
This is a repository copy of Robust Malware Detection for Internet Of (Battlefield) Things
Devices Using Deep Eigenspace Learning.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/128429/

Version: Accepted Version

Article:

Dehghantanha, A., Azmoodeh , A. and Choo, K.-K.R. (2019) Robust Malware Detection for
Internet Of (Battlefield) Things Devices Using Deep Eigenspace Learning. IEEE
Transactions on Sustainable Computing, 4 (1). pp. 88-95. ISSN 2377-3782

https://doi.org/10.1109/TSUSC.2018.2809665

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

JOURNAL OF IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. X, NO.X, MONTH 2017 1

Robust Malware Detection for Internet Of
(Battlefield) Things Devices Using Deep

Eigenspace Learning

Amin Azmoodeh, Ali Dehghantanha, Senior Member, IEEE,

and Kim-Kwang Raymond Choo, Senior Member, IEEE,

Abstract—Internet of Things (IoT) in military setting generally consists of a diverse range of Internet-connected devices and nodes

(e.g. medical devices to wearable combat uniforms), which are a valuable target for cyber criminals, particularly state-sponsored or

nation state actors. A common attack vector is the use of malware. In this paper, we present a deep learning based method to detect

Internet Of Battlefield Things (IoBT) malware via the device’s Operational Code (OpCode) sequence. We transmute OpCodes into a

vector space and apply a deep Eigenspace learning approach to classify malicious and bening application. We also demonstrate the

robustness of our proposed approach in malware detection and its sustainability against junk code insertion attacks. Lastly, we make

available our malware sample on Github, which hopefully will benefit future research efforts (e.g. for evaluation of proposed malware

detection approaches).

Index Terms—Internet of Things Malware, Internet Of Battlefield Things, Malware Detection, Deep Eigenspace Learning, Deep

Learning, Machine Learning

F

1 INTRODUCTION

A typical Internet of Things (IoT) deployment includes a
wide pervasive network of (smart) Internet-connected

devices, Internet-connected vehicles, embedded systems,
sensors, etc. that autonomously sense, store, transfer and
process collected data [1], [2], [3]. IoT devices in a civilian
setting includes health [4], agriculture [5], smart city [6],
and energy and transport management systems [7], [8]. Fur-
thermore, the IoT and its capabilities causes an increasing
interest in leveraging the IoT’s advantages and features to
improve combat ability in battlefields and managing war re-
sources. Utilizing IoT technology in military operations and
defensive applications is referred to Internet Of Battlefield
Things(IoBT) [9], [10].

There are underpinning security and privacy concerns
in such IoT environment [1], [11], [12], [13]. While IoT
and IoBT share many of the underpinning cyber security
risks (e.g. malware infection [14]), the sensitive nature of
IoBT deployment (e.g. military and warfare) makes IoBT
architecture and devices more likely to be targeted by cyber
criminals. In addition, actors who target IoBT devices and
infrastructure are more likely to be state-sponsored, better
resourced, and professionally trained.

• Amin Azmoodeh is with the Department of Electrical and Computer
Engineering, Shiraz University, Shiraz, Iran.

• Ali Dehghantanha is with the Department of Computer Science, School
of Computing, Science & Engineering, University of Salford, Greater
Manchester, UK

• Kim-Kwang Raymond Choo is with the Department of Information
Systems and Cyber Security, The University of Texas at San Antonio,
San Antonio, TX 78249, USA (email: raymond.choo@fulbrightmail.org)

Manuscript received July 28, 2017; revised X, 2017.

Intrusion and malware detection and prevention are
active research areas [15], [16], [17], [18], [19], [20], but due to
the resource constrained hardware, nature of IoT and IoBT
devices and customized operating systems existing solu-
tions are unlikely to be suited for real-world deployment.
Majority of IoT malware misuse low-level vulnerabilities
of compromised device to infect. Thus, it is necessary to
answer the need for IoT and IoBT specific malware detection
[20].

There has been recent interest in utilizing machine learn-
ing and deep learning techniques in malware detection (e.g.
distinguishing between malware and benign applications),
due to their potential for increased accuracy and robustness
[15], [21], [22], [23]. Typically, the following criteria are used
to evaluate the utility of machine learning and deep learning
techniques in malware detection:

• True Positive (TP): indicates that a malware is cor-
rectly identified as a malicious application.

• True Negative (TN): indicates that a benign is de-
tected as a non-malicious application correctly.

• False Positive (FP): indicates that a benign is falsely
detected as a malicious application.

• False Negative (FN): indicates that a malware is not
detected and labeled as a non-malicious application.

Based on the above criteria, the following metrics will
then be used to quantify a given system:

Accuracy is the number of samples that a classifier
correctly detects, divided by the number of all malware and
goodware applications:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

JOURNAL OF IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. X, NO.X, MONTH 2017 2

Precision is the ratio of predicted malware that are
correctly labeled a malware, and is defined as follows:

Precision =
TP

TP + FP
(2)

Recall or detection rate is the ratio of malware samples
that are correctly predicted, and is defined as follows:

Recall =
TP

TP + FN
(3)

F-Measure is the harmonic mean of precision and recall,
and is defined as follows:

F −Measure =
2 ∗ TP

2 ∗ TP + FP + FN
(4)

Cross-validation is a fundamental technique in machine
learning to assess the extent that the findings of an experi-
ment can be generalized into an independent dataset. While
there are many cross validation techniques (e.g. Leave-P-
Out, K-fold and Repeated Random Sub-sampling), when the
size of a dataset is limited K-fold validation techniques (e.g.
10-fold) are generally used. K-Fold validation techniques are
also commonly used to validate the fitness of a model to a
hypothetical validation set in the absence of an independent
validation set [24], [25].

