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Abstract

Numerous dual-modality tomography systems have previously been studied for

the application of multiphase flow characterisation, however, the capability of

the majority of these systems was only demonstrated under limited flow regime

conditions, such as stratified flow and slug flow. This paper reports a dual-

modality electrical tomography for visualisation of industrial-scale, horizontal

gas-oil-water three-phase flows. Experimental conditions include water-to-liquid

ratio (WLR) from 0% to 100% in parallel with gas volume fractions (GVF)

from 0% to 100%, which produced a variety of flow patterns, typically strat-

ified flow, slug flow, plug flow, bubbly flow, and annular flow. A commercial

dual-modality electrical tomographic system was utilised to carry out the flow

structure measurement. A threshold-based data fusion method was also de-

ployed for the fusion of oil-continuous and water-continuous data to provide full

three phase images. The tomography visualisation is validated against optical

photographs derived from a high-speed video logger located shortly upstream of

the device. The results demonstrate that a subcomponent of the dual modality

sensor, an electrical resistance tomography (ERT) system, is able to visualise

water continuous flow with WLR higher than 40%, providing good agreement

with previous reports. The remaining subcomponent, the electrical capacitance
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tomography (ECT) system, is able to provide stable measurement during WLR

from 0% to 90%, which is far beyond initial expectations and previous findings.

Mean concentrations measured with the dual-modality system reveal the poten-

tial capability of the tomography system for phase fraction measurement. The

visualisation results with the advanced data fusion method and mean concen-

tration measurement verify the capability of the system in the application of

gas-oil-water flow characterisation.

Keywords: electrical resistance tomography (ERT), electrical capacitance

tomography (ECT), dual-modality ERT-ECT systems, gas-oil-water horizontal

flow, three-phase flow visualisation, multi-dimensional data fusion

As a common phenomenon in many industries, three-phase flow has at-

tracted much attention from researchers and engineers. It is however extremely

challenging to measure and visualise such phenomenon, due to the complex in-

teractions between each phase, with over 20 different flow regimes having been

observed [1, 2]. In order to provide insights into gas-oil-water flow, many tech-5

niques have been commercially applied and scientifically proposed in the past

few decades [3], among which multi-modality tomographic systems have been

suggested to be effective in several multiphase flow applications, with the ad-

vantages of being low cost, non-intrusive/invasive, and robust. [4, 5].

Multi-modality tomographic systems, as the name indicates, integrate dif-10

ferent modalities of tomography to overcome the incapability of single-modality

tomographic systems when more than two components are engaged in the inves-

tigated flow. They usually distinguish different phases or phase combinations

by each modality by applying specific data fusion based on the results from

both modalities. Taking an ERT-ECT systems as an example, ERT is able to15

identify conductive phase, i.e. water in gas-oil-water flow, and non-conductive

phase, i.e. gas and oil in gas-oil-water flow, whereas ECT is able to distinguish

gas from liquid, i.e. water and oil, in the gas-oil-water flow [6].

So far, varieties of multi-modality tomographic systems have been proposed

for the purpose of three-phase flow measurement and visualisation. A particu-20
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lar instance of dual-modality tomography is dual-modality electrical tomogra-

phy that integrates electrical resistance and capacitance tomography together

for the quantification and qualification of multiphase flow regimes. Several re-

ports are dedicated to the design and prototyping of such systems. Although

there are differences with some aspects, e.g. using two standalone modalities25

to obtain the conductivity and permittivity distributions separately ([6, 11]),

or using integrated sensing electrodes to measure once and derive both dis-

tributions ([12, 13, 14]). Conventional ERT-ECT systems offer cross-sectional

images of high temporal resolution but relatively low spatial resolution. A ma-

jor barrier for the systems is that they are unable to identify small bubbles, as30

well as produce sharp interfaces between large bubbles and liquid phase within

multiphase flow, due to the non-linear distribution of the induced electrical

field for sensing and associated ill-conditioned inverse problems in image recon-

struction. In addition, multiphase flow imaging is not only for human/machine

perception, but also requires quantitative results, e.g. concentration distribu-35

tion, to convey sufficient information in regard to flow dynamics, and to obtain

comparative analysis of the performance of such systems. Unfortunately, non-

linearity of electrical tomography imaging exists, particularly for a large change

in electric or dielectric property. All these limitations and unique characteristics

introduce some technical challenges into the application of the systems for mul-40

tiphase flow visualisation. For example, contemporary data fusion algorithms in

medical imaging [15] may not be applicable to the fusion process in ERT-ECT

systems.

Although multi-modality tomographic systems have attracted much atten-

tion, the data fusion methods are still at an early stage of research and de-45

velopment. Reported evaluations have been conducted using either simulation

techniques or simple flow structures, e.g. stratified flow [6, 8, 13]. Although

Yue et al. have assessed their ERT-ECT systems for several flow regimes in

laboratory-scale gas-water two-phase flow facilities, for a variety of stratified

flow, slug flow, and plug flow, the capability of systems for extensive flow regimes50

of gas-oil-water flow is still unknown. Despite the success of the proposal by
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Wang et al. in [10] for water-continuous three-phase flow, their system is unable

to distinguish gas and oil phase, and hence only able to distinguish conductive

phase (water) and non-conductive phase (gas and oil).

This paper reports the experimental evaluation of dual-modality ERT-ECT55

systems on the basis of the experiments conducted at the industrial-scale multi-

phase flow facility at TUV NEL1. The flow conditions tested included WLR from

0% to 100% associated with GVF from 0% to 100%, which produces common

horizontal flow regimes [16], including stratified flow, slug flow, plug flow, bub-

bly flow, and annular flow. The evaluation aims to investigate capability of the60

ERT-ECT dual-modality systems on both qualitative and quantitative bases,

by means of images and mean concentrations, respectively. The outcome inves-

tigation and capability of the ERT-ECT systems as single- and dual-modality

tomographic systems iare discussed in correspondence with the evaluation re-

sults in below sections.65

The paper is organised as follows. The principle of electrical tomography is

briefed in Section 1. Section 2 introduces the details of the experimental setup.

