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A Consensus-Based Control Law for Accurate Frequency Restoration and

Power Sharing in Microgrids in the Presence of Clock Drifts*

Ajay Krishna1, Johannes Schiffer2 and Jörg Raisch1,3

Abstract— Clock drifts are a common phenomenon in dis-
tributed systems, such as microgrids (MGs). Unfortunately, if
not accounted for, the presence of clock drifts can hamper
accurate frequency restoration and power sharing in MGs. As
a consequence, we have proposed in [1] a distributed secondary
frequency control that ensures an accurate stationary control
performance in the presence of clock drifts. In the present work,
we extend the analysis in [1] by providing a tuning criterion
for the controller parameters that guarantees robust stability
of a given equilibrium point of the closed-loop dynamics with
respect to uncertain bounded clock drifts. Finally, our analysis
is validated via simulation.

I. INTRODUCTION

Electric power systems around the globe are currently

facing new changes and challenges which are mainly due to

the increasing presence of renewable energy sources (RESs).

At present, the electric power system contains a large number

of small units rather than a small number of large power

stations. These small units are usually equipped with RESs.

To interface RESs into the electric grid, power electronic

inverters are used. The physical characteristics of inverters

largely differ from the characteristics of conventional gener-

ators. Therefore, new and intelligent control concepts which

ensure stable and reliable power system operation are needed.

In this context, the concept of microgrids (MGs) is foreseen

as a promising solution [2]. A MG is a locally controllable

subset of a large power system. It consists of several RESs,

storage units and corresponding loads. MGs can typically

work in islanded or grid-tied mode [2]. In this paper, we are

interested in the former case.

As in any AC power system, frequency stability is a key

performance criterion in MGs. In inverter-dominated MGs,

so-called grid forming inverters (GFIs) are employed for this

task. A GFI is a voltage source inverter which is controlled

using pre-defined voltage and frequency values [2], [3]. In-

spired by conventional power systems, a hierarchical control

strategy is advocated in case of MGs [4], out of which, in this

paper, we are interested in distributed secondary frequency

control [1], [5]–[9] which uses local information as well as

neighboring information over a communication network to

ensure frequency restoration and power sharing (PS).
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In an inverter-dominated MG, each inverter typically has

only a local understanding of time, which leads to clock

inaccuracies [10]. In practice, clock drifts [11], [12] are

non-negligible phenomena in distributed MG control [1]. A

main reason for this is that in the presence of clock drifts,

the internal frequency of an inverter differs from its actual

electrical frequency [10], [13]. However, in most of the work

on distributed secondary frequency control, the effect of

clock drifts is not considered and it is assumed that both

the electrical and internal frequencies are identical. See for

example, the pinning control scheme [5], or the distributed

averaging integral (DAI) control [6]–[9]. In [1], we have

shown that the presence of clock drifts impairs accurate fre-

quency restoration and PS with the usual secondary control

schemes. Recently, the deteriorating effect of clock drifts on

secondary frequency control was reported also in [14]–[17].

As in sensor networks, time synchronization protocols

[18], [19] could potentially be used to address clock drift

issues. Yet, in the case of MGs, in order to implement these

time synchronization protocols, an additional time synchro-

nization control has to be designed and should typically

be activated before the primary and secondary controllers.

Adding such an additional control layer would increase the

overall complexity of the hierarchical MG control architec-

ture [4]. In [20], an angle droop control, with consensus

based frequency and power control to ensure PS in the

presence of clock drifts is proposed. Yet, the implementation

of [20] requires complete knowledge of phase angles, which

is often a restrictive assumption in practice. Furthermore, in

the related works [14]–[17] neither conditions for stability

nor conditions under which a given distributed frequency

control scheme leads to accurate PS in the presence of clock

drifts are provided.