Due to the fast pace of malware development and the
significant increase in the number of malware samples,
using deep learning techniques for malware detection is
gaining prominence. For example, Yuan et al. [26] used Deep
Belief Network on a combination of static and dynamic
features of Android APKs and reportedly achieved 96.76%
of overall accuracy and 95.77% and 97.84% of precision and
recall respectively in malware detection. Saxe and Berlin
[27] presented a detection method using deep feed-forward
neural network using a set of Windows program features
including Byte/Entropy histogram, portable executable (PE)
data and metadata and printable character sequence and
reportedly achieved detection and false positive rates of 95%
and 0.1% respectively.

Bilar [28] introduced Operational Codes (OpCodes) as a
suitable and reliable feature for malware identification using
machine learning techniques. Moskovitch et al. [29] applied
different text mining techniques to detect candidate features
of Windows malware sample OpCode for classification us-
ing algorithms such as Neural Network and Decision Tree
and reportedly attained 94.43% accuracy. Santos et al. [30]
leveraged the frequency of a specific OpCode appearance in
benign and malicious Windows applications as a feature for
Decision Tree, Support Vector Machine, Bayesian Networks
and K-Nearest Neighbors algorithms and achieved 95.90%
accuracy in malware detection. Hashemi et al [31] extracted
OpCodes of Windows benign and malware executable files
and then form a graph for each sample and turned the
generated graph into a vector using Power Iteration proce-
dure to train classifiers such as Support Vector Machine and
Adaboost. They achieved an accuracy and a F-measure of
96.09% and 95.98% respectively. Siddiqui et al. [32] utilized
occurrence frequency and principle component analysis on
a dataset of Windows malware and goodware application
OpCodes and obtained 93.1% detection rate using Random
Forest as the classifier.

Thus, we posit that OpCode analysis may provide a solid
basis for a robust and sustainable deep learning based IoT
and IoBT malware detection system. This is a challenge that
has not been addressed in the literature. Specifically, in this
paper, we extract OpCode sequence of 1078 benignware and
128 malware (all ARM compatible IoT applications). We uti-
lize Class-Wise Information Gain technique for class aware
feature selection [33]. Then, the selected features (OpCodes)
of each sample are converted into a graph in which Op-
Codes are represented by the graph’s nodes while the graph
edges represent the nodes’ affinity in disassembled file of
each sample. Finally, generated graphs of malicious and
benign samples are used for classification of IoT and IoBT
malware and goodware applications using Eigenspace and
deep convolutional networks techniques. We achieve 99.68%
accuracy in detecting malware samples, with precision and
recall rates of 98.59% and 98.37% respectively.

To the best of our knowledge, this is the first OpCode-
based deep learning method for IoT and IoBT malware
detection. We then demonstrate the robustness of our pro-
posed approach, against existing OpCode based malware
detection systems in [30], [31]. We also demonstrate the
sustainability of our proposed approach against junk-code
insertion attacks. Specifically, our proposed approach em-
ploys a class-wise feature selection technique to overrule
less important OpCodes in order to resist junk-code in-
sertion attacks. Furthermore, we leverage all the elements
of Eigenspace to increase detection rate and sustainability.
Finally, as a secondary contribution, we share a normalized
dataset of IoT malware and benign applications1, which
may be used by fellow researchers to evaluate and bench-
mark future malware detection approaches. On the other
hand, since the proposed method belongs to OpCode based
detection category, it could be adaptable for non-IoT plat-
forms.

In the next section, we briefly review related work. Sec-
tion 3 describes our collection, preprocessing and evaluation
methodology. Section 4 presents our proposed approach,
followed by its evaluation in Section 5. Section 6 concludes
this paper and suggests several future research agenda.

2 RELATED LITERATURE

Malware detection methods can be broadly categorized
into static and dynamic analysis [34]. In dynamic malware
detection approaches, the program is executed in a con-
trolled environment (e.g. a virtual machine or a sandbox) to
collect its behavioral attributes such as required resources,
execution path, and requested privilege, in order to classify
a program as malware or benign [35], [36], [37]. Static
approaches (e.g. signature-based detection, byte-sequence
n-gram analysis, opcode sequence identification and control
flow graph traversal) statically inspect a program code to
detect suspicious applications.

David et al [38] proposed a framework, Deepsign, to
automatically detect malware using a signature generation
method. The latter creates a dataset based on behaviour logs
of API calls, registry entries, web searches, port accesses, etc,

1. The samples are available on https://github.com/azmoodeh/
IoTMalwareDetection, where the benign samples are in binary and the
malware samples are in OpCode.

JOURNAL OF IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. X, NO.X, MONTH 2017 3

in a sandbox and then converts logs to a binary vector. They
used deep belief network for classification and reportedly
achieved 98.6% accuracy. In another study, Pascanu et al.
[39] proposed a method to model malware execution using
natural language modeling. They extracted relevant features
using recurrent neural network to predict the next API calls.
Then, both logistic regression and multi-layer perceptrons
were applied as the classification module on next API call
prediction and using history of past events as features. It
was reported that 98.3% true positive rate and 0.1% false
positive rate were achieved.

Demme et al. [40] examined the feasibility of building
a malware detector in IoT nodes’ hardware using perfor-
mance counters as a learning feature and K-Nearest Neigh-
bor, Decision Tree and Random Forest as classifiers. The
reported accuracy rate for different malware family ranges
from 25% to 100%. Alam et al. [41] applied Random For-
est on a dataset of Internet-connected smartphone devices
to recognize malicious codes. They executed APKs in an
Android emulator and recorded different features such as
memory information, permission and network for classifica-
tion and evaluated their approach using different tree sizes.
Their findings showed that the optimal classifier contains 40
trees, and 0.0171 of mean square root was attained.

