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Abstract. By speech articulator movement and training a transformation to audio 
we can restore the power of speech to someone who has lost their larynx. We sense 
changes in magnetic field caused by movements of small magnets attached to the 
lips and tongue. The sensor transformation uses recurrent neural networks. 
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1. Introduction 

In 2010 it was reported that, worldwide, more than 425,000 people were still alive up to 
5 years after being diagnosed with laryngeal cancer [1]. This type of cancer only accounts 
for 1% of all cancers [2], but it has a high 5-year survival rate (around 70% according to 
[3]). Patients who undergo total laryngectomy as a treatment for laryngeal cancer will 
inevitably lose the power of speech. As speech is a vital part of human communication, 
post-laryngectomy patients often find themselves struggling with their daily 
communication, which can lead to social isolation, feelings of loss of identity and clinical 
depression [4-6]. 

Currently, there are 3 methods available for speech restoration after total 
laryngectomy: the electrolarynx, oesophageal speech and valved speech. The 
electrolarynx or artificial larynx is a handheld vibrating device which is placed against 
the neck to provide excitation of the vocal tract. The electrolarynx is relatively cheap and 
easy to use, but requires manual dexterity and produces an unnatural, mechanical voice. 
Oesophageal speech is a type of alaryngeal speech which does not require any 
instrumentation. In oesophageal speech, the person injects air into the upper oesophagus 
and then releases it in a controlled manner making the oesophagus to vibrate in order to 
create the speech sounds (i.e. it is like a controlled belch). This method, however, is 
difficult to learn and has a low speaking rate. In valved speech, which is considered to 
be the current gold standard, a one-way valve is inserted in the wall separating the trachea 
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and oesophagus. The valve allows air from the lungs to go into the oesophagus without 
food and liquids passing into the trachea. This method provides the most natural 
sounding voice among the three, but it is a masculine voice unpopular with female 
patients and it requires regular hospital visits for valve replacement due to biofilm 
formation. In addition to the three methods above, Alternative and Augmentative 
Communication (AAC) devices can be also employed to enable communication to 
laryngectomees, however, communication using AAC devices is normally much slower 
than standard spoken communication. 

Silent speech interfaces (SSIs) [7] have emerged in the last decade as an alternative 
communication method when the acoustic speech signal is not desirable (e.g. to maintain 
privacy when speaking in public places) or not available (e.g. after laryngectomy). To 
enable speech communication, SSIs rely on non-acoustic signals generated when the 
person articulates speech sounds, such as electrical activity in the brain or the electrical 
activity driving the articulator muscles or the movement of the speech articulators. From 
these signals, a SSI tries to automatically recover the speech produced by the person. A 
human example of this is lip reading. SSIs can be used as assistive technology (AT) to 
restore the ability to speak to people who have lost their voices after disease or trauma. 

In this paper, a SSI system aimed at speech restoration after total laryngectomy is 
described. The two pillars of the proposed system are (i) a device for capturing the 
movement of the articulators while the person articulates words and (ii) a speech 
synthesis technique driven by the captured articulatory data. Articulatory data is acquired 
using a technique known as Permanent Magnet Articulography (PMA) [8-11]. In PMA, 
a set of small magnets are attached to the articulators (typically the lips and tongue) and 
the variations of the magnetic field generated by the magnets during speech articulation 
are captured by sensors located close to the mouth. To synthesise speech from PMA data, 
an artificial neural network [12,13] is trained to convert sensor data into acoustics. The 
neural network is trained with simultaneous recordings of PMA and speech data made 
by the person before she/he loses the voice. This method is suitable for real-time 
processing and, because it is trained with recordings of the person’s own voice, retain 
the speaker’s vocal identity: to approximate their own voice.  