Motivated by this, in [1], we have proposed an alternative

secondary control law, termed generalized distributed averag-

ing integral (GDAI) control, and provided a parametrization

of the control parameters, such that the synchronized elec-

trical frequency is the nominal frequency and, in addition,

PS is ensured in the presence of clock drifts. Moreover, the

GDAI control can be implemented without any additional

time synchronization protocol. In this paper, we extend the

work in [1] by providing a design criterion in the form of a

set of linear matrix inequalities (LMIs) which ensures that

the GDAI control renders asymptotic stability (AS) of the

closed-loop equilibrium point in the presence of clock drifts

and guarantees accurate frequency restoration and PS. Unlike

in [20], we do not linearize the electrical network, instead

we work with the non-linear MG model. Moreover, our

design criterion does not require knowledge of the operating



point. We use a Lyapunov function with classic kinetic and

potential energy terms to derive the design criterion [21],

[22]. Finally, we illustrate via simulation that with our design

criterion, the GDAI controller achieves accurate frequency

restoration, PS and local AS.

The paper is organized as follows. In Section II, we recall

some preliminaries of graph theory, introduce the MG model

and the GDAI control. In Section III, the design criterion

for the closed loop system in the presence of clock drifts

is presented. In Section IV, the design criterion is solved

numerically and the results are simulated for an exemplary

MG. Finally, we summarize our work and suggest some

future research directions in Section V.

II. PRELIMINARIES

We denote by In the n× n identity matrix, by 0n×m the

n×m matrix with all entries equal to zero, by 1n the vector

with all entries being equal to one and by 0n the zero vector.

The maximum eigenvalue of a square symmetric matrix F
is denoted by λmax(F ). The elements below the diagonal of

F is denoted by ∗. If F is positive (negative) definite, we

denote this by F > 0 (F < 0). If F is positive (negative)

semidefinite, we denote this by F ≥ 0 (F ≤ 0). Moreover,

A > B means that A − B > 0. Let x = col(xi) denote a

vector with entries xi, Y = diag(yi) a diagonal matrix with

diagonal entries yi and X = blkdiag(Xi) a block-diagonal

matrix with block-diagonal matrix entries Xi.

A. Algebraic graph theory

A weighted undirected graph [23], [24] of order n > 1 is

a triple G = (N , E ,W) with set of vertices N = {1, . . . , n}.

Furthermore, E ⊆ [N ]2 is the set of edges, where [N ]2

represents the set of all two-element subsets of N and

W : E → R>0 is a weight function. The entries of the

adjacency matrix A ∈ R
n×n of G are aij = aji = wl > 0 if

{i, j} ∈ E where wl = w(i, j) = w(j, i) is the edge weight

and aij = aji = 0 otherwise. The set of neighboring nodes

of node i is given by Ni = {j ∈ N | aij 6= 0}. The diagonal

degree matrix D ∈ R
n×n is given by D = diag

(
∑

j∈N aij
)

.

A path is an ordered sequence of nodes such that any pair of

consecutive nodes in the sequence is connected by an edge.

The graph G is called connected if there exists a path between

every pair of distinct nodes. The Laplacian matrix L ∈ R
n×n

of an undirected graph is given by L = D−A. The Laplacian

matrix L is symmetric and positive semi-definite. If and only

if G is connected, L has a simple zero eigenvalue. Then, a

corresponding right eigenvector is 1n, i.e., L1n = 0n.

B. Primary-controlled MG model with clock drifts

We consider a Kron-reduced representation [25] of an

inverter-based MG and denote its set of network nodes by

N = {1, ..., n}, n > 1. The phase angle and voltage

magnitude at each bus i ∈ N are denoted by δi : R≥0 → R,

respectively, Vi : R≥0 → R>0. The electrical frequency at

the i-th node is denoted by ωi = δ̇i. As customary in sec-

ondary frequency control design, we assume that all voltage

amplitudes are constant and that the line admittances are

purely inductive [7], [25]. The latter assumption is generally

satisfied for MGs in which the inductive output impedance of

the converter filter and/or transformer dominates the resistive

part of the line impedances [26] and we only consider such

MGs. Thus, if there is a power line between nodes i ∈ N
and k ∈ N , then this is represented by a nonzero susceptance

Bik ∈ R<0. Furthermore, the electrical network is assumed

to be connected and the set of neighboring nodes of the i-th
node is denoted by Ni = {k ∈ N |Bik 6= 0}.