In order to detect crypto-ransomware on Android de-
vices as management nodes of an IoT networks, Azmoodeh
et al. [42] recorded the power usage of running processes
and identified distinguishable local energy consumption
patterns for benign and ransomware. They broke down the
power usage pattern into sub-samples and classified them,
as well as aggregating sub-samples’ labels to determine final
label. The proposed approach reportedly achieved 92.75%
accuracy. Securing IoT backbone against malware attacks
motivated Haddad Pajouh et al. [43] to propose a two-layer
dimension reduction and two-tier classification module to
detect malicious activities. Specifically, the authors used
Principle Component Analysis and Linear Discrimination
Analysis to reduce the dataset and then used Naı̈ve Bayes
and K-Nearest Neighbor to classify samples. They achieved
detection and false alarm rates of 84.86% and 4.86%, respec-
tively.

While OpCodes are considered an efficient feature for
malware detection, there does not appear to have been any
attempt to use OpCodes for IoT and IoBT malware detec-
tion. In addition, using deep learning for robust malware
detection in IoT networks appears to be another understud-
ied topic. Thus, in this paper, we seek to contribute to this
gap by exploring the potential of using OpCodes as features
for malware detection with deep Eigenspace learning.

3 DATASET CREATION AND FEATURE SELECTION

We created a dataset of 1078 benign and 128 malware
samples for ARM-based IoT applications [44]. All malware
samples were collected using VirusTotal2 Threat Intelligence
platform between February 2015 and January 2017. All
goodware were collected from a variety of official IoT App
stores such as Pi Store 3.

2. http://www.virustotal.com
3. https://thepihut.com/collections/raspberry-pi-store

IoT and IoBT application are likely to consist of a long se-
quence of OpCodes, which are instructions to be performed
on device processing unit. In order to disassemble samples,
we utilized Objdump (GNU binutils version 2.27.90) as a
disassembler to extract the OpCodes. Creating n-gram Op-
Code sequence is a common approach to classify malware
based on their disassembled codes [45], [46]. The number
of rudimentary features for length N is CN , where C is
the size of instruction set. It is clear that a large increase in
N will result in feature explosion. In addition, decreasing
the size of feature increases robustness and effectiveness of
detection because ineffective features reduce performance of
machine learning approach. Therefore, there is a tendency
to first apply a feature selection algorithm and find the best
features [47] in order to reduce the feature set to avoid fea-
ture explosion. Information retrieval techniques are widely
used for feature selection [48]. Information Gain (IG) is an
information-theoretic approach to select global features by
ranking them based on the amount of information content
available in a classification problem. IG applies statisti-
cal tools to choose global features and does not consider
class information. In some situations such as imbalanced
datasets, global feature selection methods neglect minor
class-specified features which may reduce system efficiency.

Class-Wise Information Gain (CIG) [33] is proposed to
overcome global feature selection imperfection and aims
to recognize more useful features based on available class
information. To understand how CIG is calculated for an
arbitrary two-class problem, we refer the reader to Equation
5, where P (vf = 1, Ci) denotes the probability of feature
f appearing in Ci, and P (vf = 0, Cj) is the probability of
feature f being absent from Cj . CB and CM denote benign
program and malicious applications, respectively.

CIG(f, CB) = P (vf = 1, CB) ∗ log
P (vf = 1, CB)

P (vf = 1)P (CB)

+P (vf = 0, CM) ∗ log
P (vf = 0, CM)

P (vf = 0)P (CM)

CIG(f, CM) = P (vf = 1, CM) ∗ log
P (vf = 1, CM)

P (vf = 1)P (CM)

+P (vf = 0, CB) ∗ log
P (vf = 0, CB)

P (vf = 0)P (CB)

(5)

In this study, 4,543 1-gram and 610,109 2-gram distinct
OpCode sequences were extracted and CIG(f, CB) and
CIG(f, CM) were calculated. The top 82 features (approx-
imately 0.01% of all features) {f1, ..., f82} were selected,
where fi belongs to either the 1-gram or 2-gram category.
Size of selected feature set is limited to j = 82 because there
was a significant gap between fj<=82’s and fj>=83’s CIG
values. Due to the high computational resource consump-
tions, all k-gram(k >= 2) features were ignored. Features
were selected from the 1-gram and 2-gram sequences based
on their CIG(f, CB) and CIG(f, CM) values. As shown in
Figure 1, majority of the malware features are 2-gram se-
quences and 1-gram sequences constitute a large proportion
of benign application features. Such knowledge would be
crucial in the development of our IoT and IoBT malware
detection method, as discussed in the next section.

JOURNAL OF IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. X, NO.X, MONTH 2017 4

1-gram 2-gram 1-gram 2-gram
0

0.2

0.4

0.6

0.8 Malware
Benign

Fig. 1. 1-Gram and 2-Gram Feature Distribution For Benign and Malware
Samples

4 PROPOSED APPROACH

Our proposed method is illustrated in Fig.2, and consists of
two phases, namely: OpCode-Sequence Graph Generation
phase and Deep Eigensapce Learning phase. Also, feature
selection phase is included in Fig.2.

Fig. 2. Proposed Approach

4.1 Opcode-Sequence Graph Generation

Control Flow Graph (CFG) is a data structure that represents
the order of OpCodes in an executable file. A graph, G =
〈V,E〉, has two sets: V and E. V denotes the graph’s vertices
and Ei,j shows the relation between Vi and Vj . Previous
research has shown the usefulness of this representation in
malware detection [30], [31], [49]. Viǫ{fj |j = 1, ..., 82} are
vertices and the edges’ values represent the relation between
vertices (features).

