

This is a repository copy of Deccan volcanism caused coupled pCO₂ and terrestrial temperature rises, and pre-impact extinctions in northern China.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/128432/

Version: Accepted Version

Article:

Zhang, L, Wang, C, Wignall, PB et al. (4 more authors) (2018) Deccan volcanism caused coupled pCO₂ and terrestrial temperature rises, and pre-impact extinctions in northern China. Geology, 46 (3). pp. 271-274. ISSN 0091-7613

https://doi.org/10.1130/G39992.1

© 2018 Geological Society of America. This is an author produced version of a paper published in Geology. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Deccan volcanism caused coupled pCO_2 and terrestrial
2	temperature rises, and pre-impact extinctions in northern
3	China
4	Laiming Zhang ^{1*†} , Chengshan Wang ^{1*} , Paul B. Wignall ² , Tobias Kluge ³ , Xiaoqiao
5	Wan ¹ , Qian Wang ^{1§} , and Yuan Gao ¹
6	¹ State Key Laboratory of Biogeology and Environmental Geology, School of Earth
7	Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083,
8	China
9	² School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
10	³ Institut für Umweltphysik, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg
11	69120, Germany
12	*E-mails: chshwang@cugb.edu.cn; lmzhang@cugb.edu.cn
13	[†] Current address: School of Energy Resources, China University of Geosciences (Beijing),
14	Beijing 100083, China
15	[§] Current address: China Huadian Green Energy Co., Ltd., Beijing 100160, China
16	ABSTRACT
17	Evaluating the terrestrial climate record provides a critical test of the roles of
18	Chicxulub impact and Deccan Traps volcanism during the Cretaceous-Paleogene (K-Pg)
19	mass extinction. Most evidence has came from marine records, but our new clumped
20	isotopes data from paleosol carbonates in the Songliao Basin provide a terrestrial climate
	Page 1 of 22

21	history from northern China. This reveals there was a pre-impact warming caused by the
22	onset of Deccan Traps volcanism, whereas the following short-term cooling then another
23	warming episode were likely caused by Chicxulub impact and post-boundary volcanism.
24	Our study suggests the pCO_2 levels were probably the main control on the latest
25	Cretaceous cooling and the climatic fluctuations across the K-Pg boundary interval in
26	northern China. In the Songliao Basin, the pre-impact Deccan volcanism links to losses of
27	half of the lacustrine algae species (charophytes) and almost all the lacustrine ostracodes;
28	this suggests that the Deccan Traps volcanism had already destabilized the ecosystem and
29	caused extinctions prior to the Chicxulub impact.

30 INTRODUCTION

31 The cause of the Cretaceous-Paleogene (K-Pg) mass extinction has been one of the 32 most intense scientific debates of past decades, with the relative roles of Chicxulub impact 33 and Deccan Traps volcanism providing the main discussion (Keller, 2014). The key issues 34 are whether Deccan eruptions caused coincident pCO_2 and paleotemperature rises (e.g., 35 Nordt et al., 2002; Huang et al., 2013); and whether these pre-impact climate changes were 36 already imposing stresses on the global biota (e.g., Keller, 2014; Petersen et al., 2016a; 37 Witts et al., 2016). Detailed terrestrial climatic trends over the boundary interval could help 38 to evaluate the effects of these two closely timed events, but poor temporal resolution of 39 often fragmentary sections and ambiguous proxies usually restrict the significance of 40 terrestrial records (Tobin et al., 2014), making it difficult to evaluate the global picture.

41	By applying clumped isotope (Δ_{47}) paleothermometry to paleosol carbonates, we
42	present a relatively continuous K-Pg terrestrial climatic record with high-temporal
43	resolution in northern China that includes paleotemperatures, $\delta^{18}O_{water}$ values (soil water),
44	and pCO_2 from ca. 76 Ma to ca. 65 Ma. These new data extend the spatial coverage of
45	paleoclimatic estimates during the K-Pg interval and demonstrate that pre-impact climate
46	changes, caused by Deccan Traps volcanism, had already imposed stresses on the global
47	biota.
48	MATERIALS AND AGE CONSTRAINTS
49	Late Cretaceous-early Paleogene stratigraphy was recovered in the SK-In (north
50	core) borehole (44°12'44.22"N, 124°15'56.78"E; Fig. 1) in the central part of the Songliao
51	Basin, northern China (Wang et al., 2013). In the Sifangtai and Mingshui Formations,
52	many distinctive calcareous paleosols, or calcisols, were identified and consist of
53	carbonate nodules, slickensides, mottled colors, and fossil root traces (Huang et al., 2013;
54	Gao et al., 2015). In this study, 51 paleosol carbonates (diameters range from 1.0 to 3.0 cm)
55	were collected from 44 paleosol Bk horizons (Fig. DR2; Tables DR4 and DR5 in the GSA
56	Data Repository ¹). All of the samples come from shallow burial depths (no deeper than 1
57	km), suggesting that they have, at most, only been slightly influenced by burial diagenesis
58	or solid-state C-O bond reordering (Passey and Henkes, 2012). After petrographic vetting,
59	based on optical and cathodoluminescence properties (Fig. DR3), all samples were found