To evaluate the potential of the proposed SSI for speech restoration, some 
preliminary results are reported here for normal speakers. Both speech and PMA data 
were simultaneously recorded for two non-impaired subjects and, then, the SSI system 
was used to predict the speech acoustics from the captured articulatory data. A qualitative 
comparison between the original and predicted speech signals along with some 
preliminary results on the intelligibility of speech produced by the SSI are reported in 
this work. 

2. Methods 

2.1. Articulator motion capture 

To capture the movement of the vocal tract during speech articulation, a magnetic 
sensing technique known as Permanent Magnet Articulography (PMA) [8-11] is used in 
this work. As illustrated in Fig. 1b, in the current PMA setup a total of six cylindrical 
Neodymium Iron Boron (NFeB) permanent magnets are attached to the articulators 
whose movement want to be monitored: four are attached to the lips (ø1mm×5mm), one 



 
Figure 1. External PMA device. (a) Wearable PMA headset with control unit, battery and 4 tri-axial 

magnetic sensors. (b) Placement of the magnets. 

 
 
to the tongue tip (ø2mm×4mm) and one to the tongue blade (ø5mm×1mm). These 
magnets are currently attached using Histoacryl surgical tissue adhesive (Braun, 
Melsungen, Germany) during the experimental trials, but will be surgically implanted 
for long term usage. As shown in Fig. 1a, the rest of the PMA system comprises four tri-
axial Anisotropic Magnetoresistive (AMR) magnetic sensors mounted on the wearable 
headset, which capture the magnetic field generated by the magnets during articulation, 
a control unit, a rechargeable battery and a processing unit (e.g. computer/tablet PC). 
Compared to other techniques for the capture of articulator movement, such as 
electromagnetic articulography (EMA) [13], surface electromyography (sEMG) [15] or 
electropalatography (EPG) [16], the PMA system has the potential advantage of being 
unobtrusive, since there are no wires coming out of the mouth or electrodes attached to 
the skin, which may cause unwanted attention in public. Moreover, as shown in Fig. 1a, 
the PMA system is also relatively lightweight and highly portable.  

The PMA device in Fig. 1a is the result of an iterative engineering process. Earlier 
PMA-based prototypes [9] demonstrated acceptable speech reconstruction performance, 
but were less dissatisfactory in terms of their appearances, comfort and ergonomic factors 
for the users. To address these challenges, the current prototype in Fig. 1a was developed 
accordingly to the feedback from user questionnaires and through discussion with 
stakeholders including clinicians, potentials users and their families [10]. As a result, the 
appearance and comfort of the device was extensively improved without compromising 
the speech performances to its predecessors. 

Despite the improvements made on the external PMA prototype in Fig. 1, it is not 
without drawbacks: 1) issue with stability under exaggerated movement, 2) 
uncomfortable over a long period of time and 3) undesirable appearance for some users. 
To alleviate these limitations, an intraoral version of the PMA prototype was developed 
in [11] that fits under the palate inside the user’s mouth in a form of a dental retainer, as 
shown in Fig. 2. Although the operational of the device remained similar to the external 
version, the intraoral circuitry has drastically reduced in size. Moreover, due to the 
proximity of the sensors to the magnetic markers, smaller magnets are needed. Since the 
denture retainer is completely hidden inside the user’s oral cavity, thus eliminating any 
unwanted public attention. Previous studies suggested that the appearance is one of the 
most critical factors that affect the acceptability of any AT by their potential users [14,15]. 



 
Figure 2. Intraoral version of the PMA capturing device. (a) Intraoral PMA device is prototyped in a form of 

a denture retainer. (b) View of the device when worn by the user. 