In order to construct the OpCodes’ graph, edge values
should be computed. The general approach for calculat-
ing Ei,j value is to increment Ei,j by 1 when Vi occurs
immediately after Vj in the sample’s OpCode sequence.
Utilizing this procedure would lead to generation of an
adjacency matrix for each sample application within our
dataset. Furthermore, normalization of matrix rows would
turn Ei,j values into probability of occurrence of Vi. Then,
all Vj and Ei,js values are normalized to a value between
0 and 1. Considering the situations in which Vi and Vj

are placed exactly together neglect the longer distance of
OpCodes’ neighborhood. In other words, merely observing
a specific order of OpCodes leads to a crisp representation
of OpCode sequence in a graph.

However, the Crisp approach for computing Ei,j has
its own drawbacks. Applying feature selection and then
incrementing Ei,j by 1 for exact OpCode’s occupants result
in a sparse adjacency matrix, which may poorly represent
a sample file that is not suitable for a classification task. In
addition, malware developers may inject some useless junk

OpCode(s), such as NOP 4 or (PUSH,POP)5 to circum-
vent/deceive OpCode’s neighborhood calculation method.

Therefore, we propose a heuristic criteria shown in
Formulation(6) to calculate the graph edge values. Fun-
damental elements of Formulation(6) is the distance be-
tween OpCodes. A longer distance increases the divisor
exponentially and consequently produces a smaller Ei,j . To
improve Formulation(6) by spotting distance mitigates the
drawbacks of calculating edges by immediate occurrence
and highlights the effect of OpCodes distance. α is a tuning
parameter to adjust the impact of OpCode’s distance. In this
study, we let α = 1 to have Ei,j = 1 for exactly adjacent
OpCodes similar to Hashemi et al. [31] approach. Also, α
can control the effect of OpCodes’ distance in detection rate.
Formulation(6) would produce a graph of 82 vertices for
each given malware and benign sample as the learning ma-
terial for Deep Eigensapce Learning phase of our method.
Figure 3 illustrates the output of Opcode-Sequence Graph
Generation phase for a sample. For instance, the edge’s
value between OpCodei = call and OpCodej = sub means
that sum of all Ei,js calculated by Formulation(6) is 0.2.

Ei,j =
∑

sǫS

2

1 + α ∗ emin(|s−t−1|)

S = {index of all appearance of OpCodeVi

in sample′s OpCode sequence}

tǫ{index of all appearance of OpCodeVj

in sample′s OpCode sequence}

(6)

Fig. 3. A schematic view of the sample’s generated graph

4.2 Deep Eigenspace Learning

4.2.1 Eigenspace

Graphs as a complex data structure for representing rela-
tions between vertices are a prevalent data type in machine
learning. There are very few data mining and deep learning
algorithms [50] that accept a graph as an input [51]. There-
fore, a possible alternative is to embed a graph into a vector

4. No Operation
5. After execution of these two OpCodes, the state of program is

similar to before executing the PUSH instruction

JOURNAL OF IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. X, NO.X, MONTH 2017 5

space [52]. Indeed, graph embedding is a bridge between
statistical pattern recognition and graph mining.

Eigenvectors and eigenvalue are two characteristic ele-
ments in the graph’s spectrum [53], which could linearly
transform a graph’s adjacency matrix into a vector space
(see Equation 7). v ,λ and A denote eigenvectors, eigenval-
ues and a graph’s adjacency or an affinity matrix respec-
tively. In this paper, we employ a subset of v and λ for the
learning phase.

Av = λv (7)

To obtain a tangible knowledge of the generated CGFs’
structure, a graph that illustrates the cumulative of all sam-
ples in our dataset is created (see Figure 4). Figure 4 consists
of two major diagonal building blocks (marked with red
borders), which indicates that two main data distributions
exist in the given samples. Based on the graph’s spectrum
theory, in this condition, there should be an explicit eigen-
gap in the matrix’s eigenvalues [54], and Figure 5 depicts
the existence of a gap between λ2 and λk(k > 2). Hence,

Fig. 4. An Overview of Samples’ Cumulation Affinity Matrix

two first eigenvectors of sample’s matrix(v1 and v2) include
much more information about the matrix compared to the
remaining eigenvectors, and could represent the whole ma-
trix appropriately.

0 10 20 30 40 50 60 70 80 90

Eigenvalue Index

0

2000

4000

6000

8000

E
ig

en
v
a
lu

e

Fig. 5. Sample’s Cumulation (Figure 4) Eigenvalues

Moreover, in the learning phase, due to different data
distribution of eigenvalues for malware and benign sam-
ples, λ1 and λ2 are utilized alongside v1 and v2 to detect a
sample label and increase our method performance. Figures
6 and 7 illustrate the difference between malware and be-
nign eigenvalues’ (λ1,2) data distribution and indicate suit-
ability of employing λ1 and λ2 as features for a classification
task.

4.2.2 Deep Learning

Deep Learning (DL) [55], [56] or deep structured learning
is an evolved version of Neural Networks (NN) [57]. A

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
First Eigenvalue

0

.05

.1

.15

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

Benign
Malware

Fig. 6. First Eigenvalue (λ1) Distribution

-10 -5 0 5 10 15
Second Eigenvalue

0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

Benign

Malware

Fig. 7. Second Eigenvalue (λ2) Distribution

standard NN includes few or many simple, inter-connected
nodes called neurons. NN’s neurons are organized in a few
layers, namely: an input layer, several hidden layers and an
output layer. DL as an “upgraded” trend of NN, focuses on
deeper data structure learning by concentrating on the hid-
den layer’s abilities and functionalities. Deep learning has
recently been successfully deployed to address challenges
in a variety of applications, such as speech recognition and
machine vision [58], [59]. There are different variations of
DL such as Convolutional Networks, Restricted Boltzmann
Machines, and Sparse Coding [60].