to be dense micrite except for sample SK-31, which has been excluded from the followingdiscussion.

62	By using thorium (Th) data from the Sifangtai and Mingshui Formations, an
63	astronomical time scale was established by tuning filtered 405 k.y. eccentricity cycles to
64	the astronomical solution La2010d, which calibrates the timing of the polarity chron
65	C29r-C30n boundary (342.1 \pm 1.4 m in depth) to ca. 66.30 Ma and the K-Pg boundary (318
66	\pm 1.2 m in depth) to ca. 66.00 Ma (Wu et al., 2014) (Fig. DR2).
67	METHODS
68	The clumped isotope analyses were conducted at Johns Hopkins University (the
69	laboratory has now moved to University of Michigan, Ann Arbor, USA) following the
70	methods described in Passey et al. (2010), and at Heidelberg University (Germany)
71	following the methods described in Kluge et al. (2015). The Δ_{47} temperatures are
72	calculated using the calibration of Passey and Henkes (2012) with an acid temperature
73	correction of 0.082%. The $\delta^{18}O_{water}$ (soil water) values are calculated from the Δ_{47}
74	temperatures and δ^{18} O of paleosol carbonates using the calibration of Kim and O'Neil
75	(1997). The paleo-atmospheric CO_2 (pCO_2) is calculated following the methods described
76	by Breecker and Retallack (2014) (Table DR3). The δ^{13} C and δ^{18} O are reported relative to
77	either the Vienna Peedee belemnite (mineral) or the Vienna standard mean ocean water
78	scales. The Δ_{47} values are reported relative to the absolute reference frame (Dennis et al.,
79	2011) (Tables DR1 and DR2).

80 **RESULTS**

81	The Δ_{47} temperatures range from 15.2 °C to 42.1 °C, with an average value of 24.9
82	°C (Fig. 2; Table DR4). Initially, temperatures were relatively high (~35 °C at ca. 76 Ma)
83	before decreasing to ~15 $^{\circ}$ C at the Campanian-Maastrichtian boundary (ca. 72 Ma). After
84	that, temperatures increased to \sim 30 °C ca. 71 Ma before decreasing again to a low point of
85	16.7 °C ca. 67.24 Ma (except for a short warming between 68 and 67 Ma). After ~1 m.y. of
86	low temperatures, a rapid warming of ~6 $^{\circ}$ C occurred between ca. 66.39 Ma and ca. 66.31
87	Ma, ~300 k.y. before the K-Pg boundary. Immediately before the K-Pg boundary (~100
88	k.y.), the temperature dropped more than 10 °C ca. 66.11 Ma. Finally, temperatures rapidly
89	increased once again by ~10 °C ca. 65.9 Ma before decreasing to ~22 °C ca. 65.5 Ma (Fig.
90	2; Table DR5). The general cooling trend is consistent with temperature trends both from
91	marine (e.g., Friedrich et al., 2012; Linnert et al., 2014; Petersen et al., 2016a) and
92	terrestrial (e.g., Kemp et al., 2014; Tobin et al., 2014) sections, indicating that this a global
93	signal.
94	We note that the Δ_{47} temperatures of the majority of soil carbonates were summer
95	biased (e.g., Passey et al., 2010; Snell et al., 2014); although a few represent other seasons
96	(e.g., Peters et al., 2013; Gallagher and Sheldon, 2016). In a monsoon climate, the soil
97	carbonate likely formed immediately before the cooling effects of the monsoon rains and
98	after the hottest part of the summer (Breecker et al., 2009). In the Songliao Basin,
99	monsoonal rainfall immediately followed the hottest part of summer (Chen et al., 2013).