Following [10], [13], we denote by µi ∈ R the constant

relative drift of the clock of the i-th unit, i ∈ N . In general,

|µi| ≪ 1 is a small unknown parameter [10], [13]. Further-

more, it is convenient to introduce the internal frequency

ω̄i : R≥0 → R of the inverter at the i-th node which—under

the assumption of sufficiently fast sampling times—yields

the relation [10], [13] between the internal frequency ω̄i and

the electrical frequency ωi as ω̄i = (1 + µi)ωi, ∀i ∈ N . In

the sequel, we refer to µi ∈ R as the clock drift factor or

simply clock drift.

Following standard practice, we assume that all units are

equipped with the usual primary frequency droop control [4].

Then the dynamics of the generation unit at the i-th node,

i ∈ N , is given by

(1 + µi)δ̇i = (1 + µi)ωi = ω̄i,

(1 + µi)Mi ˙̄ωi = −Di(ω̄i − ωd) + P d
i −GiiV

2
i + ui − Pi,

(II.1)

where ωd ∈ R is the desired electrical frequency, P d
i ∈ R is

the desired active power set point, GiiV
2
i ∈ R≥0 represents

the constant power load at the i-th node, Di ∈ R>0 is the

inverse droop coefficient and Mi = τPi
Di is the virtual

inertia coefficient, where τPi
∈ R>0 is the time constant

of the low pass filter for the power measurement [27].

Furthermore, ui : R≥0 → R is the secondary control input.

The active power flow Pi : R
n → R at the i-th node is [25]1

Pi =
∑

k∈Ni

|Bik|ViVk sin(δi − δk). (II.2)

To derive a compact model representation of the MG, it is

convenient to introduce the matrices

D = diag(Di) ∈ R
n×n
>0 ,M = diag(Mi) ∈ R

n×n
>0 ,

µ = diag(µi) ∈ R
n×n,

and the vectors

δ = col(δi) ∈ R
n, ω = col(ωi) ∈ R

n, ω̄ = col(ω̄i) ∈ R
n,

P net = col(P d
i −GiiV

2
i ) ∈ R

n, u = col(ui) ∈ R
n.

Also, we introduce the potential function U : Rn → R,

U(δ) = −
∑

{i,k}∈[N ]2
|Bik|ViVk cos(δi − δk).

Then, the dynamics (II.1), ∀i ∈ N , can be written as

(In + µ)δ̇ = ω̄,

(In + µ)M ˙̄ω = −D(ω̄ − 1nω
d) + P net + u−∇U(δ),

(II.3)

compactly. Observe that

dU(δ)

dt
= ∇U⊤(δ)ω = ∇U⊤(δ)(I + µ)−1ω̄,

and due to symmetry of the power flows Pi, 1
⊤
n∇U(δ) = 0.

1For notational simplicity, time arguments of all signals are omitted.



C. Generalized Averaging Integral Secondary control

In general, P net in (II.3) is non-zero because the loads

GiiV
2
i are usually unknown. Moreover, if the overall power

balance is non-zero, then the steady state frequencies of the

droop controlled MG (II.3) deviate from the nominal value

ωd. This steady state frequency error should be brought to

zero using a secondary control law. In this paper, we focus on

distributed secondary frequency control. Note that usually the

internal frequency ω̄i is employed in distributed secondary

frequency control [5], [6], [8], [9]. At first glance, this has

the advantage that no additional frequency measurement is

needed. However, it has been shown in [1] that the, generally

unavoidable, presence of clock drifts also leads to non-

negligible stationary frequency deviations when using any

of the aforementioned control schemes. Motivated by this,

we have proposed the following GDAI control in [1]

u = p, (In + µ)ṗ = −
(

(B+CLC)(ω̄ − 1nω
d) +DLCp

)