The evaluation results are presented in Section 3, and discussed in Section 4.

Final conclusion is made in Section 5.

1. Electrical tomography70

Electrical tomography is a technique that is based on electromagnetic prin-

ciples to sense electrical property distribution within an interested domain. De-

pending on its operational principles, the different approach concerns different

sensitive interests. For example, ERT measures the conductivity changes over a

sensing domain, whereas ECT gauges permittivity differences within a sensing

field. In principle, since there is no current sources within the pipeline, the

electrical field distribution of ERT and ECT is governed by the same equation

1http://www.tuvnel.com
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form:

∇ · (x∇φ) = 0 (1)

where x denotes either the permittivity of dielectric property ε in ECT or the

conductivity of electrical property σ in ERT. Because of the similarity in gov-

erning equation, the solutions for both modalities also share some common

features. A simple inverse solution is the single-step linear back-projection [17]

in both ERT and ECT, which is widely applied to online monitoring owing to its75

computational simplicity. There are also advanced algorithms to solve inverse

problems, such as iterative methods [18, 19], which yield more precise outcome

but usually require more time and computational resources. Detailed discussion

in regard to hardware and image reconstruction can be found from other sources

[5, 19, 20].80

After the reconstruction, interested materials may be revealed by means of

electrical property distribution, such as conductivity for ERT and permittivity

for ECT. Conductivity distribution can be further converted to concentration

distribution using Maxwell equation [21]:

α =
2σ1 + σ2 − 2σmc −

σmcσ2

σ1

σmc −
σ2

σ1

σmc + 2(σ1 − σ2)
(2)

Where α is the void fraction of non-conductive component, σ1 is the conductivity

of conductive component, σ2 is the conductivity of non-conductive component,

and σmc is the reconstructed conductivity. Similarly, permittivity distribution

can be also mapped to concentration distribution.

Due to their distinct sensing properties, ERT and ECT are employed si-85

multaneously to differentiate multiple components. Under the condition of gas-

oil-water multiphase flow, it is expected ERT to be able to extract gas and

oil (non-conductive phase) information from water (conductive phase), whereas

ECT is able to separate gas void fractin information from oil and water due

to permittivity difference. Using proper decomposition approaches, individual90

phase distributions might be derived, and therefore insightful flow information

can be provided.
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Figure 1: Schematic of NEL Multiphase Flow Facility [22].

Table 1: Physical properties of each phase.

Gas Oil Water

Fluid Nitrogen Paraflex Salty water

Conductivity (mS/cm) 0 0 33.5

Dielectric constant (ε) 1 2.2 80

Dynamic viscosity (cP ) 0.0174 16.18 1.35

Density ( kg/m3) 12 830 1049.1

2. Experimental setup

The NEL multiphase flow loop is a three component flow facility featuring oil,

water and gas. For measurement purposes, Paraflex (HT9) oil is used alongside95

substitute salt water (Magnesium Sulphate MgSO4) and a dry gas (Nitrogen)

is injected externally via a pressurised storage tank. The physical properties of

each phase are listed in Table 1. Each component is measured individually using

reference turbine flow meters prior to being combined into a multiphase mixture.

A 4-inch pipe was deployed for the experiments. On the test section, the dual-100

modality electrical tomography was mounted, after an inspection chamber for

a high-speed camera to log flow structures as reference. The test section was
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Figure 2: Test Section Line Build Schematic [22].

Figure 3: Dual-modality ERT-ECT systems employed in the research [22].

positioned approximately 50 meters away from component injection points, in

order to let flow fully develop in the test section. After passing through the

test section, the multiphase flow is then separated via a gravity separation105

vessel whereby the oil and water is re-circulated and nitrogen is expelled to

atmosphere. A graphical representation of the flow facility is shown in Figure 1.

The testing objective was to evaluate the functional performance of the dual-
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Table 2: Operation specification of the ERT-ECT system [22].

V5R M3C

Sensor configuration 2 planes of 16 electrodes 1 plane of 12 electrodes

Sensing strategy Voltage-driven adjacent Voltage-driven sequential

Injection frequency 10 KHz 1000 KHz

Reconstruction Linear back projection (LBP) Linear back projection (LBP)

Property of interest Electrical conductivity Electrical permittivity

Max acquisition speed 0.0016 s/Frame 0.08 s/Frame

Image grid 20× 20 32× 32

Image spatial resolution 5% 5%

Figure 4: NEL flow facility operational envelope [22].

modality ERT-ECT systems in terms of multiphase flow visualisation. Several

reference devices were installed in the test section, and the arrangement of the110

reference equipment is illustrated in Figure 2. In this experiment, ITS dual-

modality systems were employed (Figure 3), including V5R ERT [23] system

and M3C ECT system [6]. The detailed operational information of the dual-

modality system is listed in Table 2.

Liquid flow rates of the NEL multiphase flow loop can reach 145 m3/h while115
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Figure 5: Targeting flow patterns [22].

gas can achieve 1500 m3/h. Maximum gas flow rate is subject to operating

pressure as the flow is a function of differential between gas injection pressure

and line pressure. The flow loop is rated to 18.2 bar(g) with a maximum line

pressure of 15 bar(g). The operating envelope is displayed in Figure 4. The

facility can achieve GVF’s and WLR’s from 0% to 100%. The target flow120

patterns are shown in Figure 5, and flow conditions in terms of GVF and liquid

flowrate are listed in Table 3. Hereafter, GVF, liquid flowrate, WLR, and phase

flowrates are referring to measurement obtained or calculated from the reference

facility except those specified as ERT, ECT, or Gamma-ray densitometer.

3. Experimental results125

The results, grouped by WLR, are in two formats: one is qualitative, i.e.

visualisation using axially-stacked images, and the other is quantitative, i.e.

mean concentration.

As far as the visualisation is concerned, the images are produced from the

ECT, the ERT and the data fusion, along with the images from a high-speed130

video logger as a visual reference. For the axially-stacked images, the X-axis

represents the temporal information of the tomograms, i.e. a sequence of the

tomograms at a specific data collection rate as given in Table 2, while Y axis
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Table 3: Selected test conditions of liquid flowrate and GVF [22].

