussian process y = y1 + yp with a kernel given by

the sum of a usual kernel k1 and a periodic one kp (see e.g., Rasmussen & Williams,

(2006)). Such a construction allows decomposition of the model into a sum of sub-

models m(x)= E[y1(x)|y(X) = F ]+E[yp(x)|y(X) = F ] where the latter is periodic (see
‘Decomposition in periodic and aperiodic sub-models’ for more details). However, the

periodic part of the signal is scattered over the two sub-models so it is not fully represented

by the periodic sub-model. It would therefore be desirable to introduce new covariance

structures that allow an appropriate decomposition in periodic and non-periodic sub-

models in order to tackle periodicity estimation for pseudo-periodic signals.

KERNELS OF PERIODIC AND APERIODIC SUBSPACES
The challenge of creating a pair of kernels that stand respectively for the periodic and

aperiodic components of the signal can be tackled using the RKHS framework. We detail

in this section how decomposing a RKHS into a subspace of periodic functions and its

orthogonal complement leads to periodic and aperiodic sub-kernels.

Fourier basis in RKHS
We assume in this section that the spaceHp spanned by a truncated Fourier basis

B(x)=
(

sin

(

2π

λ
x

)

,...,cos

(

2π

λ
qx

))⊤
(7)

is a subspace of the RKHS H. Under this hypothesis, it is straightforward to confirm that

the reproducing kernel ofHp is

kp(x,x
′)=B⊤(x)G−1B(x ′) (8)

where G is the Gram matrix of B in H: Gi,j =
〈

Bi,Bj
〉

H
. Hereafter, we will refer to kp as the

periodic kernel. In practice, the computation of kp requires computation of the inner product

between sine and cosine functions inH. We will see in the next section that these computa-

tions can be done analytically for Matérn kernels. For other kernels, a more comprehensive

list of RKHS inner products can be found in Berlinet & Thomas-Agnan (2004, Chap. 7).

The orthogonal complement ofHp inH can be interpreted as a subspaceHa of aperiodic

functions. By construction, its kernel is ka = k−kp (Berlinet & Thomas-Agnan, 2004). An

illustration of the decomposition ofMatérn 3/2 kernels is given in Fig. 2. The decomposition

of the kernel comes with a decomposition of the associated Gaussian process in to two

independent processes and the overall decompositions can be summarised as follow:

H=Hp

⊥
+Ha ↔ k = kp+ka ↔ y = yp

y

+ ya. (9)

Many stationary covariance functions depend on two parameters: a variance parameter

σ 2, which represents the vertical scale of the process and a lengthscale parameter, ℓ, which

represents the horizontal scale of the process. The sub-kernels ka and kp inherit these

parameters (through the Gram matrix G for the latter). However, the decomposition

k = kp+ka allows us to set the values of those parameters separately for each sub-kernel
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in order to increase the flexibility of the model. The new set of parameters of k is then

(σ 2
p ,ℓp,σ

2
a ,ℓa) with an extra parameter λ if the period is not known.

Such reparametrisations of kp and ka induce changes in the norms of Hp and Ha.

However, if the values of the parameters are not equal to zero or +∞, these spaces still

consist of the same elements so Hp ∩Ha =∅. This implies that the RKHS generated by

kp+ka corresponds to Hp+Ha where the latter are still orthogonal but endowed with a

different norm. Nevertheless, the approach is philosophically different since we buildH by

adding two spaces orthogonally whereas in Eq. (9) we decompose an existing spaceH into

orthogonal subspaces.

Decomposition in periodic and aperiodic sub-models
The expression y = yp+ya of Eq. (9) allows to introduce two sub-models corresponding

to conditional distributions: a periodic one yp(x)|y(X) = F and an aperiodic one

ya(x)|y(X) = F . These two distributions are Gaussian and their mean and variance

are given by the usual Gaussian process conditioning formulas

mp(x)= E[yp(x)|y(X) = F ] = kp(x,X)k(X ,X)−1F

ma(x)= E[ya(x)|y(X) = F ] = ka(x,X)k(X ,X)−1F ,
(10)

vp(x)=Var[yp(x)|y(X) = F ] = kp(x,x)−kp(x,X)k(X ,X)−1kp(X ,x)

va(x)=Var[ya(x)|y(X) = F ] = ka(x,x)−ka(x,X)k(X ,X)−1ka(X ,x).
(11)

