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Abstract

Internet of Things (IoT) devices are increasingly deployed in different in-
dustries and for different purposes (e.g. sensing/collecting of environmental
data in both civilian and military settings). The increasing presence in a
broad range of applications, and their increasing computing and processing
capabilities make them a valuable attack target, such as malware designed
to compromise specific IoT devices. In this paper, we explore the potential
of using Recurrent Neural Network (RNN) deep learning in detecting IoT
malware. Specifically, our approach uses RNN to analyze ARM-based [oT
applications’ execution operation codes (OpCodes). To train our models,
we use an loT application dataset comprising 281 malware and 270 benign
ware. Then, we evaluate the trained model using 100 new [oT malware sam-
ples (i.e. not previously exposed to the model) with three different Long
Short Term Memory (LSTM) configurations. Findings of the 10-fold cross
validation analysis show that the second configuration with 2-layer neurons
has the highest accuracy (98.18%) in the detection of new malware sam-
ples. A comparative summary with other machine learning classifiers also

Email addresses: hp@sutech.ac.ir (Hamed HaddadPajouh), alid@alid.info (Ali
Dehghantanha), khayami@sutech.ac.ir (Raouf Khayami),
raymond. choo@fulbrightmail . org (Kim-Kwang Raymond Choo)

Preprint submitted to Future Generation Computer Systems February 2, 2018



demonstrate that the LSTM approach delivers the best possible outcome.

Keywords: ARM-based IoT Malware Detection, loT Malware Detection,
Long Short Term Memory, Machine Learning, OpCodes Analysis, Deep
Learning Threat Hunting

1. Introduction

Threats from malware are not new, although malware or cyber threat
hunting remains an ongoing challenge. For example, with the increasing
popularity of Internet of Things (IoT) devices [7] and the general lack of
security protection for such devices, IoT devices can be vulnerable to mal-
ware attacks [24]. According to Kaspersky Lab, in 2016 the majority of IoT
devices examined were insecure, in the sense that these devices had either
default password or unpatched vulnerabilities. In other words, these devices
can be easily compromised using malware such as Hijme [31] and Mirai [19].
Previous literature have suggested the potential of leveraging machine learn-
ing in static and dynamic malware analysis techniques to enhance malware
hunting [8, 13, 38], but it is not practical to simply integrate machine learning
in static and dynamic malware analysis techniques due to the wide variety
and distribution of IoT devices, particularly for (inexpensive) IoT devices
with limited processing power.

Existing machine learning-based IoT malware hunting approaches have
focused on energy consumption patterns [3] and OpCode [2]. This is not sur-
prising, as system calls and OpCodes are two common features in malware
hunting [23]. For example, in [32], the authors proposed a method to classify
variants of known malware families based on OpCodes’ frequency. The au-
thors in [30] also built a similarity graph based on application’s OpCodes to
detect metamorphic malware. In [26], SVM classifier and n-gram techniques
were used to evaluate OpCodes and identify optimum feature for malware
detection. The authors in [33] proposed a method based on the frequency
of appearance of OpCodes sequences under different machine learning clas-
sifiers and reportedly obtained over an accuracy rate of 96%. Using a text
mining method that utilizes n-gram technique, the authors claimed that their
approach in detecting malicious software has an accuracy rate of 75% when
N=3 and N=4 [25]. In [9], n-gram technique was utilized to extract ap-
plication’s OpCodes sequence, and the findings indicated an accuracy rate
of 99.88%. The authors in [16] used the application programming inter-



face (API) sequence as a feature for classification, and the longest common
sequence (LCS) technique and sequence analysis to detect malware. An ac-
curacy of 99% was reported in their 70% (training)-30% (testing) dataset
split evaluation.

In recent years, deep learning methods have also been used in malware
analysis and detection. In [39], for example, the authors used over 200 fea-
tures extracted from static and dynamic analysis of Android malware to
build a model based on deep belief networks. The reported detection accu-
racy of this approach is 96%. Saxe and Berlin [34] proposed a model based
on the deep feed-forward neural network that extracts features from over
40,000 Windows application binary files, and reported a detection rate of
95% with a 0.1% false positive rate. Kolosnjaji et al. [20] combined con-
volutional neural network (CNN) and recurrent neural network (RNN) to
perform hierarchical feature extraction, and used N-gram technique to select
appropriate OpCodes for malware detection. The authors reportedly had a
89% detection accuracy. More recently in 2017, Rhode, Burnap and Jones
[29] presented an approach using RNN and long short term memory (LSTM)
for OpCodes-based malware detection and reportedly obtained a 98% detec-
tion accuracy with a 1.41% false alarm rate. The authors in [40] utilized deep
belief network (DBF) to achieve a 98% accuracy rate in detecting malware
based on OpCodes sequences.