,
(II.4)

where B ∈ R
n×n, C ∈ R

n×n and D ∈ R
n×n
>0 are diagonal

controller matrices and LC ∈ R
n×n
≥0 is the Laplacian matrix

representing the communication network. For the subsequent

analysis, it is convenient to introduce the notion below.

Definition 2.1: The closed loop system (II.3), (II.4) admits

a synchronized motion if it has a solution for all t ≥ 0 of

the form

δs(t) = δs0 + ωst, ωs = ω∗
1n,

where ω∗ ∈ R is the synchronized electrical frequency and

δs0 ∈ R
n such that

|δs0,i − δs0,k| <
π

2
∀i ∈ N , ∀k ∈ Ni.

The expression for ω∗ is given by [1]

ω∗ =
1
T
nD

−1
B1n

1T
nD

−1(B+CLC)(In + µ)1n
ωd. (II.5)

The matrix B is commonly called the pinning gain matrix,

e.g. [5]. In the following, we define the clock of one of the

units in the network as master clock, say the k-th unit, k ≥ 1.

Then, µk = 0 and the drifts µi, i 6= k of all other clocks in

the MG are expressed with respect to the master clock at k-th

unit. In this scenario, it has been shown in [1] that selecting

Bµ = 0n×n, C = −D, (II.6)

in (II.4) guarantees that ω∗ = ωd in (II.5) together with

active PS in the presence of clock drifts. Achieving both of

these control objectives is, in general, not possible with [5]

and the standard DAI control [6], [8], [9] in the presence of

clock drifts, see [1] for more details.

D. Closed-Loop System

Combining (II.3) with (II.4) and using (II.6) yields the

closed-loop dynamics

(In + µ)δ̇ = ω̄,

(In + µ)M ˙̄ω = −D(ω̄ − 1nω
d)−∇U(δ) + P net + p,

(In + µ)ṗ = −(B−DLC)(ω̄ − 1nω
d)−DLCp.

(II.7)

III. ROBUST GDAI CONTROL DESIGN

In this section, a tuning criterion is derived that ensures

robust stability of the closed-loop MG dynamics (II.7) in the

presence of clock drifts.

A. Error States and Problem Statement

We make the following standard assumption.

Assumption 3.1: The closed-loop system (II.7) possesses

a synchronized motion. �

As the power flow equation (II.2) only depends on angle

differences, following [26] we choose an arbitrary node, say

node n and express all angles relative to that node, i.e.,

θ = R⊤δ, θ ∈ R
n−1, R =

[

In−1

−1
⊤
n−1

]

.

Then, with Assumption 3.1, we introduce the error states

ω̃ = ω̄ − ω̄∗ = ω̄ − (In + µ)−1
1nω

d,

θ̃ = θ − θ∗, p̃ = p− p∗, x = col
(

θ̃, ω̃, p̃
)

.

The resulting error dynamics of the system (II.7) is given by

˙̃
θ = R⊤(In + µ)−1ω̃,

(In + µ)M ˙̃ω = −Dω̃ −R(∇U(θ̃ + θ∗)−∇U(θ∗)) + p̃,

(In + µ) ˙̃p = (−B+DLC)ω̃ −DLC p̃,
(III.1)

we define x = col(θ̃, ω̃, p̃) ∈ R
3n−1 and x∗ = 03n−1 is an

equilibrium point of (III.1). Note that AS of x∗ = 03n−1

implies AS of the synchronized motion from Definition 2.1

in system (II.7) up to a uniform shift of all angles [26]. As

outlined in [10], [13] for the purpose of secondary frequency

control, it is reasonable to assume that the clock drifts are

bounded. This is formalized in the assumption below.