100	We thus speculate that the carbonate nodules in SK-In were formed in summer. It is
101	noteworthy that our values are consistent with terrestrial climate records from similar
102	paleolatitudes across the Late Cretaceous-early Paleogene in North America (Fig. DR6)
103	based on temperature estimates from fossil plants (annual temperatures + 15 $^{\circ}$ C) and
104	clumped isotopes of fossil bivalves and paleosol carbonates (summer temperatures) (Snell
105	et al., 2014; Tobin et al., 2014).
106	The pCO_2 values range from 348 ppmv to 2454 ppmv (Fig. 2; Table DR5) with an
107	out-of-range value of 3460 ppmv that is excluded from the following disussion. The
108	average pCO_2 is 1575 ppmv for the Campanian, 1180 ppmv for the Maastrichtian, and
109	1058 ppmv for the Danian, generally showing a decreasing trend. The lowest levels of
110	~600 ppmv occurred ca. 67.5–66.5 Ma, and then showed a rapid ~500 ppmv increase ca.
111	66.4–66.3 Ma. Levels decreased again just before the K-Pg boundary and increased back to
112	previous values immediately after the K-Pg boundary (Fig. 2).
113	Previous studies have predicted that pCO_2 levels underwent a long-term decline,
114	from ~1975 ppm to 450 ppm, during the Late Cretaceous (Wang et al., 2014). The
115	paleo-CO ₂ reconstructed from pedogenic carbonates from North America rose
116	dramatically from 780 ppm in the Maastrichtian to 1440 ppm near the K-Pg boundary, but
117	declined sharply to 760 ppm at the boundary (Nordt et al., 2002). The pattern is consistent
118	with ranges and trends predicted in this study. Maastrichtian pCO_2 levels based on $\delta^{13}C$ of
119	paleosol carbonates from the Songliao Basin have been previously estimated to be between
	Page 6 of 22

120	277 ± 115 and 837 ± 164 ppmv during the K-Pg boundary interval (Huang et al., 2013).
121	However, these estimates assume a mean annual air temperature instead of summer
122	temperature (Δ_{47} temperature), and thereby underestimate the temperatures.
123	The $\delta^{18}O_{water}$ values range from -10.9% to -5.0% , and show a bimodal
124	distribution with ~3‰ shifts (Fig. 2; Tables DR4 and DR5). Similar bimodality in δ^{18} O
125	values of fresh water in the Western Interior during the Late Cretaceous was attributed to
126	changes of water sources in the study areas (e.g., Tobin et al., 2014; Petersen et al., 2016b).
127	The soil water from which the soil carbonates formed mainly comes from meteoric water
128	(Quade et al., 1989). For two main moisture sources of northeast China, precipitation of the
129	westerly cold air masses from the Arctic Ocean and Central Asia are ~3‰ lower in δ^{18} O
130	than warm air masses from the Pacific Ocean transported by the East Asian summer
131	monsoon (Gao et al., 2015). Therefore, we assume that the periodic excursions of the
132	$\delta^{18}O_{water}$ values may represent periodic fluctuations of relatively warm and cool climate
133	leading to periodic shifting of either the warm air masses with more ¹⁸ O-enriched
134	precipitation or cold air masses with more ¹⁸ O-depleted precipitation to the Songliao Basin,
135	reflecting the sensitivity of mid-latitudes terrestrial climates in a greenhouse world (Gao et
136	al., 2015).

137 DISCUSSION AND CONCLUSIONS

Both the Δ_{47} temperatures and the *p*CO₂ records across the K-Pg boundary interval in northern China shows a decreasing trend with several fluctuations (Fig. 2); this suggests

140	that pCO_2 is the main driving factor forcing Late Cretaceous climatic fluctuations. The Δ_{47}
141	temperatures and pCO_2 levels ca. 67 Ma, ca. 69 Ma, and ca. 72 Ma were close to the
142	modern levels. During these periods, the Δ_{47} temperatures are generally 5–8 °C lower than
143	intervening periods and the pCO_2 are close to 750 ppmv (Fig. 2), which is the threshold for
144	Antarctic glaciation according to climate models (DeConto et al., 2008; Ladant and
145	Donnadieu, 2016). Antarctic records also showed near freezing sea surface temperatures
146	and accompanying glacioeustatic sea-level lowstands at 66.8 Ma and 68.8 Ma (Petersen et
147	al., 2016a).
148	Near the polarity chron C30n-C29r boundary, ~300–400 k.y. before the K-Pg
149	boundary, the temperature increased from ~22 °C to ~28 °C ca. 66.3 Ma (Fig. 3). Around
150	the same time, the $\delta^{18}O_{water}$ values increased from ~–9‰ to ~–6‰ (Fig. 3). Terrestrial
151	summer temperatures in North America similarly rose, although by a more modest 5 $^{\circ}$ C,
152	and stabilized at ~30 $^{\circ}$ C prior to the K-Pg boundary (Tobin et al., 2014). In addition,
153	marine records also show a pre-boundary warming in the latest Cretaceous (e.g., Li and
154	Keller, 1998; MacLeod et al., 2005; Petersen et al., 2016a). These climatic changes broadly
155	coincide with the onset of main Deccan eruptions (66.288 \pm 0.085 Ma or 66.38 \pm 0.05 Ma
156	based on different dating methods) (Renne et al., 2015; Schoene et al., 2015). Based on the
157	estimations of lava erupted during the main Deccan eruptions and CO ₂ emitted per cubic
158	kilometer of lava, Petersen et al. (2016a) suggested that the pre-boundary volcanism
159	emitted 270–900 ppmv CO ₂ onto a background atmospheric concentration of ~360–380