 

2.2. Speech synthesis procedure 

Fig. 3 shows a diagram of the procedure used to synthesise speech from captured 
articulator movement. As can be seen, the procedure consists of two phases: training and 
conversion. The aim of the training phase is to obtain a statistical model (an artificial 
neural network in this case) for mapping sensor data into acoustics. The parameters of 
this model are learned from a set of synchronous recordings with PMA and speech 
signals made by the person before the laryngectomy (around 30 minutes of those 
recordings are required in the current system). To facilitate automatic learning, the 
artificial neural network is trained using a set of parameters (features) extracted from the 
speech and PMA signals rather than with the raw signals. The speech signals are 
parameterised to 32-dimensional feature vectors extracted every 25 ms using the 
STRAIGHT vocoder [19]: 25 of those parameters are used to represent the vocal tract 
filter as Mel-frequency cepstral coefficients (MFCCs) [20] and the 7 remaining 
parameters represent the source signal by aperiodicity values in 5 bands and a 
fundamental frequency (F0) with explicit voicing decision. For the PMA signals, features 
are extracted by applying the principal component analysis (PCA) technique for 
dimensionality reduction over short windows spanning 25 ms of sensor samples. Finally, 
both the PMA and speech features are normalised to have zero mean and unit variance. 

 

 
Figure 3. Flow diagram of the training and conversion stages of the speech synthesis procedure. 

 
 



The artificial neural network obtained at the end of the training phase is then 
employed to restore the person’s speech following laryngectomy. This is what is shown 
in the conversion phase of Fig. 3. Thus, the neural network is used to map the features 
computed from the sensor data into a sequence of acoustic parameters (speech features), 
from which a waveform is finally synthesised and then played back to the user via 
loudspeakers. The STRAIGHT vocoder is used again to synthesise a time-domain signal 
from the sequence of speech features predicted by the neural network. Provided that the 
latency of the conversion process is less than 50 ms (i.e. the delay between an articulatory 
gesture and the acoustics generated by the system), it will be possible to restore the 
auditory feedback without inducing mental stress or causing disfluencies to the subject 
[21]. There is also the possibility that real-time auditory feedback might enable the user 
to learn to produce better speech (like learning to play an instrument). 

Considerable effort was spent on investigating the best machine learning technique 
for modelling the PMA-to-acoustic mapping. As a result, it was found that recurrent 
neural networks (RNNs) [14,22], a type of artificial neural especially suited for 
modelling sequential data, provide a good compromise between speech reconstruction 
performance and conversion latency. A RNN consists of a set of recurrently connected 
blocks, each one implementing a nonlinear mapping from the inputs to the outputs. 
During learning, the RNN parameters are iteratively optimized to minimize the error 
between the speech features computed from the original speech signals and the features 
predicted by the network from the sensor data. The RNN employed in this work has four 
hidden layers with 164 gated recurrent units (GRUs) [23] each. The RNN parameters are 
randomly initialised and optimized using the stochastic gradient descent technique with 
mini-batches of 50 sentences. Training is run for 100 epochs or until the error computed 
over a validation set start increasing. 

2.3. Parallel articulatory-speech database 

For this preliminary study, data was recorded by two native British-English male subjects 
(S1 and S2) with normal speaking ability. As the aim of this study is to demonstrate the 
feasibility of voice reconstruction from articulator movement, we only focus on non-
impaired people in this work. Only one of the subject S1 was familiar with the PMA 
device and had used it prior to this study. Each subject recorded a random subset of the 
CMU Arctic corpus of phonetically-rich sentences [24]. This corpus was selected 
because it is widely used in speech synthesis research and it allows us to evaluate the full 
phonetic range. The total amount of data recorded by the subjects was: 470 sentences (28 
minutes) by S1 and 509 sentences (26 minutes) by S2. Each recording session lasted 
approximately 75 minutes, including the time to fit the magnets and PMA device to the 
subject and the actual recording time. The recordings were conducted in an acoustically 
isolated room. During recording, the subject was asked to read aloud a random subset of 
sentences from the CMU Arctic corpus. A visual prompt of each sentence was presented 
to the participant at regular intervals of 10 s. PMA and audio signals were recorded 
simultaneously at sampling frequencies of 100 Hz and 16 kHz, respectively. The audio 
was recorded using a shock-mounted AKG C1000S condenser microphone via a 
dedicated stereo Lexicon Lambda USB-sound card. Articulatory data, was recorded 
using the PMA device shown in Fig. 1.  