In this paper, a Convolutional Network is used as the
deep learning module of our proposed approach because
of its potential for accurate classification in the presence
of complex and non-linear data patterns [61]. The first two
eigenvectors (v1 and v2) and eigenvalues (λ1 and λ2) of the
samples are used as input values for classification.

5 FINDINGS

In this section, we evaluate the accuracy, precision, re-
call and F-measure of our proposed approach, in order
to demonstrate its robustness in detecting IoT and IoBT
malware. Moreover, we demonstrate the sustainability of
our proposed approach against junk code insertion attacks.

5.1 Robustness

To show the robustness of our proposed approach and
benchmark it against existing proposals, two congruent al-
gorithms [30], [31] described in Section 1 are applied on our
generated dataset using Adaboost [62] as the classification
algorithm. All evaluations were conducted using MATLAB
R2015a running on a Microsoft Windows 10 Pro personal
computer powered by Intel Core i7 2.67GHz and 8GB RAM.

A 10-fold cross validation was used in the validating,
and the comparative summary is presented in Table 1. It is
clear that our proposed approach outperforms the proposals
of Hashemi et al. [31] and Santos et al. [30]. Santos et al. [30]
is a basic and commonly-known OpCode based malware
detection algorithm and Hashemi et al. [31] is the most

JOURNAL OF IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. X, NO.X, MONTH 2017 6

analogous OpCode based approach regarding the utilizing
eigenspace.

Accuracy is a general criteria for evaluating performance
of an algorithm for both malware and benign class identi-
fication. The proposed approach achieves a high accuracy
of 99.68%, while the approaches of Hashemi et al. [31]
and Santos et al. [30] achieve 98.59% and 95.91% accuracy
respectively. Recall or detection rate is an important criteria
and the proposed approach achieves 98.37%, in comparison
to 81.55% and 77.70% for the other two approaches.

Our proposed approach also outperforms the ap-
proaches of Hashemi et al. [31] and Santos et al. [30] in
terms of precision rate and F-Measure. Utilizing class-wise
feature selection aids beneficial features of minor class to
be more effective during classification phase. Also, using
Formulation(6) to calculate OpCode’s distance leads to rep-
resent more OpCode sequence patterns in sample’s graph.
Moreover, employing deep neural networks for classifica-
tion leads to superior classifier.

Accuracy Precision Recall F-Measure
Proposed Method 99.68% 98.59% 98.37% 98.48%

Hashemi et al. [31] 96.87% 91.09% 81.55% 86.05%
Santos et al. [30] 95.91% 86.25% 77.70% 81.75%

TABLE 1
Performance Evaluation Of Detection Methods on Our Dataset

5.2 Sustainability Against Junk Code Insertion Attacks

Junk code injection attack is a malware anti-forensic tech-
nique against OpCode inspection. Junk code insertion may
include addition of benign OpCode sequences, which never
run in a malware or inclusion of instructions (e.g. NOP) that
do not actually make any difference in malware activities.
Junk code insertion technique would obfuscate malicious
OpCode sequences and reduce the balance of malicious
OpCodes in a malware [63].

In our proposed approach, we use an affinity based crite-
ria to evade junk OpCode injection anti-forensics technique.
Our feature selection method eliminates less instructive
OpCodes to mitigate the effects of injecting junk OpCodes.

To demonstrate sustainability of our proposed approach
against code insertion attack, in an iterative manner, a
specified proportion({5%, 10%, 15%, 20%, 25%, 30%}) of all
elements in each sample’s generated graph were selected
randomly and their value incremented by one. For example,
in the 4th iteration of the evaluations, 20% of the indices
in each sample’s graph were chosen to increment their
value by one. In addition, in our evaluations the possibility
of a repetitive element selection was included to simulate
injecting an OpCode more than once. Incrementing Ei,j

in the sample’s generated graph is equivalent to injecting
OpCodej next to the OpCodei in a sample’s instruction
sequence to mislead detection algorithm. Algorithm 1 de-
scribes an iteration of junk code insertion during experi-
ments and it is necessary to mention this procedure should
repeat for each iteration of k-fold validation.

Algorithm 1 Junk Code Insertion Procedure

Input: Trained Classifier D, Test Samples S, Junk Code
Percentage k

Output: Predicted Class for Test Samples P
1: P = {}
2: for each sample in S do
3: W= Compute the CFG of sample based on Section 4.1
4: R = {select k% of W ’s index randomly(Allow dupli-

cate indices)}
5: for each index in R do
6: Windex = Windex + 1
7: end for
8: Normalize W

9: e1, e2= 1st and 2nd eigenvectors of W
10: l1, l2= 1st and 2nd eigenvalues of W
11: P = P

⋃
D(e1, e2, l1, l2)

12: end for
13: return P

Figure 8 reports on the performance of the proposed
approach over the stated condition. It is clear that our
proposed approach achieves an acceptable performance in
the face of an junk code insertion attack. A steady trend for
Accuracy indicates that truly classified samples significantly
outnumber false positive and negative samples – see Equa-
tion 1. Furthermore, comparing Precision and Recall results
imply that false positive rate or false alarm rate is greater
than the false negative rate based on Equations 2 and 3
and taking into account Recall’s stable graph, the proposed
approach is robust against junk code insertion.