160 ppmv (Beerling et al., 2002). According to our results, the pCO_2 increased by ~400–500 161 ppmv from a background atmospheric concentration of ~348–870 ppmv in northern China 162 (Fig. 3); this is broadly consistent with the prediction. Therefore, we suggest that the onset 163 of Deccan volcanism likely caused the temperature and pCO_2 rise ca. 66.4–66.3 Ma in northern China and Antarctica. 164 165 After the latest Maastrichtian warming, ~100 k.y. before the K-Pg boundary, 166 temperatures dropped sharply by more than 10 °C then recovered to the previous warming 167 temperature level at the beginning of the Paleogene (Fig. 3). Simultaneously, the pCO_2 168 records also show a drastic fall then rise across the K-Pg boundary. This trend was also 169 identified in North America immediately before the K-Pg boundary, when temperatures 170 fell by ~8 $^{\circ}$ C (Tobin et al., 2014). In the marine records, a rapid short-term sea surface 171 temperatures decrease of 7 °C immediately after the Chicxulub impact was recognized 172 using TEX₈₆ paleothermometry of sediments from Texas and New Jersey (USA) 173 (Vellekoop et al., 2016). In contrast, clumped isotope paleothermometry of well-preserved 174 bivalve shells from Seymour Island, Antarctica, showed that sea surface temperatures 175 decreased immediately before the K-Pg boundary and then rose rapidly (Petersen et al., 176 2016a), although these marine temperature changes are more modest compared to the 177 terrestrial ones. Petersen et al. (2016a) suggested that the post-boundary volcanism 178 possibly emitted another 825–900 ppmv. However, our records suggest only an ~300–400 179 ppmv increase onto a background atmospheric concentration of ~700–800 ppmv, lower

180	than this estimate but similar to the changes during pre-boundary volcanism; this may
181	suggest a lower volatile component in these eruptions. The duration of the \sim 6–8 °C
182	increase is also comparable to the pre-boundary rise (Fig. 3).
183	The lacustrine and palynological fossils from SK-In reveal distinct phases of
184	turnover across the K-Pg boundary interval (Li et al., 2011; Scott et al., 2012; Wan et al.,
185	2013) (Fig. 3; Fig. DR8). Although the sample density is low (10–25 m spacing),
186	palynological data show that major losses occurred amongst pollen taxa ~500 k.y. prior to
187	the boundary and left an impoverished assemblage that persisted across the boundary (Li et
188	al., 2011). One study has suggested that this palynological change may be due to
189	lithological variation rather than extinction (Wan et al., 2013). Ostracodes show major
190	extinctions around the K-Pg boundary (Scott et al., 2012; Wan et al., 2013) with losses
191	beginning ~200 k.y. (ca. 66.21 Ma) before the boundary in the Songliao Basin (Fig. 3; Fig.
192	DR8): 11 species disappeared before the boundary and 3 after it. Thus, the ostracode
193	extinctions in northern China show a good temporal link with the onset of the Deccan
194	volcanism. Abundant charophytes occur from ~340–317 m in SK-In (Wan et al., 2013),
195	and they also show losses (20 of 40 species) beginning after the onset of main Deccan
196	eruptions, and ~150 k.y. (ca. 66.15 Ma) before the K-Pg boundary. This extinction episode
197	is followed by appearance of several short-lived abundant (disaster) taxa (Scott et al., 2012;
198	Wan et al., 2013) (Fig. 3; Fig. DR8). Further charophyte losses (18 of 40 species) occur

after the K-Pg boundary. Therefore, like the ostracodes, the charophytes losses beginaround the onset of the main Deccan eruptions.