At the time of this research, there has been no existing work that uses
deep learning in [oT malware detection. Therefore, in this paper, we propose
using RNN to detect IoT malware by analyzing IoT application’s OpCodes.
Our approach does not require the modification of OpCodes representation.
The latter is particularly attractive for real-world malware threat hunting.
The focus of this paper is on ARM-based IoT applications since the majority
of Unix System-V IoT devices use ARM processors [5]. We then evaluate
its utility by comparing its performance against those of using conventional
machine learning classifiers — Support Vector Machine (SVM), K-Nearest
Neighbor, Nave Bayes, Decision Tree, and Random Forest, as well as Ada-
Boost (an ensemble learning technique).

In the next section, we will present our proposed approach.

2. Proposed Approach

The proposed IoT malware hunting approach comprises three stages, as
presented in Figure 1. In the first stage, we collected IoT malware and
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Figure 1: Proposed deep IoT threat hunting approach

benignware samples to build our dataset and extract the OpCodes. A feature
vector file based on the OpCodes was then created for each sample. The final
stage utilized vectored data for deep neural network training and evaluation,
and finally tuning for optimum results.

2.1. Dataset Creation and OpCodes Extraction

As previously discussed, the focus of this research is on ARM-based [oT
applications. Since Unix System-V is Debian-based, our benign samples
were collected from the Linux Debian package repositories (” Linux Packages
Search - https://pkgs.org/”) of applications compatible with Raspberry
Pie II. ARM processors have been widely used in cloud edge devices, and
the Raspberry Pi IT can also be considered as an IoT cloud edge device [28].
There are two major types of ARM processors, as follows:

1. Application processors (e.g. Arm Cortex-A processor) are generally
used in systems with a full-featured operating system (OS), such as
Linux distributions and Windows RT, and on smart mobile devices,
servers, etc.

2. Embedded processors can be found in a number of microcontroller
products, and embedded systems. The Arm Cortex-M processor family,
for example, is one of the market leaders in the microcontroller mar-
ket, and the Cortex-R processor family is typically used in specialized
controllers such hard disk drives.
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23 4c dec %esp
33 a6 inc %esi
4: 01 01 add %eax, (%ecx)
6: 01 00 add %eax, (%eax)

10: 62 00 add (%eax),%al

122 28 00 sub %al, (%eax)

14: 01 00 add %eax, (%eax)
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35¢ 00 00 add %al, (%eax)
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Figure 2: Pruning sequential OpCodes from decompiled IoT applications.

The malware samples were collected by searching for available 32-bit ARM-
based malware in the Virus Total Threat Intelligence platform as of Septem-
ber 30th, 2017 [37]. The collected dataset consisted of 280 malware and 271
benign files. All files were unpacked using Debian installer bundle and then
Object-Dump tool was used to decompile all samples. We wrote a Linux
bash script for the dataset samples’ OpCodes. First, the script extracted
each Debian package files (deb file), then searched for ELF files from the
extracted materials, and finally feeding the object-dump tool to decompile
the ELF files. The decompiled codes were then pruned to extract the se-
quence of OpCodes in each sample. As observed from Figure 2, the output
of object dump tool consists of irrelevant data such as operands and line of
codes. Thus, our batch script was applied on each output in order to ob-
tain a pruned file, which listed the sample OpCodes in a sequential order.
In terms of the instruction set in these type of microprocessors, Cortex-A
has the largest instruction set (OpCodes). Since Raspberry Pie II devices
is based on Cortex-A, the complete set of Opcodes obtained will increase
detection date (in comparsion to, say the Cortex M families since memory
management instruction set is not provided).

2.2. Feature Selection

Here, we used text mining to obtain the features vector from the pruned
OpCodes. We compiled a word dictionary from all unique OpCodes from
our dataset. The final vector comprised 681 possible Opcode indices for each
sample. The resulted featured vectors were also parsed using different met-
rics, namely: binary encoding (takes a value for each OpCode index that
exists in the given sample, otherwise takes the value of 0), Term Frequen-
cylnverse Document Frequency (TF-IDF) [15], and count of occurrences of

ot
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Figure 3: Frequency distributions of selected prominent OpCodes based on IG feature
selector

each feature in each application. Figure 3 shows the distribution frequency of
selected OpCodes in both malware and benign class using Information Gain
(IG) [22] feature selector.