The linearity of the expectation ensures that the sum of the sub-models means is equal to

the full model mean:

m(x) = E[yp(x)+ya(x)|y(X) = F ] = E[yp(x)|y(X) = F ]+E[ya(x)|y(X) = F ]
= mp(x)+ma(x) (12)

so mp and ma can be interpreted as the decomposition of m into it’s periodic and

aperiodic components. However, there is no similar decomposition of the variance:

v(x) 6= vp(x)+va(x) since yp and ya are not independent given the observations.

The sub-models can be interpreted as usual Gaussian process models with correlated

noise. For example,mp is the best predictor based on kernel kp with an observational noise

given by ka. For a detailed discussion on the decomposition of models based on a sum of

kernels, see Durrande, Ginsbourger & Roustant (2012).

We now illustrate this model decomposition on the test function f (x)= sin(x)+x/20

defined over [0,20]. Figure 3 shows the obtained model after estimating (σ 2
p ,ℓp,σ

2
a ,ℓa) of

a decomposed Matérn 5/2 kernel. In this example, the estimated values of the lengthscales

are very different allowing the model to capture efficiently the periodic component of the

signal and the low frequency trend.

APPLICATION TO MATÉRN KERNELS
The Matérn class of kernels provides a flexible class of stationary covariance functions

for a Gaussian process model. The family includes the infinitely smooth exponentiated

quadratic (i.e., Gaussian or squared exponential or radial basis function) kernel as well
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as the non-differentiable Ornstein–Uhlenbeck covariance. In this section, we show how

the Matérn class of covariance functions can be decomposed into periodic and aperiodic

subspaces in the RKHS.

Matérn kernels k are stationary kernels, which means that they only depend on the

distance between the points at which they are evaluated: k(x,y)= k̃(|x − y|). They are
often introduced by the spectral density of k̃ (Stein, 1999):

S(ω)=

(

Ŵ(ν)ℓ2ν

2σ 2
√

πŴ(ν +1/2)(2ν)ν

(

2ν

ℓ2
+ω2

)ν+1/2
)−1

. (13)

Three parameters can be found in this equation: ν which tunes the differentiability of k̃, ℓ

which corresponds to a lengthscale parameter and σ 2 that is homogeneous to a variance.

The actual expressions ofMatérn kernels are simple when the parameter ν is half-integer.

For ν = 1/2,3/2,5/2 we have

k1/2(x,x
′)= σ 2exp

(

−
|x−x ′|

ℓ

)

k3/2(x,x
′)= σ 2

(

1+
√
3|x−x ′|

ℓ

)

exp

(

−
√
3|x−x ′|

ℓ

)

k5/2(x,x
′)= σ 2

(

1+
√
5|x−x ′|

ℓ
+

5|x−x ′|2

3ℓ2

)

exp

(

−
√
5|x−x ′|

ℓ

)

.

(14)

Here the parameters ℓ and σ 2 respectively correspond to a rescaling of the abscissa and or-

dinate axis. For ν = 1/2 one can recognise the expression of the exponential kernel (i.e., the

covariance of the Ornstein–Uhlenbeck process) and the limit case ν → ∞ corresponds

to the squared exponential covariance function (Rasmussen & Williams, 2006).

As stated in Porcu & Stein (2012 Theorem 9.1) and Wendland (2005), the RKHS

generated by kν coincides with the Sobolev space W
ν+1/2
2 . Since the elements of the

Fourier basis are C∞, they belong to the Sobolev space and thus to Matérn RKHS. The

hypothesisHp ⊂H made in ‘Kernels of Periodic and Aperiodic Subspaces’ is thus fulfilled

and all previous results apply.

