This is a repository copy of *Search for resonant states in 10C and 11C and their impact on the primordial 7Li abundance.*

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/128316/

Version: Published Version

Article:

https://doi.org/10.1088/1742-6596/940/1/012016

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Search for resonant states in ^{10}C and ^{11}C and their impact on the primordial ^7Li abundance

To cite this article: F Hammache et al 2018 J. Phys.: Conf. Ser. 940 012016

View the article online for updates and enhancements.
Search for resonant states in 10C and 11C and their impact on the primordial 7Li abundance

F Hammache1, A Coc2, N de Séréville1, I Stefan1, P Roussel1, M Assié1, L Audouin1, D Beaumel1, S Franchoo1, B Fernandez-Dominguez3, S Fox4, C Hamadache2, J Kiener2, A Laird4, B Le Crom1, A. Lefebvre-Schuhl2, L Lefebvre1, I Matea1, A Matta1, G Mavilla1, J Mrazek5, P Morfouace1, F de Oliveira Santos6, A Parikh7, L Perrot1, A M Sanchez-Benitez8, D Suzuki1, V Tatischeff2, P Ujic6 and Marine Vandebrouck1

1 Institut de Physique Nucléaire d’Orsay, UMR8608, IN2P3-CNRS, Université Paris sud 11, 91406 Orsay, France
2 CSNSM, IN2P3-CNRS, Université Paris Sud, 91405 Orsay, France
3 Universidad de Santiago de Compostela, E-15786 Santiago, Spain
4 Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
5 Nuclear Physics Institute ASCR, 250 68 Rez, Czech Republic
6GANIL, CEA/DSM-CNRS/IN2P3, Caen, France
7 Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, E-08036 Barcelona, Spain
8 Departamento de Física Aplicada, Universidad de Huelva, E-21071 Huelva, Spain

E-mail: hammache@ipno.in2p3.fr

Abstract. The cosmological 7Li problem arises from the significant discrepancy of about a factor 3 between the predicted primordial 7Li abundance and the observed one. The main process for the production of 7Li during Big-Bang nucleosynthesis is the decay of 7Be. Many key nuclear reactions involved in the production and destruction of 7Be were investigated in attempt to explain the 7Li deficit but none of them led to successful conclusions. However, some authors suggested recently the possibility that the destruction of 7Be by 3He and 4He may reconcile the predictions and observations if missing resonant states in the compound nuclei 10C and 11C exist. Hence, a search of these missing resonant states in 10C and 11C was investigated at the Orsay Tandem-Alto facility through 10B(3He,t)10C and 11B(3He,t)11C charge-exchange reactions respectively. After a short overview of the cosmological 7Li problem from a nuclear physics point of view, a description of the Orsay experiment will be given as well as the obtained results and their impact on the 7Li problem.

1. Introduction

The Big-Bang model of the Universe is mainly supported by three observational evidences: the expansion of the Universe, the Cosmic Microwave Background (CMB), and the primordial or Big-Bang Nucleosynthesis (BBN) of light nuclei like 2H, 3He, and 7Li. The observed primordial abundances for D and 3He agree well with the predictions of the BBN theory together with the precise WMAP cosmic baryon density while 7Li observations lie below the BBN+WMAP expectations by a factor of ~ 3 [1, 2]. This observed deficit constitutes the so-called lithium
problem. Many scenarios were proposed to try to explain this anomaly. The first one is related to the possibility of systematic errors in the extraction of Li abundances from the observed atomic spectra due to the used atmosphere models. But this is very unlikely since the various models give nearly the same results [3]. The second explanation is the possibility that the atmospheric 7Li may have partially depleted from the atmosphere of the metal poor halo stars through rotationally induced mixing and/or diffusion [4]. But then a uniform destruction mechanism of 7Li is needed all over this Spite plateau which exhibits a very little dispersion of the observed 7Li abundance as a function of the metallicity of the stars. Some astrophysicists claim that the 7Li problem point towards physics beyond standard model such as decay of super-symmetric particles, variation of the fundamental constants...[5, 6]. But before investigating these far going possibilities, one has to be sure about the nuclear data involved.

The main process for the production of the BBN 7Li is the decay of 7Be. Hence any reaction which produces or destroys 7Be has an impact on 7Li. Among the 12 BBN standard reaction network displayed in Fig. 1, the most important reaction which produces 7Be is 3He($^\alpha$, $^\gamma$)7Be reaction and the main reaction which destroys it is 7Be(n,p)7Li followed by 7Li(p,$^\alpha$)4He. The cross section of 3He($^\alpha$, $^\gamma$)7Be reaction was measured by several groups using several methods and its knowledge is nowadays better than 8% according to the latest evaluation of solar fusion cross sections of Adelberger et al. [7]. Concerning 7Be(n,p) reaction, its cross section is very well known according to the latest analysis of BBN rates performed by Descouvemont et al. [8] as well as the following reaction 7Li(p,$^\alpha$)4He.