0 5% 10% 15% 20% 25% 30%
Junk OpCode Injectin Percentage

92

93

94

95

96

97

98

99

100

M
et

ri
c

V
al

ue
(%

)

Accuracy
Precision
Recall
F-Measure

Fig. 8. Evaluation of Proposed Method Robustness Over Junk Code
Insertion

6 CONCLUDING REMARKS

IoT, particularly IoBT, will be increasingly important in the
foreseeable future. While no malware detection solution is
foolproof and there will always be a constant race between
cyber attackers and cyber defenders, it is important that we
maintain persistent pressure on threat actors [64].

In this paper, we presented an IoT and IoBT malware
detection approach based on class-wise selection of Op-
Codes sequence as a feature for classification task. A graph
of selected features was created for each sample and a
deep Eigenspace learning approach was used for malware
classification. Our evaluations demonstrated the robustness
of our approach in malware detection with an accuracy
of 98.37% and a precision rate of 98.59%, as well as the
capability to mitigate junk code insertion attacks.

JOURNAL OF IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. X, NO.X, MONTH 2017 7

In the future, we plan to evaluate our approach against
larger and broader datasets and implementing a prototype
of the proposed approach in a real-world IoT and IoBT
system for evaluation and refinement.

ACKNOWLEDGMENTS

We thank VirusTotal for providing us a private API key to
access their data for constructing our dataset. This work is
partially supported by the European Council International
Incoming Fellowship (FP7-PEOPLE-2013-IIF) grant.

REFERENCES

[1] E. Bertino, K.-K. R. Choo, D. Georgakopolous, and S. Nepal,
“Internet of things (iot): Smart and secure service delivery,” ACM
Transactions on Internet Technology, vol. 16, no. 4, p. Article No. 22,
2016.

[2] X. Li, J. Niu, S. Kumari, F. Wu, A. K. Sangaiah, and K.-K. R. Choo,
“A three-factor anonymous authentication scheme for wireless
sensor networks in internet of things environments,” Journal of
Network and Computer Applications, 2017.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of things (iot): A vision, architectural elements, and future direc-
tions,” Future generation computer systems, vol. 29, no. 7, pp. 1645–
1660, 2013.

[4] F. Leu, C. Ko, I. You, K.-K. R. Choo, and C.-L. Ho, “A smartphone-
based wearable sensors for monitoring real-time physiological
data,” Computers & Electrical Engineering, 2017.

[5] M. Roopaei, P. Rad, and K.-K. R. Choo, “Cloud of things in smart
agriculture: Intelligent irrigation monitoring by thermal imaging,”
IEEE Cloud Computing, vol. 4, no. 1, pp. 10–15, 2017.

[6] X. Li, J. Niu, S. Kumari, F. Wu, and K.-K. R. Choo, “A robust
biometrics based three-factor authentication scheme for global mo-
bility networks in smart city,” Future Generation Computer Systems,
2017.

[7] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A
survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[8] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet
of things: Vision, applications and research challenges,” Ad Hoc
Networks, vol. 10, no. 7, pp. 1497–1516, 2012.

[9] A. Kott, A. Swami, and B. J. West, “The internet of battle things,”
Computer, vol. 49, no. 12, pp. 70–75, 2016.

[10] M. J. Farooq and Q. Zhu, “Secure and reconfigurable network
design for critical information dissemination in the internet of
battlefield things (iobt),” arXiv preprint arXiv:1703.01224, 2017.

[11] C. Tankard, “The security issues of the internet of things,” Com-
puter Fraud & Security, vol. 2015, no. 9, pp. 11 – 14, 2015.

[12] C. J. DOrazio, K. K. R. Choo, and L. T. Yang, “Data exfiltration
from internet of things devices: ios devices as case studies,” IEEE
Internet of Things Journal, vol. 4, no. 2, pp. 524–535, April 2017.

[13] S. Watson and A. Dehghantanha, “Digital forensics: the missing
piece of the internet of things promise,” Computer Fraud & Security,
vol. 2016, no. 6, pp. 5–8, 2016.

[14] E. Bertino and N. Islam, “Botnets and internet of things security,”
Computer, vol. 50, no. 2, pp. 76–79, Feb 2017.

[15] J. Gardiner and S. Nagaraja, “On the security of machine learning
in malware c&c detection: A survey,” ACM Computing Surveys,
vol. 49, no. 3, p. Article No. 59, 2016.

[16] J. Peng, K.-K. R. Choo, and H. Ashman, “User profiling in in-
trusion detection: A review,” Journal of Network and Computer
Applications, vol. 72, pp. 14–27, 2016.

[17] E. M. Rudd, A. Rozsa, M. Gnther, and T. E. Boult, “A survey of
stealth malware attacks, mitigation measures, and steps toward
autonomous open world solutions,” IEEE Communications Surveys
& Tutorials, vol. 19, no. 2, pp. 1145–1172, 2016.

[18] S. Iqbal, M. L. M. Kiah, B. Dhaghighi, M. Hussain, S. Khan, M. K.
Khan, and K.-K. R. Choo, “On cloud security attacks: A taxonomy
and intrusion detection and prevention as a service,” Journal of
Network and Computer Applications, vol. 77, pp. 98–120, 2016.

[19] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on malware
detection using data mining techniques,” ACM Computing Surveys,
vol. 50, no. 3, p. Article No. 41, 2017.

[20] Z. K. Zhang, M. C. Y. Cho, C. W. Wang, C. W. Hsu, C. K.
Chen, and S. Shieh, “Iot security: Ongoing challenges and research
opportunities,” in 2014 IEEE 7th International Conference on Service-
Oriented Computing and Applications, Nov 2014, pp. 230–234.