Furthermore, the connection between Matérn kernels and autoregressive processes

allows us to derive the expression of the RKHS inner product. As detailed in Appendix B,

we obtain for an input space D= [a,b]:
Matérn 1/2 (exponential kernel)

〈

g ,h
〉

H1/2
=

ℓ

2σ 2

∫ b

a

(

1

ℓ
g +g ′

)(

1

ℓ
h+h′

)

dt +
1

σ 2
g (a)h(a). (15)

Matérn 3/2

〈

g ,h
〉

H3/2
=

ℓ3

12
√
3σ 2

∫ b

a

(

3

ℓ2
g +2

√
3

ℓ
g ′ +g ′′

)(

3

ℓ2
h+2

√
3

ℓ
h′ +h′′

)

dt

+
1

σ 2
g (a)h(a)+

ℓ2

3σ 2
g ′(a)h′(a). (16)
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Matérn 5/2

〈

g ,h
〉

H5/2
=
∫ b

a

Lt (g )Lt (h)dt +
9

8σ 2
g (a)h(a)+

9ℓ4

200σ 2
g (a)′′h′′(a)

+
3ℓ2

5σ 2

(

g ′(a)h′(a)+
1

8
g ′′(a)h(a)+

1

8
g (a)h′′(a)

)

(17)

where

Lt (g )=

√

3ℓ5

400
√
5σ 2

(

5
√
5

ℓ3
g (t )+

15

ℓ2
g ′(t )+

3
√
5

ℓ
g ′′(t )+g ′′′(t )

)

.

Although these expressions are direct consequences of Doob (1953) and Hájek (1962), they

cannot be found in the literature to the best of our knowledge.

The knowledge of these inner products allow us to compute the GrammatrixG and thus

the sub-kernels kp and ka. A result of great practical interest is that inner products between

the basis functions have a closed form expression. Indeed, all the elements of the basis can

be written in the form cos(ωx+ϕ) and, using the notation Lx for the linear operators in

the inner product integrals (see Eq. (17)), we obtain:

Lx(cos(ωx+ϕ))=
∑

i

αicos(ωx+ϕ)(i) =
∑

i

αiω
icos

(

ωx+ϕ+
iπ

2

)

. (18)

The latter can be factorised in a single cosine ρcos(ωx+φ) with

ρ =
√

r2c + r2s , φ =

{

arcsin(rs/ρ) if rc ≥ 0

arcsin(rs/ρ)+π if rc < 0
(19)

where

rc =
∑

i

αiω
icos

(

ϕ+
iπ

2

)

and rs =
∑

i

αiω
isin

(

ϕ+
iπ

2

)

.

Eventually, the computation of the inner product between functions of the basis boils

down to the integration of a product of two cosines, which can be solved by linearisation.

QUANTIFYING THE PERIODICITY
The decomposition of the model into a sum of sub-models is useful for quantifying the

periodicity of the pseudo-periodic signals. In this section, we propose a criterion based on

the ratio of signal variance explained by the sub-models.

In sensitivity analysis, a common approach for measuring the effect of a set of variables

x1,...,xn on the output of a multivariate function f (x1,...,xn) is to introduce a random

vectorR= (r1,...,rn) with values in the input space of f and to define the variance explained

by a subset of variables xI = (xI1,...,xIm) as VI =Var
(

E
(

f (R)|RI

))

(Oakley & O’Hagan,

2004). Furthermore, the prediction variance of the Gaussian process model can be taken

into account by computing the indices based on random paths of the conditional Gaussian

process (Marrel et al., 2009).
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We now apply these two principles to define a periodicity ratio based on the sub-models.

Let R be a random variable defined over the input space and yp, ya be the periodic and

aperiodic components of the conditional process y given the data-points. yp and ya are

normally distributed with respective mean and variance (mp, vp), (ma, va) and their

covariance is given by Cov(yp(x),ya(x ′))= −kp(x,X)k(X ,X)−1ka(x ′). To quantify the

periodicity of the signal we introduce the following periodicity ratio:

S=
VarR[yp(R)]

VarR[yp(R)+ya(R)]
. (20)

Note that S cannot be interpreted as a the percentage of periodicity of the signal in a

rigorous way since VarR[yp(R)+ya(R)] 6=VarR[yp(R)]+VarR[ya(R)]. As a consequence,
this ratio can be greater than 1.

For the model shown in Fig. 3, the mean and standard deviation of S are respectively

0.86 and 0.01.