Liquid flowrate (m3/h)

GVF (%) 2 3 7.5 18 40 85 140

3 x

5 x x

10 x

15 x x

25 x x x x

35 x x

40 x

42 x

60

75 x

82 x x

85 x x x x

92 x

95 x x x x

96.5 x

98 x x

99 x x x

represents the spatial information of the tomograms, i.e. the concentration dis-

tribution of a tomogram along the vertical diameter of the pipe, where 0 is the135

top and 60 is the bottom of the pipe [24]. Due to the capability of the video

logger and the limited length of the available inspection chamber, full features of

some flow conditions, e.g. long slug bubbles, may not be captured fully. There-

fore, some reference images by the logger are stacked with several consecutive

images. Some axially-stacked tomograms are extracted from a certain number140

of the original electrical concentration tomograms so that the visual comparison

is more meaningful, e.g. slug flow and plug flow, whereas the others are pre-
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Figure 6: Data flow of the threshold-based fusion method [24].

sented using 1000 concentration tomograms by default. Due to the considerable

amount of flow conditions, only five flow conditions are selected for demonstrat-

ing purpose, which represent five typical flow regimes, namely stratified flow,145

slug flow, plug flow, annular flow, and bubbly flow.

The threshold-based methodology for data fusion purpose of ERT-ECT sys-

tems were reported [6, 13], but only applied to simple stratified flow patterns.

An advanced threshold-based data fusion method was developed, which can

be applied to these five flow pattern [24]. Since concentration tomograms were150

obtained with ERT and ECT at different sampling speeds and different grid def-

initions in the research, they needed to be transformed so that they were space-

and time- aligned before a pixel-by-pixel fusion algorithm performed. Later,

two threshold values derived from empirical and experimental knowledge were

used to binarise the concentration tomograms of ERT and ECT. One threshold155

value of 0.5 differentiated gas from the liquid phase in ECT tomograms. When

the liquid phase was distinguished, the other threshold value of 0.5 was applied

to the ERT tomograms to separate oil and water. If the pixel value was greater

than 0.5, the liquid is assumed to be oil, or otherwise water. Finally, pixel values

were generated by integrating the threshold values along registered ERT and160
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ECT tomograms. The fusion process is depicted in Figure 6, and the technical

detail is described in [24].

Quantitative results are compared in terms of water and gas mean concentra-

tions. However, the primary objective of the project is visualisation. Volumetric

fraction values, i.e. WLR and GVF, are utilised directly as one of correlations

for evaluating the mean concentrations of water and gas obtained with the

ERT-ECT under a condition of lacking effective method to evaluate these lo-

cal concentrations obtained from the ERT-ECT. For water concentration, three

values are presented, including the reference value by Equation 3, mean concen-

tration from the ERT using Equation 4, and the one from data fusion results.

αref
w =

(100−GV F ) ∗WLR

100
(3)

αERT
w = 100− αERT (4)

where αERT is the mean concentration of disperse phase by ERT.

For gas concentration, four results are compared, i.e. the GVF, mean con-

centration derived from Equation 5,Equation 6, and Equation 7 gamma-ray

densitometer, mean concentration from the ECT, and the one using the data

fusion. Since gas concentration by the data fusion is determined solely by the

ECT, the ECT results and corresponding data fusion approach are identical,

and hence reflected as one value. The mixture density by gamma-ray is as

below:

ρm = ρg ∗ αg + ρw ∗ αw + ρo ∗ αo (5)

Where ρx is the density for each phase or the mixture, and αx is the volume

fraction of each phase. Compared to ρw and ρo, the ρg is so small that it can

be ignored. In addition, ρw and ρo are approximated using density of liquid ρl,

of which the value is replaced by water density ρw. Consequently, Equation 5

is changed to

ρm ≈ αl ∗ ρw ⇒ αl ≈
ρm
ρw

(6)
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Table 4: Selected flow conditions for visualisation at WLR 0%.

GVF Qoil Qgas

(%) (m3/h) (m3/h)

Stratified flow 97 2.948 94.640

Slug flow 42 17.890 13.009

Plug flow 25 39.334 13.298

Annular flow 95 18.023 340.655

Bubbly flow 25 139.360 47.466

Further, gas volume fraction can be calculated by Equation 7:

αg ≈ 1− αl ≈ 1−
ρm
ρw

(7)

On the other hand, new references were taken for the ERT and the ECT at

each WLR, in order to improve the accuracy of the measurements. For ERT,165

the salty water was used for the reference, whereas for the ECT, fully dispersed

oil-water flow at given WLR and 0% GVF was used as the reference.

The reference GVF and WLR are calculated from the phase flowrates at the

feed-in point of the flow test rig. The concentrations obtained from Gamma-ray

densitometer, ERT and ECT are measured at the their sensors locations at the170

test section as shown in Figure 1 and Figure 2. In principle, the local phase

concentrations may not be the same as the references unless phase slip velocities

ignorable. However, at the absence of relevant local references, we summarise

the flow feed-in references and local measurements together in below results to

reflect their correlations.175

3.1. WLR 0%

At WLR 0%, in total 42 different flow conditions were examined, covering

all common flow regimes in a horizontal pipeline [16]. Since WLR is 0%, i.e.
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(a) (b)

(c) (d)

(e)

Figure 7: Visualisation results of WLR 0% for (a) stratified flow; (b) slug flow; (c) plug flow;

(d) annular flow; and (e) bubbly flow.

Figure 8: Gas concentrations from different approaches at WLR 0%.

gas-oil two-phase flow, which is beyond the ERT’s measurable range, only the

stacked ECT tomograms are presented, along with the images taken using high-180
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Table 5: All examined flow conditions at WLR 0%.