In Equation 1, f denotes the given OpCode in dataset D, ¢ is the number
of classes in the training set (and we had two classes, namely: malicious
and benign), D, is the OpCode stream where feature f exists, and wi is the
proportion of D, to class i.

IG(D, f) = Z —p;Inp; — Z % Z —w; Inw; (1)
i=1

i=1 ve{0.1}

After obtaining each IG, we sorted the values in decreasing order to
identify the most prominent features required in the setting of a threshold
(v > 0.3) —See Tablel.

Since not every sample consists of all OpCodes in their feature vectors,
features may have a zero value. Therefore, we used the word embedding tech-
nique [4] to transform each sample to a numeric sequence representation. One
of the main challenges to solve natural language processing problem is the
“curse of dimensionality” [14]. As we had 681 possible feature values for
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Figure 4: Implementation of embedding layer to mitigate curse of dimensionality

each sample, we utilized Principle Component Analysis (PCA) to mitigate
this issue in our dataset. Also, most of our dataset vectors consisted of zero
value, features sparsity is another issue that we need to address. We did so
by embedding a hidden layer of neurons in the proposed model to reduce
feature space of dataset — see Figure 4.

We also compared each selected OpCode in both malicious and benign
dataset sample, in terms of their occurrence in dataset to obtain a forensic
insight into the analysis of these IoT malwares — see Figure 5. As it can be
observed, the "add” OpCode is most frequently found in both malware and
normal applications. This Opcode along with ”xor, mov, sub and pop” have
a high frequency pattern in our dataset samples.

2.3. Deep Malware Threat Classifier
We utilized the Long Short Term Memory (LSTM) [10], a RNN struc-
ture, to build the deep learning structure and detect IoT malware samples

based on their sequences of OpCodes. This is an approach suggested by
Keras [6] in Weka 3.9 [12]. We also used Google Tensor Flow [1] as the



Table 1: Top 10 selected (OpCodes) features by their IG score.

opcode gainValue
pushl 0.599
fildll 0.548
fcos 0.53
andl 0.527
movups 0.505
fdivrp 0.466
ret 0.472
incl 0.465
cmp 0.459
Xor 0.441
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Figure 5: Frequency of occurrences for top 30 OpCodes in collected dataset.




backend structure of the deep learning approach and Scikit-learn [27] as the
machine learning library to perform model evaluation tasks. Since LSTM
structure is capable of learning dependencies between given data, it can be
used in OpCodes sequence based learning too. Although LSTM structure
is a repeating blockchain similar to the RNN architecture, it only has four
neural networks [11]. In the LSTM structure, each memory block contains
the following equations:

i; = (Uihg—1y + Wiz, + b;) (2)

fi = (Ush—1y + Wy, + by) (3)

ot = (Ushg—1) + Woay + b,) (4)

¢y = [i * ci—1) + i x tanh(Uchg—q) + Wexy + be) (5)
hy = oy x tanh(c;) (6)

In the above equations, 4;, f; and o; denote i'* input, forget, output gates,
respectively within (n x d) vector. ¢, is the (n x d) cell state in #** timestamp.
hy is the (n x d) activation of hidden unit in t time in Equations 4 and 5. x; is
(I x d) vector, tanh denotes the hyperbolic tangent function and * operator
is the point-wise (Hadamard) multiplication. U and W are the respective
weight matrix in each cell, and b is the bias parameter.

We also used bidirectional neural networks (BNN) [35] instead of regular
RNN neuron structure. BNN basically splits the regular RNN into two direc-
tions as follows: the forward states are used for positive time direction and
the other direction (i.e. backward states) is used for negative time direction.
BNN structure can be trained as a regular RNN due to the lack of interac-
tions between the two existing directions. However, in the back propagation,
additional computations are required to update neuron weights - see Figure
6.

3. Findings

For the evaluation, we built three LSTM models with different configura-
tions — see Table 2. We denoted data set D as D = {51, Sa, S3,, Si}, and each
sample exists in the dataset defined as S. Every sample has many sets of Op-
code, S = {o1,09,03,,0,}. We also provided an Opcode dictionary I, where
each Opcode was mapped into an integer index I, = {4y, 42, 3,,74}. Then, we
set a window size for an OpCode sequences as W; = {wy, wa, w3, , w;}, where

9
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Figure 6: LSTM structure for IoT malware detection

w; is a sequence of Opcode with length of j. We defined different window
size (100-250) for each sample Opcodes sequence, as shown in Figure 8. Due
to the size of our dataset, we used 1-55 batch size (min=1, max = one tenth)
for feeding each model to find the optimum parameter. The batch size is the
number of samples, which pass through neural network in each propagation.
A very small batch size may affect the training time due to network conver-
gence upon weight updates. On the other hand, a larger batch size may lead
to over-fitting [21]. We used Adam as the weight updating algorithm [17]
in our configuration. Adam is an implementation of the scholastic gradient
descent that does not require tuning of its parameters [18]. To avoid over-
fitting (a common phenomena in deep neural network model), we applied the
dropout technique. Another issue with the neural network that can result
in overfitting is the limited size of training data (similar to our case) [36].
By omitting some units of the model temporarily drop from the network
with a fixed probability (and in our case, the optimum parameter is 0.2), our
approach achieved a 94% detection rate in unseen samples.