APPLICATION TO GENE EXPRESSION ANALYSIS
The 24 h cycle of days can be observed in the oscillations of biological mechanisms at

many spatial scales. This phenomenon, called the circadian rhythm, can for example be

seen at a microscopic level on gene expression changes within cells and tissues. The cellular

mechanism ensuring this periodic behaviour is called the circadian clock. For arabidopsis,

which is a widely used organism in plant biology and genetics, the study of the circadian

clock at a gene level shows an auto-regulatory system involving several genes (Ding et

al., 2007). As argued by Edwards et al. (2006), it is believed that the genes involved in the

oscillatory mechanism have a cyclic expression so the detection of periodically expressed

genes is of great interest for completing current models.

Within each cell, protein-coding genes are transcribed into messenger RNA molecules

which are used for protein synthesis. To quantify the expression of a specific protein-coding

gene it is possible to measure the concentration of messenger RNA molecules associated

with this gene. Microarray analysis and RNA-sequencing are two examples of methods that

take advantage of this principle.

The dataset (see http://millar.bio.ed.ac.uk/data.htm) considered here was originally

studied by Edwards et al. (2006). It corresponds to gene expression for nine day old

arabidopsis seedlings. After eight days under a 12 h-light/12 h-dark cycle, the seedlings

are transferred into constant light. A microarray analysis is performed every four hours,

from 26 to 74 h after the last dark-light transition, to monitor the expression of 22,810

genes. Edwards et al. (2006) use COSOPT (Straume, 2004) for detecting periodic genes and

identify a subset of 3,504 periodically expressed genes, with an estimated period between

20 and 28 h.

We now apply to this dataset the method described in the previous sections. The kernel

we consider is a sum of a periodic and aperiodic Matérn 3/2 kernel plus a delta function to

reflect observation noise:

k(x,x ′)= σ 2
p kp(x,x

′)+σ 2
a ka(x,x

′)+τ 2δ(x,x ′). (21)
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Figure 4 Distribution of the periodicity ratio over all genes according to the Gaussian process mod-

els. The cut-off ratio determining if genes are labelled as periodic or not is represented by a vertical dashed
line.

Although the cycle of the circadian clock is known to be around 24 h, circadian rhythms

often depart from this figure (indeed circa dia is Latin for around a day) so we estimated the

parameter λ to determine the actual period. The final parametrisation of k is based on six

variables: (σ 2
p ,ℓp,σ

2
a ,ℓa,τ

2,λ). For each gene, the values of these parameters are estimated

using maximum likelihood. The optimization is based on the standard options of the GPy

toolkit with the following boundary limits for the parameters: σp, σa ≥ 0; ℓp, ℓa ∈ [10, 60];
τ 2 ∈ [10−5,0.75] and λ ∈ [20, 28]. Furthermore, 50 random restarts are performed for each

optimization to limit the effects of local minima.

Eventually, the periodicity of each model is assessed with the ratio S given by Eq. (20).

As this ratio is a random variable, we approximate the expectation of S with the mean value

of 1,000 realisations. To obtain results comparable with the original paper on this dataset,

we labeled as periodic the set of 3,504 genes with the highest periodicity ratio. The cut-off

periodicity ratio associated with this quantile is S= 0.76. As can be seen in Fig. 4, this

cut-off value does not appear to be of particular significance according to the distribution

of the Gaussian process models. On the other hand, the distribution spike that can be seen

at S= 1 corresponds to a gap between models that are fully-periodic and others. We believe

this gap is due to the maximum likelihood estimation since the estimate of σ 2
a is zero for

all models in the bin S= 1. The other spike at S= 0 can be interpreted similarly and it

corresponds to estimated σ 2
p equal to zero.
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Table 1 Confusion table associated to the predictions by COSOPT and the proposed Gaussian process

approach.

# of genes PGP PGP

PCOSOPT 2,127 1,377

PCOSOPT 1,377 17,929

Figure 5 Comparison of Estimated periods for the genes inPGP ∩PCOSOPT . The coefficient of determi-
nation of x → x (dashed line) is 0.69.

Let PCOSOPT and PGP be the sets of selected periodic genes respectively by Edwards et al.

(2006) and themethod presented here and letPCOSOPT andPGP denote their complements.