Test GVF ERT ECT Data fusion (%) Gammy Flow
No. % % % gas oil water % Regimes
1 65 x 56.78 x x x 72.11 stratified
2 85 x 60.51 x x x 87.89 stratified
3 95 x 60.82 x x x 94.75 stratified
4 98 x 70.69 x x x 97.24 stratified
5 99 x 72.74 x x x 98.10 stratified
6 99.6 x 72.69 x x x 99.37 transition
7 60 x 55.44 x x x 68.65 stratified
8 82 x 58.38 x x x 85.45 stratified
9 95 x 62.76 x x x 94.89 stratified
10 97 x 69.50 x x x 96.44 stratified
11 99 x 73.46 x x x 96.44 stratified
12 99.4 x 72.07 x x x 99.21 transition
13 40 x 44.03 x x x 51.50 stratified
14 60 x 43.46 x x x 68.39 transition
15 85 x 55.73 x x x 87.27 slug
16 95 x 65.32 x x x 94.97 transition
17 98 x 75.72 x x x 98.00 annular
18 98.5 x 75.72 x x x 98.50 annular
19 25 x 28.87 x x x 39.55 slug
20 42 x 35.78 x x x 53.73 slug
21 60 x 41.57 x x x 67.54 slug
22 85 x 71.61 x x x 86.98 annular
23 95 x 71.35 x x x 95.55 annular
24 96.5 x 68.10 x x x 96.87 annular
25 10 x 17.68 x x x 28.93 plug
26 25 x 26.50 x x x 40.62 plug
27 40 x 35.49 x x x 52.40 transition
28 60 x 44.38 x x x 67.91 slug
29 85 x 64.38 x x x 87.46 slug
30 92 x 68.19 x x x 93.57 transition
31 5 x 16.53 x x x 25.16 bubbly
32 15 x 19.91 x x x 33.06 slug
33 25 x 24.28 x x x 40.51 slug
34 35 x 29.79 x x x 48.40 slug
35 60 x 46.57 x x x 68.19 transition
36 75 x 54.95 x x x 79.26 annular
37 3 x 17.52 x x x 23.57 bubbly
38 5 x 18.93 x x x 25.05 bubbly
39 10 x 24.02 x x x 30.16 bubbly
40 15 x 27.63 x x x 33.13 bubbly
41 25 x 34.31 x x x 40.81 bubbly
42 35 x 39.90 x x x 49.13 bubbly

speed video, as depicted in Figure 7, and all flow conditions selected are listed in

Table 5. The Flow conditions for demonstrating the capability of the ECT are
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Table 6: Selected flow conditions for visualisation at WLR 10%.

GVF Qwater Qoil Qgas

(%) (m3/h) (m3/h) (m3/h)

Slug flow 85 2.178 18.451 103.398

Plug flow 15 8.877 76.756 14.759

Annular flow 75 2.211 18.214 495.811

Bubbly flow 5 14.544 124.980 7.161

listed in Table 4. From a visualisation point of view, the ECT tomograms agree

well with the videos, except the ones for bubbly flow as shown in Figure 7e.

This is because the ECT utilised is unable to identify small bubbles of a size185

very much smaller than pipe diameter. On the other hand, Figure 8 presents

the quantitative comparison of the ECT results with the results by GVF and

gamma-ray. Since the ERT part in the dual-modality system is not functional,

the quantitative result only compares gas concentrations by GVF, gamma-ray,

and the ECT.190

3.2. WLR 10%

With WLR at 10%, 16 different flow conditions were tested, as listed in Ta-

ble 7. Due to the limited number of flow conditions, the facility did not manage

to produce all common flow regimes. The visualisation results illustrated in

Figure 9 involve only four flow regimes, i.e. slug, plug, annular, and bubbly195

flow, of which the flow conditions are itemised in Table 6. Similar to the situ-

ation at WLR 0%, the ERT is still incapable of generating acceptable images.

As far as imaging is concerned, the ECT is generally able to provide reasonable

results, as presented in Figure 9. It is, however, also noticed that in 9c, the ECT

struggles to identify the liquid film at the top of the pipe wall. This is primarily200

because the film is too thin to be identifiable, which suggests the thinness is
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(a) (b)

(c) (d)

Figure 9: Visualisation results of WLR 10% for (a) slug flow; (b) plug flow; (c) annular flow;

and (d) bubbly flow.

Table 7: All examined flow conditions at WLR 10%.

Test GVF ERT ECT Data fusion (%) Gammy Flow
No. % % % gas oil water % Regimes
1 60 x 47.13 x x x 63.71 slug
2 85 x 63.07 x x x 85.52 slug
3 95 x 71.06 x x x 94.33 transition
4 96.5 x 74.16 x x x 96.46 annular
5 5 x 11.01 x x x 23.31 bubbly
6 15 x 18.21 x x x 30.62 plug
7 25 x 25.26 x x x 39.21 transition
8 35 x 32.22 x x x 46.64 transition
9 60 x 50.71 x x x 66.46 slug
10 75 x 59.49 x x x 77.52 transition
11 3 x 9.29 x x x 21.00 bubbly
12 5 x 12.92 x x x 22.79 bubbly
13 10 x 17.43 x x x 27.25 bubbly
14 15 x 21.33 x x x 30.40 bubbly
15 25 x 31.18 x x x 38.68 bubbly
16 35 x 38.31 x x x 45.53 bubbly

below the resolution of the ECT [6]. Figure 10 presents the comparison of gas

concentrations by GVF, gamma-ray, and the ECT.

17



Figure 10: Gas concentrations from different approaches at WLR 10%.

Table 8: Selected flow conditions for visualisation at WLR 25%.

GVF Qwater Qoil Qgas

(%) (m3/h) (m3/h) (m3/h)

Slug flow 40 10.635 31.481 26.505

Annular flow 92 10.213 28.840 458.146

Bubbly flow 10 35.406 105.336 16.833

3.3. WLR 25%

Given WLR at 25 %, 21 flow conditions were involved in the experiment,205

which however only reflect three flow regimes, including slug, annular, and bub-

bly flow. Figure 11 depicts the selected visualisation results in line with the

conditions in Table 8. The whole set of the conditions examined at WLR 25

% is listed in Table 9. Similar to the results for WLR 0% and 10%, the ECT

tomograms are generally consistent with video footage, except for bubbly flow.210

Figure 11b shows an interesting phenomenon, i.e. the thickness of the liquid film

at the top of the pipe changes almost periodically, implying that the flow was

fully developed, and hence at steady state. The gas concentrations calculated

by GVF, gamma-ray, and the ECT, are demonstrated in Figure 12.