201	In total, two-thirds of the extinctions occurred before the Chicxulub impact but
202	after onset of eruption of the Deccan Traps and are thus solely linked to Deccan Traps
203	volcanism. However, it seems unlikely that the high temperatures and the rate of warming
204	led to the extinctions in northern China. The losses (ca. 66.15 Ma for ostracode and ca.
205	66.21 Ma for charophytes) occurred hundreds of thousands years after the onset of
206	warming (ca. 66.4–66.3 Ma). Similar levels of warmth and phases of rapid warming and
207	cooling had occurred before the extinctions. Therefore, we suggest that it is possible other
208	Deccan-linked environmental effects, i.e., acid rains or emission of toxic substances, led to
209	the pre-boundary extinctions in northern China. The remaining one-third of extinction
210	losses took place at the K-Pg boundary, at the time both the Chicxulub impact and the
211	post-boundary Deccan Traps volcanism occurred. Therefore, we cannot strictly
212	discriminate the relative role of these two events played in the post-boundary warming and
213	extinctions, but it is clear that Deccan Traps volcanism had already destabilized the
214	Songliao Basin ecosystem prior to the impact.

215 ACKNOWLEDGMENTS

216 We thank B.H. Passey for the use of the laboratory facilities in Johns Hopkins

217 University (Baltimore, Maryland, USA) and for performing a quality assurance of the data.

218 We thank Z. Zhou, H. Wu, and C. Koeberl, who gave us many useful comments. This

- 219 study was financially supported by National Natural Science Foundation of China (grants
- 220 41790450, 41702107), the National Key R&D Plan of China (grant 2017YFC0601405),
- and the China Geological Survey Program (grant DD20160207).
- 222 **REFERENCES CITED**
- 223 Beerling, D.J., Lomax, B.H., Royer, D.L., Upchurch, G.R., and Kump, L.R., 2002, An
- atmospheric *p*CO₂ reconstruction across the Cretaceous-Tertiary boundary from leaf
- 225 megafossils: Proceedings of the National Academy of Sciences of the United States of
- 226 America, v. 99, p. 7836–7840, https://doi.org/10.1073/pnas.122573099.
- 227 Breecker, D.O., Sharp, Z.D., and McFadden, L.D., 2009, Seasonal bias in the formation
- and stable isotopic composition of pedogenic carbonate in modern soils from central
- 229 New Mexico, USA: Geological Society of America Bulletin, v. 121, p. 630–640,
- 230 https://doi.org/10.1130/B26413.1.
- 231 Breecker, D.O., and Retallack, G.J., 2014, Refining the pedogenic carbonate atmospheric
- 232 CO₂ proxy and application to Miocene CO₂: Palaeogeography, Palaeoclimatology,
- 233 Palaeoecology, v. 406, p. 1–8, https://doi.org/10.1016/j.palaeo.2014.04.012.
- 234 Chen, J., Zhao, P., Wang, C., Huang, Y., and Cao, K., 2013, Modeling East Asian climate
- and impacts of atmospheric CO₂ concentration during the Late Cretaceous (66Ma):
- Palaeogeography, Palaeoclimatology, Palaeoecology, v. 385, p. 190–201,
- 237 https://doi.org/10.1016/j.palaeo.2012.07.017.

238	DeConto, R.M., Pollard, D., Wilson, P.A., Palike, H., Lear, C.H., and Pagani, M., 2008,
239	Thresholds for Cenozoic bipolar glaciation: Nature, v. 455, p. 652–656,
240	https://doi.org/10.1038/nature07337.
241	Dennis, K.J., Affek, H.P., Passey, B.H., Schrag, D.P., and Eiler, J.M., 2011, Defining an
242	absolute reference frame for 'clumped' isotope studies of CO ₂ : Geochimica et
243	Cosmochimica Acta, v. 75, p. 7117–7131, https://doi.org/10.1016/j.gca.2011.09.025.
244	Friedrich, O., Norris, R.D., and Erbacher, J., 2012, Evolution of middle to Late Cretaceous
245	oceans—A 55 m.y. record of Earth's temperature and carbon cycle: Geology, v. 40,
246	p. 107–110, https://doi.org/10.1130/G32701.1.
247	Gallagher, T.M., and Sheldon, N.D., 2016, Combining soil water balance and clumped
248	isotopes to understand the nature and timing of pedogenic carbonate formation:
249	Chemical Geology, v. 435, p. 79–91, https://doi.org/10.1016/j.chemgeo.2016.04.023.
250	Gao, Y., Ibarra, D.E., Wang, C., Caves, J.K., Chamberlain, C.P., Graham, S.A., and Wu,
251	H., 2015, Mid-latitude terrestrial climate of East Asia linked to global climate in the
252	Late Cretaceous: Geology, v. 43, p. 287–290, https://doi.org/10.1130/G36427.1.
253	Huang, C., Retallack, G.J., Wang, C., and Huang, Q., 2013, Paleoatmospheric pCO ₂
254	fluctuations across the Cretaceous-Tertiary boundary recorded from paleosol
255	carbonates in NE China: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 385,
256	p. 95–105, https://doi.org/10.1016/j.palaeo.2013.01.005.