Recently some authors [9, 10, 11, 12] investigated the possibility that missed resonances in some secondary destruction channels of 7Li and 7Be with p,n, d,t,3He may be responsible of the 7Li deficit. From their investigations, three promising candidates came out: 7Be+d, 7Be+3He and 7Be+4He reactions. According to Cyburt et al. [12], the $5/2^+$ state close to 16.8 MeV excitation energy in the compound nucleus 9B may enhance significantly the 7Be+d reaction rate, thus leading to an appreciable depletion of 7Li, if the deuteron width of the state is between 10-40 keV. For 7Be+3He channel, the presence of 1^- or 2^- state close to 15 MeV excitation energy in 10C with a resonance energy between 50 to 100 keV and having a narrow width may reconcile the predicted primordial 7Li with the observed one [9]. For 7Be+4He reaction, the solution may come from an existence of a hypothetical state close to 7.8 MeV in the compound nucleus 11C and having a total width between 30-160 keV [11].

7Be+d reaction was investigated by various works and was dismissed as possible solution to the 7Li problem. Indeed, the 7Be(d,p)2He cross section measurement [13] showed no enhancement of the cross section in the BBN region. The 7Be(d,d) measurement [14] didn’t observe any resonance in the region of interest and the extracted upper limit for the deuteron width of about 1 keV was found much less than the needed width to solve the 7Li problem. And finally the recent study [15] of 7Be(d,p)2He reaction rate using the spectroscopic properties of the state of
interest at 16.8 MeV of 9B ($\text{Ex}=16.80 \text{ MeV} \pm 10 \text{ keV, } \Gamma=81(5) \text{ keV, } J^\pi=5/2^+$) obtained from 9Be(3He,t)9B measurement, showed that the state at 16.8 MeV can not enhance significantly 7Be(d,p)$^2\alpha$ reaction rate and its impact on 7Li abundance is less than 4%.

So what about 7Be+3He and 7Be+4He? the case of 10C is appealing because no states between 10 and 16.5 MeV are known and the state of interest lies close to 15 MeV. For 11C, the excited states up to 9 MeV were studied through various indirect reactions and no state close to 7.8 MeV is reported. However, no dedicated measurements in this narrow energy region were carried out so one can not exclude that a weakly state in this energy region has been missed.

2. Experiment and results

A search for the missing levels has been performed at the ALTO facility [16]. 10C and 11C nuclei were populated with the (3He,t) charge exchange reaction on 10B and natural Boron targets. (3He,t) measurements were also performed on C and Si$_2$O$_4$ targets because of the contamination of the boron targets by 12C and 16O nuclei. The emitted tritons were detected in the focal plane of Split-Pole spectrometer first by a position-sensitive gas detector and then by ΔE proportional gas counter. For 10B(3He,t) the tritons were detected at four different angles, 7$^\circ$, 10$^\circ$, 13$^\circ$ and 15$^\circ$ and for 11B(3He,t), they were detected at two angles, 7$^\circ$ and 10$^\circ$. A good identification of the tritons and the deuterons was achieved by only using the position versus ΔE measured spectrum, see Fig. 2.

![Figure 2. $b\rho$ versus energy loss identification spectrum](image)

The measured $b\rho$ position spectra for 11C and 10C at the angle of 10$^\circ$ are displayed in Fig. 3 and Fig. 4 respectively. The well populated peaks in 11C spectrum are the already well known 11C levels. No new peaks are observed at 10$^\circ$ in the energy region of interest between 7.79 and 7.9 MeV, neither at 7$^\circ$. The very small "peaks" observed in this energy region are only statistical fluctuations. Thanks to the very large signal to background ratio measured in this spectrum, we can assert that it is very unlikely that a new state in 11C exists in this energy region. Moreover, all the known states in the mirror nucleus 11B below 9 MeV excitation energy have their counterpart in 11C nucleus. For the 10C case, no additionnal states in 10C are observed around 15 MeV (see Fig. 4, blue histogram), the only states we observe are those coming from the 16O contamination of the target as one can see in the spectrum (red histogram) obtained from the measurement on Si$_2$O$_4$ target. The same results were obtained at 7$^\circ$, 13$^\circ$ and 15$^\circ$ measured angles. But since the background in this case is very important and the signal to background ratio is 10 times less than in the case of 11C, we can not exclude that a state may be hidden in the background. However, from a chi2 study [16] of a simulated assumed state close to 15 MeV with various widths and various populated cross sections on the top of measured background, we could draw an exclusion zone in the plane of the charge-exchange cross section versus the width of the assumed state (see figure 4 in [16]) and conclude that any 1^- or 2^- state
of 10C in the excitation energy region around 15 MeV should have very likely, if present, a total width larger than 590 keV with a 95% CL to escape our detection.

Reaction rate calculations for the two only possible open channels, 7Be(3He,p)9B and 7Be(3He,α)6Be were performed assuming a 1$^-$ state in the compound nucleus 10C having a total width equal to our deduced lower limit, 590 keV, and even a three times lower value, 200 keV in case the differential charge-exchange cross section is three times smaller than the expected minimum one. The calculated 7Be+3He reaction rates [16] were included in a BBN nucleosynthesis calculation and were found to have no impact on the primordial 7Li/H abundance. In conclusion, our results exclude 7Be+3He and 7Be+4He reactions as possible solution to 7Li.

Finally With Orsay results [16] and those of previous works [13, 14, 15] concerning other possible resonant reaction channels, we may even say that the solution to the 7Li problem has very likely to be found outside of nuclear physics.

References