18



(a) (b)

(c)

Figure 11: Visualisation results of WLR 25% for (a) slug flow; (b) annular flow; and (c) bubbly

flow.

Table 9: All examined flow conditions at WLR 25%.

Test GVF ERT ECT Data fusion (%) Gammy Flow
No. % % % gas oil water % Regimes
1 95 x 80.14 x x x 94.40 transition
2 98 x 79.31 x x x 97.31 transition
3 98.5 x 81.52 x x x 98.16 annular
4 85 x 69.38 x x x 85.43 slug
5 95 x 75.04 x x x 95.34 transition
6 96.5 x 75.04 x x x 96.73 annular
7 25 x 44.89 x x x 36.83 slug
8 40 x 37.93 x x x 47.83 slug
9 60 x 47.62 x x x 64.45 transition
10 85 x 67.72 x x x 85.71 annular
11 92 x 74.59 x x x 93.03 annular
12 5 x 10.03 x x x 20.09 bubbly
13 15 x 19.37 x x x 28.87 transition
14 25 x 31.47 x x x 37.36 transition
15 35 x 36.59 x x x 44.42 transition
16 60 x 54.53 x x x 65.45 transition
17 75 x 62.09 x x x 77.61 annular
18 3 x 15.08 x x x 18.39 bubbly
19 5 x 16.16 x x x 19.94 bubbly
20 10 x 21.34 x x x 24.70 bubbly
21 15 x 27.21 x x x 28.63 bubbly

19



Figure 12: Gas concentrations from different approaches at WLR 25%.

Table 10: Selected flow conditions for visualisation at WLR 50%.

GVF Qwater Qoil Qgas

(%) (m3/h) (m3/h) (m3/h)

Stratified flow 60 3.790 3.860 10.978

Slug flow 60 9.031 9.030 27.896

Plug flow 25 42.520 40.626 27.841

Annular flow 75 42.451 40.974 254.034

Bubbly flow 5 70.327 69.061 7.606

3.4. WLR 50%215

There were 29 flow conditions at 50% WLR. The selected flow conditions

from the full set (Table 11) are listed in Table 10 and the associated images

are presented in Figure 13. Since ERT is fully operational at 50% WLR, the

visualisation results are presented using the tomograms by the ECT, the ERT,

and the data fusion approach, in parallel with the images by high-speed video220

logger as a reference. Figure 13 illustrates the results. From the visualisation

perspective, the figures demonstrate a promising capability of the systems for
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(a) (b)

(c) (d)

(e)

Figure 13: Visualisation results of WLR 50% for (a) stratified flow; (b) slug flow; (c) plug

flow; (d) annular flow; and (e) bubbly flow.

imaging gas-oil-water flow at WLR 50%. There are small deviations from condi-

tions as seen by the reference video logger as in Figure 13d, where the top liquid
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Table 11: All examined flow conditions at WLR 50%.

Test GVF ERT ECT Data fusion (%) Gammy Flow
No. % % % gas oil water % Regimes
1 40 74.37 41.20 40.75 27.59 31.66 47.74 stratified
2 60 74.37 40.42 39.90 28.47 31.63 62.58 stratified
3 85 87.03 48.04 42.51 38.08 19.41 85.70 stratified
4 95 93.83 74.34 84.23 8.75 7.02 94.21 stratified
5 98 97.94 91.88 98.47 1.53 0.00 97.79 transition
6 98.5 95.25 92.84 99.83 0.18 0.00 98.25 annular
7 25 74.05 36.37 36.23 31.20 32.57 33.39 slug
8 42 74.83 37.20 36.12 31.95 31.94 46.58 slug
9 60 87.66 46.43 40.73 36.54 22.73 64.53 slug
10 85 84.49 64.05 67.81 20.70 11.49 85.04 slug
11 95 84.34 75.99 84.36 10.61 5.03 95.02 transition
12 96.5 86.39 76.37 82.38 15.20 2.43 96.83 bubbly
13 10 74.53 29.56 28.54 38.21 33.25 19.98 transition
14 25 76.11 28.53 26.46 41.13 32.41 31.93 slug
15 40 74.68 23.72 19.83 57.91 22.27 47.47 slug
16 60 76.74 37.50 31.40 45.67 22.93 63.11 slug
17 85 79.27 43.75 31.57 41.91 26.53 86.28 transition
18 92 78.96 76.31 83.79 11.11 5.10 91.89 annular
19 15 58.55 11.95 9.78 82.53 7.70 23.16 plug
20 25 67.71 18.38 16.85 69.38 13.78 32.64 plug
21 35 72.63 72.68 26.81 57.70 15.49 42.28 plug
22 60 70.57 51.00 57.69 29.44 12.87 63.16 transition
23 75 70.25 70.81 81.36 13.12 5.52 77.33 annular
24 3 58.19 0.01 0.00 5.00 95.00 13.31 bubbly
25 5 59.27 0.01 0.00 100.00 0.00 14.97 bubbly
26 10 97.27 2.69 0.39 96.89 2.72 19.88 transition
27 15 95.26 7.68 2.57 92.73 4.70 24.23 transition
28 25 98.91 20.44 15.74 79.50 4.76 32.63 annular
29 35 69.78 35.96 42.60 50.97 6.42 41.83 annular

film is too thin to be detected by either modality. The system also struggles225

to image bubbly flow in Figure 13e, due to the incapability of both ERT and

ECT systems to identify small bubbles. It is worth noting that bubble flow is

notoriously difficult to measure for all levels of commercially developed multi-

phase measurement systems. This limitation has been realised and further work

is being conducted to address the inability to display very small features on a230

tomogram display.

Figure 14 explains the quantitative results in terms of water and gas concen-

trations by different approaches. The results from the ERT-ECT systems show
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(a) (b)

Figure 14: Water (a) and gas (b) concentrations from different approaches at WLR 50%.

Table 12: Selected flow conditions for visualisation at WLR 75%.