The overlap between these sets is summarised in Table 1. Although the results cannot be

compared to any ground truth, the methods seem coherent since 88% of the genes share

the same label. Furthermore, the estimated value of the period λ is consistent for the genes

labelled as periodic by the two methods, as seen in Fig. 5.

One interesting comparison between the two methods is to examine the genes that

are classified differently. The available data from Edwards et al. (2006) allows focusing

on the worst classification mistakes made by one method according to the other. This is

illustrated in Fig. 6 which shows the behaviour of the most periodically expressed genes

in PGP according to COSOPT and, conversely, the genes in PCOSOPT with the highest

periodicity ratio S. Although it is undeniable that the genes selected only by COSOPT

(Fig. 6A) present some periodic component, they also show a strong non-periodic part,

Durrande et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.50 12/18

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.50


Figure 6 Examples of genes with different labels. (A) corresponds to genes labelled as periodic by
COSOPT but not by the Gaussian process approach, whereas in (B) they are labelled as periodic only
by the latter. In (A, B), the four selected genes are those with the highest periodic part according to the
method that labels them as periodic. The titles of the graphs correspond to the name of the genes (AGI
convention).

corresponding either to noise or trend. For these genes, the value of the periodicity ratio is:

0.74 (0.10), 0.74 (0.15), 0.63 (0.11), 0.67 (0.05) (means and standard deviations, clockwise

from top left) which is close to the classification boundary. On the other hand, the genes

selected only by the Gaussian process approach show a strong periodic signal (we have for

all genes S= 1.01 (0.01)) with sharp spikes. We note from Fig. 6B that there is always at

least one observation associated with each spike, which ensures that the behaviour of the

Gaussian process models cannot simply be interpreted as overfitting. The reason COSOPT

is not able to identify these signals as periodic is that it is based on a single cosine function

which makes it inadequate for fitting non sinusoidal periodic functions. This is typically

the case for gene expressions with spikes as in Fig. 6B, but it can also be seen on the test

functions of Fig. 1.

This comparison shows very promising results, both for the capability of the proposed

method to handle large datasets and for the quality of the results. Furthermore, we believe

that the spike shape of the newly discovered genes may be of particular interest for

understanding the mechanism of the circadian clock. The full results, as well as the original

dataset, can be found in the Supplemental Information.

CONCLUSION
The main purpose of this article is to introduce a new approach for estimating, extracting

and quantifying the periodic component of a pseudo-periodic function f given some noisy

observations yi = f (xi)+ε. The proposed method is typical in that it corresponds to the

orthogonal projection onto a basis of periodic functions. The originality here is to perform

this projection in some RKHS where the partial knowledge given by the observations can
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be dealt with elegantly. Previous theoretical results from the mid-1900s allowed us to

derive the expressions of the inner product of RKHS based on Matérn kernels. Given these

results, it was then possible to define a periodic kernel kp and to decompose k as a sum of

sub-kernels k = kp+ka.

We illustrated three fundamental features of the proposed kernels for Gaussian process

modelling. First, as we have seen on the benchmark examples, they allowed us to

approximate periodic non-sinusoidal patterns while retaining appropriate filtering of

the noise. Second, they provided a natural decomposition of the Gaussian process model

as a sum of periodic and aperiodic sub-models. Third, they can be reparametrised to define

a wider family of kernel which is of particular interest for decoupling the assumptions on

the behaviour of the periodic and aperiodic part of the signal.

The probabilistic interpretation of the decomposition in sub-models is of great

importance when it comes to define a criterion that quantifies the periodicity of f while

taking into account the uncertainty about it. This goal was achieved by applying methods

commonly used in Gaussian process based sensitivity analysis to define a periodicity ratio.

Although the proposed method can be applied to any time series data, this work has

originally been motivated by the detection of periodically expressed genes. In practice,

listing such genes is a key step for a better understanding of the circadian clock mechanism

at the gene level. The effectiveness of the method is illustrated on such data in the last

section. The results we obtained are consistent with the literature but they also feature

some new genes with a strong periodic component. This suggests that the approach

described here is not only theoretically elegant but also efficient in practice.