257	Keller, G., 2014, Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass
258	extinction: Coincidence? Cause and effect?, in Keller, G., and Kerr, A.C., eds.,
259	Volcanism, impacts, and mass extinctions: Causes and effects: Geological Society of
260	America. Special Paper, v. 505, p. 57–89, https://doi.org/10.1130/2014.2505(03).
261	Kemp, D.B., Robinson, S.A., Crame, J.A., Francis, J.E., Ineson, J., Whittle, R.J., Bowman,
262	V., and O'Brien, C., 2014, A cool temperate climate on the Antarctic Peninsula
263	through the latest Cretaceous to early Paleogene: Geology, v. 42, p. 583-586,
264	https://doi.org/10.1130/G35512.1.
265	Kim, ST., and O'Neil, J.R., 1997, Equilibrium and nonequilibrium oxygen isotope effects
266	in synthetic carbonates: Geochimica et Cosmochimica Acta, v. 61, p. 3461–3475,
267	https://doi.org/10.1016/S0016-7037(97)00169-5.
268	Kluge, T., John, C.M., Jourdan, AL., Davis, S., and Crawshaw, J., 2015, Laboratory
269	calibration of the calcium carbonate clumped isotope thermometer in the 25–250 $^{\circ}\mathrm{C}$
270	temperature range: Geochimica et Cosmochimica Acta, v. 157, p. 213-227,
271	https://doi.org/10.1016/j.gca.2015.02.028.
272	Ladant, J.B., and Donnadieu, Y., 2016, Palaeogeographic regulation of glacial events
273	during the Cretaceous supergreenhouse: Nature Communications, v. 7, p. 12771,
274	https://doi.org/10.1038/ncomms12771.
275	Li, J., Batten, D.J., and Zhang, Y., 2011, Palynological record from a composite core
276	through Late Cretaceous-early Paleocene deposits in the Songliao Basin, Northeast
	Page 14 of 22

- 277 China and its biostratigraphic implications: Cretaceous Research, v. 32, p. 1–12,
- 278 https://doi.org/10.1016/j.cretres.2010.09.001.
- 279 Li, L., and Keller, G., 1998, Maastrichtian climate, productivity and faunal turnovers in
- 280 planktic foraminifera in South Atlantic DSDP sites 525A and 21: Marine
- 281 Micropaleontology, v. 33, p. 55–86, https://doi.org/10.1016/S0377-8398(97)00027-3.
- Linnert, C., Robinson, S.A., Lees, J.A., Bown, P.R., Pérez-Rodríguez, I., Petrizzo, M.R.,
- 283 Falzoni, F., Littler, K., Arz, J.A., and Russell, E.E., 2014, Evidence for global cooling
- in the Late Cretaceous: Nature Communications, v. 5, p. 4194,
- 285 https://doi.org/10.1038/ncomms5194.
- 286 MacLeod, K.G., Huber, B.T., and Isaza-Londoño, C., 2005, North Atlantic warming
- during global cooling at the end of the Cretaceous: Geology, v. 33, p. 437–440,
- 288 https://doi.org/10.1130/G21466.1.
- 289 Nordt, L., Atchley, S., and Dworkin, S.I., 2002, Paleosol barometer indicates extreme
- fluctuations in atmospheric CO₂ across the Cretaceous-Tertiary boundary: Geology,
- 291 v. 30, p. 703–706,
- 292 https://doi.org/10.1130/0091-7613(2002)030<0703:PBIEFI>2.0.CO;2.
- 293 Passey, B.H., and Henkes, G.A., 2012, Carbonate clumped isotope bond reordering and
- 294 geospeedometry: Earth and Planetary Science Letters, v. 351–352, p. 223–236,
- 295 https://doi.org/10.1016/j.epsl.2012.07.021.