GVF Qwater Qoil Qgas

(%) (m3/h) (m3/h) (m3/h)

Stratified flow 40 5.533 2.063 4.508

Slug flow 60 29.697 9.834 58.471

Plug flow 15 63.898 21.654 14.568

Annular flow 75 63.937 20.462 247.125

Bubbly flow 5 105.102 35.264 7.654

a good agreement with the ones using WLR and GVF. It is noticeable that the

quantities are also in accordance with the visualisation. That is, the deviation of235

gas concentration from the references becomes significant for bubbly flow which,

in turn, affects the accuracy of the water concentration.
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(a) (b)

(c) (d)

(e)

Figure 15: Visualisation results of WLR 75% for (a) stratified flow; (b) slug flow; (c) plug

flow; (d) annular flow; and (e) bubbly flow.
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Table 13: All examined flow conditions at WLR 75%.

Test GVF ERT ECT Data fusion (%) Gammy Flow
No. % % % gas oil water % Regimes
1 40 71.25 48.21 48.43 15.93 35.64 40.34 stratified
2 60 73.26 49.31 49.68 16.61 33.71 61.77 stratified
3 85 87.34 64.65 63.42 14.84 21.74 87.68 slug
4 95 86.08 73.79 77.95 1.84 20.21 93.73 transition
5 98 85.76 80.18 88.13 0.10 11.78 97.31 transition
6 98.5 85.76 82.01 90.22 0.01 9.77 98.23 annular
7 25 63.31 38.41 39.24 20.16 40.60 29.17 slug
8 42 73.42 44.56 43.74 19.70 36.56 44.77 slug
9 60 84.18 55.71 53.20 20.34 26.45 66.04 slug
10 85 83.23 67.50 70.95 6.78 22.28 84.79 slug
11 95 84.49 79.32 86.82 1.61 11.58 94.58 transition
12 96.5 83.86 81.85 90.43 0.96 8.61 96.28 annular
13 10 53.55 18.84 9.64 46.24 44.12 14.86 slug
14 25 64.34 24.28 18.44 38.56 43.00 27.72 slug
15 40 74.68 31.59 27.01 29.54 43.45 43.50 slug
16 60 79.77 43.82 40.45 28.76 30.79 61.04 slug
17 85 82.91 74.42 82.19 5.31 12.49 86.08 annular
18 92 80.70 80.50 90.09 2.69 7.23 92.36 transition
19 5 54.24 1.62 0.06 36.47 63.47 10.33 plug
20 15 52.31 8.31 3.41 36.48 60.11 18.95 plug
21 25 70.47 17.27 14.60 32.92 52.49 28.37 transition
22 60 70.73 51.38 54.43 29.14 16.44 61.32 annular
23 75 70.57 68.52 78.96 12.11 8.93 75.31 annular
24 5 60.40 0.76 0.00 99.52 0.48 10.11 bubbly
25 15 74.00 3.95 0.67 94.61 4.71 19.54 plug
26 35 71.70 18.11 5.41 81.39 13.20 38.58 plug

3.5. WLR 75%

Similar to the results at WLR 50%, the ones at WLR 75 % reveal the certain

capability of the dual-modality system to qualify and quantify gas-oil-water240

flow. The demonstration with regard to visualisation is in Figure 15, and the

selected conditions are in Table 12 from Table 13. The results have comparable

patterns with the ones at WLR 50%. That is, the visualisation of stratified flow

(Figure 15a), slug flow (Figure 15b), plug flow (Figure 15c), and annular flow

(Figure 15d) is in good agreement with the references, but not for bubbly flow245

(Figure 15e). As far as water and gas concentrations are concerned, the data

fusion approach outperforms individual tomographic system, as illustrated in

Figure 16.

25



(a) (b)

Figure 16: Water (a) and gas (b) concentrations from different approaches at WLR 75%.

Table 14: Selected flow conditions for visualisation at WLR 90%.

GVF Qwater Qoil Qgas

(%) (m3/h) (m3/h) (m3/h)

Slug flow 35 76.601 8.438 45.577

Plug flow 15 76.329 8.485 16.158

Annular flow 92 36.563 4.130 455.277

Bubbly flow 3 126.374 13.932 4.716

In contrast to the reported performance of the ECT in [25], i.e. the ECT

cannot image the flow with WLR beyond 40%, both images and figures prove250

that the ECT is still functioning at WLR 75%.

3.6. WLR 90%

Due to the unavailability of stratified flow, the visualisation for WLR 90%

contains other four flow regimes from in total 21 flow conditons (Table 15),

, with the conditions presented in Table 14. The flow is visualised by the255
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(c) (d)

Figure 17: Visualisation results of WLR 90% for (a) slug flow; (b) plug flow; (c) annular flow;

and (d) bubbly flow.

ECT, the ERT, and the data fusion approach, as depicted in Figure 17, and

similar results occur with the given conditions. Figure 18 compares water and

gas concentrations by different approaches. It is noted that the ECT is still

operational at WLR 90%.

3.7. WLR 100%260

When WLR is 100%, flow becomes a gas-water two-phase flow. It was ob-

served that the ECT was still able to produce some tomograms, although they

were distorted. Consequently, the images are only generated by the ERT, as

demonstrated in Figure 19. For all engaged flow conditions shown in Table 16

selected from 23 different conditions in Table 17, the ERT tomograms are rea-265
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Table 15: All examined flow conditions at WLR 90%.