3. Results 

As a qualitative evaluation of the speech quality achieved by the speech restoration 
system, Fig. 4 compares speech signals recorded by the subjects (Original) and the 
corresponding ones predicted from sensor data (SSI) for both subjects S1 and S2. The 
comparison is made at three levels: at the waveform level (1st row), between the 
spectrograms of the signals (2nd row) and, finally, between the F0 contours (i.e. 
evolution of the fundamental frequency across time) of the signals. 

Secondly, a listening test was conducted to evaluate the intelligibility of speech 
generated by the SSI. In the test, listeners were asked to transcribe a random subset of 
12 sentences chosen from the ones available for subjects S1 and S2 (6 sentences for each 
subject). A total of 21 subjects participated in the test. Listeners were allowed to replay 
the speech stimuli as many times as they wanted. Table 1 shows the results of the 
listening test. Two intelligibility measures are reported: the percentage of words correctly 
identified by the listeners (word correct) and the word accuracy (i.e. ratio of words 
correctly identified after discounting the insertion errors). For each measure, the 95% 
bootstrapped confidence intervals are also presented. 

 

 
Figure 4. Examples of speech waveforms (1st row), spectrograms (2nd row) and F0 contours (3rd row) for 

the sentences ‘I was the only one who remained sitting’ and ‘What do you mean by this outrageous conduct?’ 
spoken by the subjects S1 and S2. Both original speech signals and signals predicted by the SSI are shown. 

 

 
Table 1. . Speech intelligibility results for the proposed silent speech system. 

Subject Word correct (%) Word accuracy (%) 
S1 65.97±8.79 64.80±8.91 
S2 65.56±8.25 63.44±8.40 

 



4. Discussion 

From the signal examples shown in Fig. 4, it can be seen that the SSI is able accurately 
to reproduce the speech signals originally uttered by both subjects. In particular, the 
speech formants in both cases are well predicted and their trajectories are sharp and stable. 
Other detailed characteristics of speech, however, are not accurately modelled by the 
current PMA device, and that is the reason that the spectrograms of the predicted signals 
appear smoothed compared to the originals. 

It is remarkable that the SSI is able to predict F0 contours that seem natural and 
relatively similar to the original although PMA only provides information about the 
upper part of the vocal tract and very little information about voicing [25,26]. It could be 
that the system is learning some latent correlations between the movement of the 
articulators and the excitation parameters. Also, because the SSI is adapted to each 
particular subject, the RNN models can learn the statistics of the fundamental frequency 
for that subject (i.e. range, average F0 value for that subject, etc.). The problem of 
estimating a good excitation signal becomes especially relevant in laryngectomy patients, 
who no longer have vocal folds. 

Finally, regarding the results in Table 1, there are several reasons why only ~65% 
intelligibility was obtained for both subjects. First, it is well-known that the CMU Arctic 
sentences are difficult material that was not written to be spoken and contains unusual 
words that are not in common usage. Second, the participants of the listening test did not 
have access to any visual clues (e.g. movement of the lips) which are of considerable 
help in following a speaker. These clues, however, will be normally available when the 
SSI is used by laryngectomees. Third, the PMA device used in this study was designed 
on the basis of an average head size for an adult. In this sense, a subject- tailored design 
is expected to improve the quality of the captured articulatory data.  

5. Conclusions 

In comparison to other silent speech techniques, our sensor technology is unobtrusive 
and we can produce speech which resembles the subject’s own voice. We are about to 
enter a clinical trial. In this, our challenge is how to obtain the parallel sensor/speech data 
required to train the transformation.  In many cases it will not be possible to obtain this 
data prior to the laryngectomy, but we may be able to have the subject mime to audio 
recordings once the implants are in place. 
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