296	Passey, B.H	H., Levin,	N.E.,	Cerling,	T.E.,	Brown,	F.H.,	and Eiler,	J.M.,	2010,
	,	, , ,		\mathcal{U}						

- High-temperature environments of human evolution in East Africa based on bond
- 298 ordering in paleosol carbonates: Proceedings of the National Academy of Sciences of
- 299 the United States of America, v. 107, p. 11245–11249,
- 300 https://doi.org/10.1073/pnas.1001824107.
- 301 Peters, N.A., Huntington, K.W., and Hoke, G.D., 2013, Hot or not? Impact of seasonally
- 302 variable soil carbonate formation on paleotemperature and O-isotope records from
- 303 clumped isotope thermometry: Earth and Planetary Science Letters, v. 361, p. 208–
- 304 218, https://doi.org/10.1016/j.epsl.2012.10.024.
- 305 Petersen, S.V., Dutton, A., and Lohmann, K.C., 2016a, End-Cretaceous extinction in
- 306 Antarctica linked to both Deccan volcanism and meteorite impact via climate change:
- 307 Nature Communications, v. 7, p. 12079, https://doi.org/10.1038/ncomms12079.
- 308 Petersen, S.V., Tabor, C.R., Lohmann, K.C., Poulsen, C.J., Meyer, K.W., Carpenter, S.J.,
- 309 Erickson, J.M., Matsunaga, K.K.S., Smith, S.Y., and Sheldon, N.D., 2016b,
- 310 Temperature and salinity of the Late Cretaceous Western Interior Seaway: Geology,
- 311 v. 44, p. 903–906, https://doi.org/10.1130/G38311.1.
- 312 Quade, J., Cerling, T.E., and Bowman, J.R., 1989, Systematic variations in the carbon and
- 313 oxygen isotopic composition of pedogenic carbonate along elevation transects in the
- southern Great Basin, United States: Geological Society of America Bulletin, v. 101,
- 315 p. 464–475, https://doi.org/10.1130/0016-7606(1989)101<0464:SVITCA>2.3.CO;2.

- 316 Renne, P.R., Deino, A.L., Hilgen, F.J., Kuiper, K.F., Mark, D.F., Mitchell, W.S., Morgan,
- 317 L.E., Mundil, R., and Smit, J., 2013, Time Scales of Critical Events Around the
- 318 Cretaceous-Paleogene Boundary: Science, v. 339, p. 684–687,
- 319 https://doi.org/10.1126/science.1230492.
- 320 Renne, P.R., Sprain, C.J., Richards, M.A., Self, S., Vanderkluysen, L., and Pande, K.,
- 321 2015, State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly
- induced by impact: Science, v. 350, p. 76–78,
- 323 https://doi.org/10.1126/science.aac7549.
- 324 Schoene, B., Samperton, K.M., Eddy, M.P., Keller, G., Adatte, T., Bowring, S.A., Khadri,
- 325 S.F.R., and Gertsch, B., 2015, U-Pb geochronology of the Deccan Traps and relation
- to the end-Cretaceous mass extinction: Science, v. 347, p. 182–184,
- 327 https://doi.org/10.1126/science.aaa0118.
- 328 Scott, R.W., Wan, X., Wang, C., and Huang, Q., 2012, Late Cretaceous chronostratigraphy
- 329 (Turonian-Maastrichtian): SK1 core Songliao Basin, China: Geoscience Frontiers,
- 330 v. 3, p. 357–367, https://doi.org/10.1016/j.gsf.2012.02.004.
- 331 Snell, K.E., Koch, P.L., Druschke, P., Foreman, B.Z., and Eiler, J.M., 2014, High elevation
- 332 of the 'Nevadaplano' during the Late Cretaceous: Earth and Planetary Science Letters,
- 333 v. 386, p. 52–63, https://doi.org/10.1016/j.epsl.2013.10.046.
- Tobin, T.S., Wilson, G.P., Eiler, J.M., and Hartman, J.H., 2014, Environmental change
- 335 across a terrestrial Cretaceous-Paleogene boundary section in eastern Montana, USA,