Test GVF ERT ECT Data fusion (%) Gammy Flow
No. % % % gas oil water % Regimes
1 25 58.23 31.71 31.68 21.12 47.20 26.22 transition
2 42 66.30 39.28 37.87 19.78 42.35 42.39 transition
3 60 74.68 50.05 46.90 16.78 36.33 61.86 transition
4 85 71.52 65.35 65.09 22.06 12.85 84.56 slug
5 95 84.18 81.17 88.33 1.44 10.23 94.77 annular
6 96.5 84.18 83.68 91.59 0.85 7.55 7.16 annular
7 10 47.42 14.07 9.25 48.15 42.59 12.29 slug
8 25 62.35 19.93 17.38 28.82 53.81 26.82 slug
9 40 73.73 28.52 25.43 22.77 51.80 42.02 slug
10 60 78.55 41.75 40.23 22.98 36.79 58.88 slug
11 85 83.23 69.82 75.40 9.82 14.79 85.29 annular
12 92 78.96 79.43 89.02 3.33 7.65 91.61 annular
13 5 41.67 2.74 0.23 14.03 85.75 7.16 transition
14 15 52.74 9.71 4.86 19.46 75.68 17.62 plug
15 25 67.57 17.77 14.01 21.85 64.14 27.05 slug
16 35 68.99 20.15 16.89 25.76 57.35 35.86 slug
17 60 68.51 44.05 45.25 29.37 25.38 61.80 slug
18 75 68.31 65.61 76.23 15.52 8.25 76.28 annular
19 3 12.70 0.05 0.00 0.00 100.00 5.23 bubbly
20 15 64.05 0.45 0.00 26.55 73.45 16.70 bubbly
21 35 67.66 17.40 0.73 57.51 41.77 37.10 bubbly

(a) (b)

Figure 18: Water (a) and gas (b) concentrations from different approaches at WLR 90%.

sonable, which is, as well, proven by the gas concentration in Figure 20.
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Table 16: Selected flow conditions for visualisation at WLR 100%.

GVF Qwater Qgas

(%) (m3/h) (m3/h)

Stratified flow 82 2.891 12.883

Slug flow 25 138.896 47.193

Plug flow 35 85.272 46.084

Annular flow 98.5 7.501 507.037

Bubbly flow 5 139.348 7.250

(a) (b)

(c) (d)

(e)

Figure 19: Visualisation results of WLR 100% for (a) stratified flow; (b) slug flow; (c) plug

flow; (d) annular flow; and (e) bubbly flow.
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Table 17: All examined flow conditions at WLR 100%.

Test GVF ERT ECT Data fusion (%) Gammy Flow
No. % % % gas oil water % Regimes
1 82 75.29 x x x x 80.78 stratified
2 97 84.81 x x x x 96.01 stratified
3 99.4 81.33 x x x x 99.20 annular
4 60 60.67 x x x x 59.90 stratified
5 95 83.70 x x x x 94.11 stratified
6 98.5 78.32 x x x x 98.20 annular
7 42 55.77 x x x x 41.97 slug
8 85 76.58 x x x x 85.11 slug
9 95 81.79 x x x x 94.64 annular
10 96.5 73.29 x x x x 96.34 annular
11 25 52.85 x x x x 24.73 slug
12 60 70.41 x x x x 59.80 slug
13 92 68.31 x x x x 91.90 annular
14 15 50.82 x x x x 15.17 plug
15 35 57.16 x x x x 34.66 plug
16 60 61.03 x x x x 58.97 stratified
17 75 71.87 x x x x 74.82 stratified
18 3 6.21 x x x x 3.50 bubbly
19 5 8.50 x x x x 4.91 bubbly
20 10 21.31 x x x x 9.48 bubbly
21 15 35.94 x x x x 14.23 slug
22 25 52.30 x x x x 25.06 slug
23 35 56.57 x x x x 33.87 slug

Figure 20: Gas concentrations from different approaches at WLR 100%.
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4. Discussion

4.1. ECT system

The results in Section 3 demonstrate the capability of the applied ECT

system to visualise multiphase flow in a horizontal pipeline. Compared to the270

reported suitability of the ECT system for the flow with WLR less than 40%,

i.e. oil-continuous flow [25], the results clearly prove the capability of the ECT

system can be extended to 90% WLR, with appropriate taking of reference.

When the flow structure is relatively simple, i.e. stratified flow and slug

flow, and the flow is with relatively low or moderate flowrate, i.e. water and oil275

are not fully mixed, the ECT can detect the interface between gas and liquid,

with great accuracy, such as the ones in Figure 7a and Figure 13b, etc. As for

annular flow, the ECT is still able to image it with certain accuracy, e.g. in

Figure 7d and Figure 11b. It is also able to detect the change in thickness of

the top liquid film, as in Figure 11b. Nevertheless, it has to be pointed out280

that when the thickness is below the resolution of the ECT system, the film is

undetectable, as in Figure 9c. Moreover, there are some ECT tomograms, e.g.

Figure 15d, that depict a strange phenomenon, i.e. some liquid is at the centre

of the pipe, which might be caused by the liquid droplets at the centre. As

far as bubbly flow is concerned, when gas is fully dispersed in liquid, the ECT285

fails to extract tiny bubbles due to their size being below the ECT’s resolution,

whereas the quantitative results present that gas concentration can be extracted

by the ECT.

With the reference method addressed in Section 3 and the ECT system

provide by an industry, the system is able to manage three phase flows over the290

test conditions. However, as the consequence of the high complex permittivity

of water and the use of the relative low permittivity of mixture of oil and water

at specific WLR as reference, it may contribute to the error of the concentration

from ECT. Nerveless, this did not present a significant impact on visualisation.
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4.2. ERT system295

For the examined WLR values, th deployed ERT system has a good agree-

ment with the report [25]. That is, it is capable of handling gas-oil-water flow

with WLR above 40%, i.e. water-continuous flow. Nonetheless, it was senn that

the applied ERT system managed to image stratified and slug flow when WLR

was at 25%, although the measured quantities had a large discrepancy to the300

reference values.

Within the effective WLR range, the ERT produces similar results compared

with the ones using the ECT. When flow structure is simple and total flowrate is

relatively low, the interface between conductive (water) and non-conductive (gas

and oil) is clearly addressed. For stratified, slug, and plug flow, the boundaries305

are relatively sharp and reasonable, compared with related video log; whereas

when water and oil are mixed together, the performance of the ERT deteriorates.

The ERT was unable to image the top liquid film for engaged annular flow, due

to the limitation of the ERT with respect to the spatial resolution. It is also

noticed that there is an overestimate of the thickness of the bottom liquid film,310

which may result from the disturbance of the oil phase since the oil phase is

supposed to be fully dispersed in the water phase for annular flow. Similar to

the ECT, the ERT has no ability to identify dispersed tiny bubbles in bubbly

flow, and hence no bubbles are seen in the ERT tomograms for bubbly flow.