[21] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti,
and M. Rajarajan, “Android security: A survey of issues, malware
penetration, and defenses,” IEEE Communications Surveys & Tuto-
rials, vol. 17, no. 2, pp. 998–1022, Secondquarter 2015.

[22] Z. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, and
K. Mizutani, “State-of-the-art deep learning: Evolving machine
intelligence toward tomorrows intelligent network traffic control
systems,” IEEE Communications Surveys & Tutorials, 2017.

[23] N. Milosevic, A. Dehghantanha, and K.-K. R. Choo, “Machine
learning aided android malware classification,” Computers & Elec-
trical Engineering, 2017.

[24] R. Kohavi et al., “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” in Ijcai, vol. 14(2).
Stanford, CA, 1995, pp. 1137–1145.

[25] Y. Bengio and Y. Grandvalet, “No unbiased estimator of the
variance of k-fold cross-validation,” Journal of machine learning
research, vol. 5, no. Sep, pp. 1089–1105, 2004.

[26] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware char-
acterization and detection using deep learning,” Tsinghua Science
and Technology, vol. 21, no. 1, pp. 114–123, Feb 2016.

[27] J. Saxe and K. Berlin, “Deep neural network based malware
detection using two dimensional binary program features,” in Ma-
licious and Unwanted Software (MALWARE), 2015 10th International
Conference on, 2015, pp. 11–20.

[28] D. Bilar, “Opcodes as predictor for malware,” Int. J. Electron. Secur.
Digit. Forensic, vol. 1, no. 2, pp. 156–168, Jan. 2007.

[29] R. Moskovitch, C. Feher, N. Tzachar, E. Berger, M. Gitelman,
S. Dolev, and Y. Elovici, “Unknown malcode detection using
opcode representation,” Intelligence and Security Informatics, pp.
204–215, 2008.

[30] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode
sequences as representation of executables for data-mining-based
unknown malware detection,” Information Sciences, vol. 231, pp.
64–82, 2013.

[31] H. Hashemi, A. Azmoodeh, A. Hamzeh, and S. Hashemi, “Graph
embedding as a new approach for unknown malware detection,”
Journal of Computer Virology and Hacking Techniques, 2016.

[32] M. Siddiqui, M. C. Wang, and J. Lee, “Data mining methods for
malware detection using instruction sequences,” in Proceedings of
the 26th IASTED International Conference on Artificial Intelligence and
Applications, ser. AIA ’08. Anaheim, CA, USA: ACTA Press, 2008,
pp. 358–363.

[33] Y. Tan, Class-Wise Information Gain. John Wiley & Sons, Inc., 2016,
ch. 11, pp. 150–172.

[34] K. Shaerpour, A. Dehghantanha, and R. Mahmod, “Trends in an-
droid malware detection,” The Journal of Digital Forensics, Security
and Law: JDFSL, vol. 8, no. 3, p. 21, 2013.

[35] N. Idika and A. P. Mathur, “A survey of malware detection
techniques,” Purdue University, vol. 48, 2007.

[36] P. Vinod, R. Jaipur, V. Laxmi, and M. Gaur, “Survey on malware
detection methods,” in Proceedings of the 3rd Hackers Workshop on
computer and internet security (IITKHACK09), 2009, pp. 74–79.

[37] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A
survey on heuristic malware detection techniques,” in Information
and Knowledge Technology (IKT), 2013 5th Conference on. IEEE, 2013,
pp. 113–120.

[38] O. E. David and N. S. Netanyahu, “Deepsign: Deep learning
for automatic malware signature generation and classification,”
in Neural Networks (IJCNN), 2015 International Joint Conference on.
IEEE, 2015, pp. 1–8.

[39] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and
A. Thomas, “Malware classification with recurrent networks,”
in Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE
International Conference on. IEEE, 2015, pp. 1916–1920.

[40] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethu-
madhavan, and S. Stolfo, “On the feasibility of online malware de-
tection with performance counters,” in ACM SIGARCH Computer
Architecture News, vol. 41, no. 3. ACM, 2013, pp. 559–570.

[41] M. S. Alam and S. T. Vuong, “Random forest classification for
detecting android malware,” in 2013 IEEE International Conference
on Green Computing and Communications and IEEE Internet of Things
and IEEE Cyber, Physical and Social Computing, Aug 2013, pp. 663–
669.

JOURNAL OF IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, VOL. X, NO.X, MONTH 2017 8

[42] A. Azmoodeh, A. Dehghantanha, M. Conti, and K.-K. R. Choo,
“Detecting crypto-ransomware in iot networks based on energy
consumption footprint,” Journal of Ambient Intelligence and Human-
ized Computing, 2017.

[43] H. H. Pajouh, R. Javidan, R. Khayami, D. Ali, and K. K. R.
Choo, “A two-layer dimension reduction and two-tier classifica-
tion model for anomaly-based intrusion detection in iot backbone
networks,” IEEE Transactions on Emerging Topics in Computing,
vol. PP, no. 99, pp. 1–1, 2016.

[44] D. Brash, “Recent additions to the armv7-a architecture,” in 2010
IEEE International Conference on Computer Design, Oct 2010, pp.
XIX–XIX.

[45] D. K. S. Reddy and A. K. Pujari, “N-gram analysis for computer
virus detection,” Journal in Computer Virology, vol. 2, no. 3, pp.
231–239, 2006.

[46] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici,
“Detecting unknown malicious code by applying classification
techniques on opcode patterns,” Security Informatics, vol. 1, no. 1,
p. 1, 2012.