Finally, the following common performance indicators were used for eval-
uating the performance of the classifiers:

10



Table 2: Model configurations used in the evaluations

Hyper Parameter LSTM-1 LSTM-2 LSTM-3
Depth 1 2 3
Bidirectional True True True
No. of neurons 64 192 320
Weight updating algo- Adam Adam Adam
rithm

Dropout rate 0.2 0.2 0.3
Epochs 100 100 100
Weight regularization None None None
Windows size 100 150 100
Batch size 48 46 49

Table 3: Possible parameter values for the model configurations

Hyper Parameter Possible values

Depth 1,2,3

Bidirectional True,False

No. of neurons 1-320

Weight updating algorithm Adam

Dropout rate 0 0.5 (0.1 increments)
Epochs 1-100

Weight regularization None

Windows size 100-250

Batch size 1-55

11
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Figure 7: OpCodes frequency of unseen malwares against collected dataset samples

True Positive (TP): ratio of benign files classified as benign;

True Negative (TIN): ratio of malware correctly detected as malware;
False Positive (FP): ratio of malware identified as benign; and

False Negative (FIN):: ratio of benign files classified as malware.

We then computed the accuracy (ACC) using the following equation:

TP +TN
ACC_FN+TP+FP+TN (")

We utilized 10-fold Cross Validation (CV) on 100 epochs for each config-
uration and also used 100 malware samples’ OpCodes not previously used in
the training to evaluate the utility of our approach. The OpCodes of unseen
samples and dataset samples had different distribution, and the detection
findings was reasonable —see Figure 7. Findings demonstrated that the sec-
ond configuration (LSTM-2) with two layers of LSTM architecture had an
optimum average accuracy of 97%. Figure 9 presents the three LSTM config-
uration models’ accuracy rate with a 10-fold CV. Figure 10 is a comparative
summary, and as observed from Figure 12 and Table 5, the second config-
uration outperformed the other approaches (i.e. achieved 94% accuracy in
classification of new malware samples). We also examined different window
sizes to obtain the optimum parameter for classify the samples. Figure 11
shows the different windows size within their classification result.

12
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Table 4: Accuracy of conventional machine learning classifiers and LSTM models by 10-

fold CV: A comparative summary

Classifier

Accuracy (%)

RandomForest
SVM
NaiveBayes
MLP

KNN
AdaBoost
DecisionTree
LSTM-1
LSTM-2
LSTM-3

92.37
82.21
90.37
88

94
93.64
92.36
94.54
98.18
96.36

Table 5: Accuracy of conventional machine learning classifiers and LSTM models on new

malware: A comparative summary
Classifier

Accuracy (%)

RandomForest
SVM
NaiveBayes
MLP

KNN
AdaBoost
DecisionTree
LSTM-2

87.84
72.12
87.51
59.07
94

84.35
89.36
94




model accuracy

o
=l

o
o

accuracy

— ftrain

0.3 ! I est

0 2 20 €0 8 100
Figure 12: Accuracy of the best LSTM configuration against unseen malware

4. Conclusion

[oT-based systems will be increasingly commonplace, with the range and
types of IoT devices rapidly increasing in the foreseeable future. Thus, it is
important to secure such devices, say against malware.

In this paper, we proposed an approach that uses LSTM structures to
hunt IoT malware based on their OpCodes sequence. We then evaluated
our approach using ARM-based IoT applications’ execution OpCodes, and
achieved a detection accuracy of 98% against IoT malware not used in the
training.

While the findings appeared promising, there are many potential exten-
sions to this work. Firstly, the dataset we used is small in comparison to the
real-world cyberthreats. Thus, future research includes implementing the
proposed approach in a real-world environment and evaluating its effective-
ness in identifying both known malware and new malware. We should also
explore and design deep learning techniques that can be used to increase the
accuracy, speed and scalability of IoT malware detection, particularly against
a wider range of IoT devices with different specifications.
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