But it still presents water concentration even though tiny bubbles disappear in315

the images.

4.3. Dual-modality electrical tomographic systems

On the basis of the performance of the ERT and ECT, the dual-modality

ERT-ECT systems are an effective method when characterising gas-oil-water

horizontal flow of WLR between 40% and 90%, in accordance with the ca-320

pabilities of the ERT and the ECT as single modality. Within this range,

single-modality electrical tomography struggles to provide sufficient and accu-

rate information to decompose the phases in the flow, whereas the integrated

systems complement the limitations of either system by fusing the data from
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both modalities. In contrast, when WLR is out of the range, the systems cannot325

provide complementary information by fusing the data from each modality.

By applying the threshold-based data fusion approach, individual phases are

distinguished, and therefore visualised using different colours. In principle, the

gas concentration by the fusion is determined by Ethe CT result, whereas the

water concentration by the fusion depends on the ERT results. In consequence,330

the accuracy of the data fusion relies on the resolution of the ECT and the

ERT. When total flowrate is relatively low, i.e. stratified flow and slug flow,

both qualification and quantification are in great agreement with the references.

In contrast, the performance of data fusion deteriorates when either modality

cannot perform well, especially in terms of visualisation. A typical example335

is bubbly flow, in which both ERT and ECT are incapable of locating tiny

bubbles, and hence the fused images provide little clues about tiny bubbles,

although concentration information is still presented.

Overall, the application of the dual-modality electrical tomography results

in more accurate quantities of phase concentrations within its functional range,340

compared to the ERT and ECT as a single modality. However, it is also noted

that under some extreme conditions, e.g. bubbly flow, data fusion results are

not as good as those by individual modality. As for gas concentration, the

results by data fusion outperform those by the ECT alone, except on bubbly

flow. This is essentially because of the limit of the ECT in this flow. On the345

other hand, the comparisons of water concentrations by different approaches

indicate that the ERT results are not always as good as expected, especially at

lower WLR, which reflects the negative effect of the oil phase as an additional

non-conductive phase on the ERT. The quantities, however, become better after

data fusion, despite there being extreme cases where the ERT outperforms data350

fusion, such as bubbly flow.

Despite the error caused by the above data fusion, it is worth noting that

measurement uncertainty does play an important role. The measurement un-

certainty mainly comes from two sources: one is systematic error, and the other

is random noise. It is usually believed that about the 5% of systematic er-355
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Figure 21: Capability of the ERT-ECT system against WLR.

ror comes from hardware [20], which could be introduced by the imprecision of

sensing electronics and A/D conversion, improper compensation to temperature

and/or ionic concentration changes etc. and also the artificial error from imag-

ing reconstruction. Consequently, the ERT-ECT systems could introduce up to

10% systematic error but could be even higher as discussed in below section.360

Random noise, on the other hand, is generally as a consequence of uncontrol-

lable and unrepeatable factors, such as flow instability, , electricity crosstalk,

and so on. The uncertainty due to random noise could be 5% but can be reduced

with the cost of increasing sampling number. Together the potential systematic

error with the random noise, the final uncertainty of the mean concentration365

measurements could be up to 10-15%, which is linearly transferred by the image

reconstruction algorithm employed in the study.

5. Conclusion

The experimental results demonstrate the overall capability of the dual-

modality ERT-ECT systems in the domain of gas-oil-water flow characterisation.370

From the hardware perspective, the systems have proved to be effective, robust,
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and reliable for the purpose of multiphase flow visualisation and measurement.

Likewise, the images and numbers further substantiate the conclusion from the

viewpoint of data processing. In WLR 0%-90%, the ECT is able to produce

acceptable tomograms to reflect the distribution of gas phase and liquid phase,375

whereas the ERT is able to deal with the flow of WLR [40%, 100%] to distinguish

gas and oil as conductive phase from water as a non-conductive phase. As a

dual-modality system, the ERT-ECT can quantify and qualify the flow of WLR

within [40%, 90%]. The capabilities of the ERT-ECT systems as single- and

dual-modality are depicted in Figure 21.380

Despite the advantages, there are still some aspects to be addressed in the

future. First of all, further experiments should be carried out to make the

evaluation more thorough. For example, WLR between 30% and 50% should

be covered to determine the lower bound of the effective range for the systems.

Moreover, a cross-correlation method should be applied to quantify the flowrate385

of each phase, so that the comparisons with GVF and WLR are more meaningful

and accurate. The quantification of velocity would also contribute to study slip

characteristics between each phase.

An essential impact on the performance of the ERT/ECT concentration mea-

surement is the spatial resolution of the concentration tomograms. The systems390

utilised in this study have relatively low resolution due to the application of

single-step linear back-projection (LBP) [17], which presented significant offsets

at large GVFs. Advanced reconstruction algorithms, e.g. sensitivity theorem

based conjugate gradients (SCG) [18] and the iterative Landweber method [19],

could be applied to improve the resolution of the tomograms, which in turn395

improves the final results, especially as the data-processing speeds develop over

time. The water component also impacts the performance of ECT. In addition,

the change of continuous phase from oil to water clearly impacts on the perfor-

mance of ERT/ECT, respectively. However, the concentration offsets at a low

GVF may presents the nature difference from GVF due to the impact of slip400

velocity between gas and liquid phase presented at the test section.

The improvement of data fusion methodology is also worthy of more effort.
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Although a threshold-based approach is effective, little effort has been made

on a comprehensive evaluation of the impact of the selected threshold values

on the final fused results. In addition, advanced fusion algorithms, e.g. fuzzy405

clustering [11], requires more computational power. Data fusion may mature

into a process that can support the development, operation, and optimisation

of multiphase flow measurement technology.

Last but not least is artificial errors during data fusion due to the registration

process on spatial and temporal dimensions could be removed by the advanced410

design of hardware. For instance, the systems in [12, 14] are able to obtain both

conductivity and permittivity information simultaneously, and thus the tempo-

ral registration in the fusion process is no longer necessary thereby reducing

partial errors caused by the temporal interpolation during the registration.
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