As a final remark, we would like to stress that the proposed method is fully compatible

with all the features of Gaussian processes, from the combination of one-dimensional

periodic kernels to obtain periodic kernels in higher dimension to the use of sparsemethods

when the number of observation becomes large. By implementing our new method within

theGPy package forGaussian process inferencewe have access to these generalisations along

with effective methods for parameter estimation. An interesting future direction would be

to incorporate the proposed kernel into the ‘Automated Statistician’ project (Lloyd et al.,

2014; Duvenaud et al., 2013), which searches over grammars of kernels.

APPENDIX A. DETAILS ON TEST FUNCTIONS

The test functions shown in Fig. 1 are 1-periodic. Their expressions for x ∈ [0,1) are (from
top left, in a clockwise order):

f1(x)= cos(2πx)

f2(x)= 1/2cos(2πx)+1/2cos(4πx)

f3(x)=

{

1 if x ∈ [0,0.2]
−1 if x ∈ (0.2,1)

f4(x)= 4|x−0.5|+1

f5(x)= 1−2x

f6(x)= 0.

(22)
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APPENDIX B. NORMS IN MATÉRN RKHS

Autoregressive processes and RKHS norms
A process is said to be autoregressive (AR) if the spectral density of the kernel

S(ω)=
1

2π

∫

R

k(t )e−iωtdt (23)

can be written as a function of the form

S(ω)=
1

∣

∣

∑m
k=0αk(iω)k

∣

∣

2
(24)

where the polynomial
∑m

k=0αkx
k is real with no zeros in the right half of the complex

plan Doob (1953). Hereafter we assume that m≥ 1 and that α0,αm 6= 0.

For such kernels, the inner product of the associated RKHSH is given by Hájek (1962),

Kailath (1971) and Parzen (1961)

〈

h,g
〉

H
=
∫ b

a

(Lth)(Lt g )dt +2
∑

0≤j,k≤m−1
j+k even

dj,kh
(j)(a)g (k)(a) (25)

where

Lth=
m
∑

k=0

αkh
(k)(t ) and dj,k =

min(j,k)
∑

i=max(0,j+k+1−n)

(−1)(j−i)αiαj+k+1−i.

We show in the next section that the Matérn kernels correspond to autoregressive

kernels and, for the usual values of ν, we derive the norm of the associated RKHS.

Application to Matérn kernels
Following the pattern exposed in Doob (1953, p. 542), the spectral density of a Matérn

kernel (Eq. (13)) can be written as the density of an AR process when ν+1/2 is an integer.

Indeed, the roots of the polynomial 2ν
ℓ2

+ω2 are conjugate pairs so it can be expressed as

the squared module of a complex number

2ν

ℓ2
+ω2 =

(

ω+
i
√
2ν

ℓ

)(

ω−
i
√
2ν

ℓ

)

=
∣

∣

∣

∣

ω+
i
√
2ν

ℓ

∣

∣

∣

∣

2

. (26)

Multiplying by i and taking the conjugate of the quantity inside the module, we finally

obtain a polynomial in iω with all roots in the left half of the complex plan:

2ν

ℓ2
+ω2 =

∣

∣

∣

∣

iω+
√
2ν

ℓ

∣

∣

∣

∣

2

⇒
(

2ν

ℓ2
+ω2

)(ν+1/2)

=

∣

∣

∣

∣

∣

∣

(√
2ν

ℓ
+ iω

)(ν+1/2)
∣

∣

∣

∣

∣

∣

2

. (27)

Plugging this expression into Eq. (13), we obtain the desired expression of Sν :

Sν(ω)=
1

∣

∣

∣

∣

√

Ŵ(ν)ℓ2ν

2σ 2
√

πŴ(ν+1/2)(2ν)ν

(√
2ν
ℓ

+ iω
)(ν+1/2)

∣

∣

∣

∣

2
. (28)

Durrande et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.50 15/18

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.50


Using Ŵ(ν)= (2ν−1)!
√

π

22ν−1(ν−1/2)! , one can derive the following expression of the coefficients αk :

αk =

√

(2ν −1)!νν

σ 2(ν −1/2)!22ν
C
k
ν+1/2

(

ℓ
√
2ν

)k−1/2

. (29)

Theses values of αk can be plugged into Eq. (25) to obtain the expression of the RKHS

inner product. The results for ν ∈ {1/2,3/2,5/2} is given by Eqs. (15)–(17) in the main

body of the article.
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