[47] A. Feizollah, N. B. Anuar, R. Salleh, and A. W. A. Wahab, “A
review on feature selection in mobile malware detection,” Digit.
Investig., vol. 13, no. C, pp. 22–37, Jun. 2015.

[48] G. Forman, “An extensive empirical study of feature selection
metrics for text classification,” Journal of machine learning research,
vol. 3, no. Mar, pp. 1289–1305, 2003.

[49] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane, “Graph-
based malware detection using dynamic analysis,” Journal in Com-
puter Virology, vol. 7, no. 4, pp. 247–258, 2011.

[50] D. J. Cook and L. B. Holder, Mining graph data. John Wiley &
Sons, 2006.

[51] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification. John
Wiley & Sons, 2012.

[52] K. Riesen and H. Bunke, Graph classification and clustering based on
vector space embedding. World Scientific, 2010, vol. 77.

[53] F. R. Chung, Spectral graph theory. American Mathematical Soc.,
1997, no. 92.

[54] M. Newman, “mathematics of networks,” in The New Palgrave
Dictionary of Economics, S. N. Durlauf and L. E. Blume, Eds.
Basingstoke: Palgrave Macmillan, 2008.

[55] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[56] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[57] S. S. Haykin, S. S. Haykin, S. S. Haykin, and S. S. Haykin, Neural
networks and learning machines. Pearson Upper Saddle River, NJ,
USA:, 2009, vol. 3.

[58] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[59] L. Deng, D. Yu et al., “Deep learning: methods and applications,”
Foundations and Trends R© in Signal Processing, vol. 7, no. 3–4, pp.
197–387, 2014.

[60] P. Druzhkov and V. Kustikova, “A survey of deep learning
methods and software tools for image classification and object
detection,” Pattern Recognition and Image Analysis, vol. 26, no. 1,
p. 9, 2016.

[61] S. Mallat, “Understanding deep convolutional networks,” Phil.
Trans. R. Soc. A, vol. 374, no. 2065, p. 20150203, 2016.

[62] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization
of on-line learning and an application to boosting,” in European
conference on computational learning theory. Springer, 1995, pp. 23–
37.

[63] A. Walenstein and A. Lakhotia, “The software similarity problem
in malware analysis,” in Dagstuhl Seminar Proceedings. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2007.

[64] K.-K. R. Choo, A Conceptual Interdisciplinary Plug-and-Play Cyber
Security Framework. Boston, MA: Springer US, 2014, pp. 81–99.

Amin Azmoodeh received his B.S.degree in
Computer Engineering and M.Sc. degree in Ar-
tificial Intelligence from Shiraz University. His
main research interests are theory of Machine
Learning and Artificial Intelligence and its ap-
plications especially in cybersecurity and digi-
tal forensics. He has several years’ experience
in analyzing and implementing security mecha-
nism in Enterprise Resource Planning software.

Ali Dehghantanha (SM17) is a Marie-Curie
International Incoming Fellow in Cyber Foren-
sics and a fellow of the UK Higher Education
Academy (HEA). He has served for many years
in a variety of research and industrial positions.
Other than Ph.D. in Cyber Security he holds
many professional certificates such as GXPN,
GREM, CISM, CISSP, and CCFP. He has served
as an expert witness, cyber forensics analysts
and malware researcher with leading players in
Cyber-Security and E-Commerce.

Kim-Kwang Raymond Choo (SM15) received
the Ph.D. in Information Security from
Queensland University of Technology, Australia.
He currently holds the Cloud Technology
Endowed Professorship at The University
of Texas at San Antonio, and is a Fellow of
the Australian Computer Society. He serves
on the editorial board of Cluster Computing,
Digital Investigation, IEEE Access, IEEE Cloud
Computing, Future Generation Computer
Systems, Journal of Network and Computer

Applications, PLoS ONE, etc. He also serves as the Special Issue Guest
Editor of ACM Transactions on Embedded Computing Systems (2017;
DOI: 10.1145/3015662), ACM Transactions on Internet Technology
(2016; DOI: 10.1145/3013520), Digital Investigation (2016; DOI:
10.1016/j.diin.2016.08.003), Future Generation Computer Systems
(2016; DOI: 10.1016/j.future.2016.04.017), IEEE Cloud Computing
(2015; DOI: 10.1109/MCC.2015.84), IEEE Network (2016; DOI:
10.1109/MNET.2016.7764272), IEEE Transactions on Dependable and
Secure Computing (2017; DOI: 10.1109/TDSC.2017.2664183),
Journal of Computer and System Sciences (2017; DOI:
10.1016/j.jcss.2016.09.001), Multimedia Tools and Applications
(2017; DOI: 10.1007/s11042-016-4081-z), Personal and Ubiquitous
Computing (2017; DOI: 10.1007/s00779-017-1043-z), Pervasive and
Mobile Computing (2016; DOI: 10.1016/j.pmcj.2016.10.003), Wireless
Personal Communications (2017; DOI: 10.1007/s11277-017-4278-0)
etc. He was named Cybersecurity Educator of the Year APAC (2016
Cybersecurity Excellence Awards are produced in cooperation with
the Information Security Community on LinkedIn) in 2016. In 2015, he
and his team won the Digital Forensics Research Challenge organized
by Germanys University of Erlangen-Nuremberg. He was named one
of 10 Emerging Leaders in the Innovation category of The Weekend
Australian Magazine/Microsofts Next 100 series in 2009, and his other
awards include ESORICS 2015 Best Research Paper Award, Highly
Commended Award from Australia New Zealand Policing Advisory
Agency (2014), Fulbright Scholarship (2009), 2008 Australia Day
Achievement Medallion, and British Computer Societys Wilkes Award
(2007).