- 336 constrained by carbonate clumped isotope paleothermometry: Geology, v. 42, p. 351–
- 337 354, https://doi.org/10.1130/G35262.1.
- 338 Vellekoop, J., Esmeray-Senlet, S., Miller, K.G., Browning, J.V., Sluijs, A., van de
- 339 Schootbrugge, B., Sinninghe Damsté, J.S., and Brinkhuis, H., 2016, Evidence for
- 340 Cretaceous-Paleogene boundary bolide "impact winter" conditions from New Jersey,
- 341 USA: Geology, v. 44, p. 619–622, https://doi.org/10.1130/G37961.1.
- 342 Wan, X., Zhao, J., Scott, R.W., Wang, P., Feng, Z., Huang, Q., and Xi, D., 2013, Late
- 343 Cretaceous stratigraphy, Songliao Basin, NE China: SK1 cores: Palaeogeography,
- 344 Palaeoclimatology, Palaeoecology, v. 385, p. 31–43,
- 345 https://doi.org/10.1016/j.palaeo.2012.10.024.
- 346 Wang, C., Feng, Z., Zhang, L., Huang, Y., Cao, K., Wang, P., and Zhao, B., 2013,
- 347 Cretaceous paleogeography and paleoclimate and the setting of SKI borehole sites in
- 348 Songliao Basin, northeast China: Palaeogeography, Palaeoclimatology,
- 349 Palaeoecology, v. 385, p. 17–30, https://doi.org/10.1016/j.palaeo.2012.01.030.
- Wang, Y., Huang, C., Sun, B., Quan, C., Wu, J., and Lin, Z., 2014, Paleo-CO₂ variation
- 351 trends and the Cretaceous greenhouse climate: Earth-Science Reviews, v. 129, p. 136–
- 352 147, https://doi.org/10.1016/j.earscirev.2013.11.001.
- 353 Witts, J.D., Whittle, R.J., Wignall, P.B., Crame, J.A., Francis, J.E., Newton, R.J., and
- Bowman, V.C., 2016, Macrofossil evidence for a rapid and severe

- 355 Cretaceous-Paleogene mass extinction in Antarctica: Nature Communications, v. 7,
- 356 p. 11738, https://doi.org/10.1038/ncomms11738.
- 357 Wu, H., Zhang, S., Hinnov, L.A., Jiang, G., Yang, T., Li, H., Wan, X., and Wang, C., 2014,
- 358 Cyclostratigraphy and orbital tuning of the terrestrial upper Santonian-Lower Danian
- in Songliao Basin, northeastern China: Earth and Planetary Science Letters, v. 407,
- 360 p. 82–95, https://doi.org/10.1016/j.epsl.2014.09.038.
- 361
- ¹GSA Data Repository item 2018076, geological background, materials and methods,
- 363 references, Figure DR1-DR8, and Table DR1-DR5, is available online at
- 364 http://www.geosociety.org/datarepository/2018/ or on request from
- 365 editing@geosociety.org.

367 Figure 1. The Songliao Basin in northern China (orange outline), showing location of the

368 SK-In (north core) borehole (Wang et al., 2013).

370 Figure 2. The paleoclimate across the Cretaceous-Paleogene (K-Pg) boundary in northern China. A: The $\delta^{18}O_{water}$ (Vienna standard mean ocean water, VSMOW) record. B: The 371 372 pCO_2 (ppmv) record. C: The Δ_{47} temperature (T) record. The 1σ standard errors are shown 373 as black vertical bars. Dotted black line marks boundary between the Campanian and 374 Maastrichtian at 72.1 Ma. Dotted orange line marks onset of the main Deccan eruptions at 375 66.288 ± 0.085 Ma (Schoene et al., 2015) or 66.38 ± 0.05 Ma (Renne et al., 2015). Dotted 376 blue line marks the K-Pg boundary at ca. 66.00 Ma (Wu et al., 2014) or 66.043 ± 0.086 Ma 377 (Renne et al., 2013) and the Chicxulub impact occurred at 66.038 ± 0.098 Ma (Renne et al., 378 2013). Dotted gray line marks the threshold for Antarctic glaciation (750 ppmv) according 379 to climate models (DeConto et al., 2008). Da—Danian; C—polarity chron.

381 Figure 3. Climatic records and ranges of selected fossil groups across the

382 Cretaceous-Paleogene (K-Pg) boundary interval. C—polarity chron. A: The $\delta^{18}O_{water}$

- values (Vienna standard mean ocean water, VSMOW) record. B: The *p*CO₂ (ppmv) record.
- 384 C: The Δ_{47} temperature (*T*) record. D: The biotic data in the Songliao Basin, northern China
- 385 (Scott et al., 2012); note this column is separated into three sub-columns for spore and/or
- pollen, ostracodes, and charophytes. The 1σ standard errors are shown as black horizontal
- 387 bars. See Figure 2 for legends.