Assumption 3.2: ‖µ‖2 ≤ ǫ, 0 ≤ ǫ < 1.
We are interested in the following problem.

Problem 3.3: Consider the system (III.1) with Assump-

tion 3.1. Determine the matrices B, D and LC , such that

AS of x∗ is guaranteed for all µ satisfying Assumption 3.2.

B. Main result

For the presentation of our main result, it is convenient to

define the matrices

T =

[

T11
1
2

(

−In − σD−1
1n1

⊤
nD + B̃− LC

)

∗ T22

]

,

T̂2 =

[

σM1n1
⊤
n B̃ σD−1

1n1
⊤
nD

0n×n −σD−1
1n1

⊤
n

]

,

(III.2)

with σ > 0, B̃ = D
−1

B ≥ 0 and

T11 = D −
σ

2

(

M1n1
⊤
n B̃+ B̃1n1

⊤
nM

)

,

T22 = LC +
σ

2

(

D
−1

1n1
⊤
n + 1n1

⊤
nD

−1
)

.



Furthermore, since µ is a diagonal matrix, with Assump-

tion 3.2 we have that

‖µ(In + µ)−1‖2 ≤ g1(ǫ), g1(ǫ) =
ǫ

1−ǫ > 0,

‖(µ2 + 2µ)(In + µ)−2‖2 ≤ g2(ǫ), g2(ǫ) =
ǫ2+2ǫ
(1−ǫ)2 > 0.

(III.3)

Our main result is as follows.

Proposition 3.4: Consider the system (III.1) with As-

sumption 3.1. Recall g1(ǫ) and g2(ǫ) defined in (III.3).

Suppose that there exist σ > 0, ζ > 0 such that

Hnom =

[

M −σM1n1
⊤
nD

−1

∗ D
−1

]

>

[

g2(ǫ)M 0n×n

0n×n g1(ǫ)D
−1

]

,

(III.4)

and

T >
(

ǫζ + g1(ǫ)
√

λmax(D2) + 1
)

I2n,

0 ≥

[

−ζI2n T̂2

∗ −ζI2n

]

,
(III.5)

where T and T̂2 are defined in (III.2). Then, local AS of

x∗ = 03n−1 is guaranteed for all unknown clock drift factors

satisfying Assumption 3.2.

Proof: Consider the Lyapunov function candidate

V =
1

2
ω̃⊤Mω̃ + U(θ̃ + θ∗)−∇U(θ∗)⊤θ̃

+
1

2
p̃⊤D−1(In + µ)p̃

− σp̃⊤(In + µ)D−1
1n1

⊤
nM(In + µ)ω̃,

(III.6)

where σ > 0 is a design parameter. The Lyapunov function

V contains kinetic and potential energy terms ω̃⊤Mω̃, re-

spectively U(θ̃) [21], a quadratic term in secondary control

input p̃ and a cross term between ω̃ and p̃ which allows us to

ensure that V is decreasing along the trajectories of (III.1).

First, we will show that V is indeed positive definite. Note

that ∇xV
∣

∣

x∗
= 03n−1. This shows that x∗ is a critical point

of V . Moreover, the Hessian of V at x∗ is given by

∇2
xV |x∗=





∇2U(θ∗) 0(n−1)×n 0(n−1)×n

∗ M ∇2V |(2,3)
∗ ∗ D

−1(In + µ)



, (III.7)

with ∇2V |(2,3) = −σ(In + µ)M1n1
⊤
nD

−1(In + µ). Note

that the matrix ∇2U(θ∗) > 0 [26]. Therefore, the Hessian

∇2
xV |x∗ is positive definite if and only if
[

M −σ(In + µ)M1n1
⊤
nD

−1(In + µ)
∗ D

−1(In + µ)

]

> 0. (III.8)

By performing a congruence transformation using the pos-

itive definite matrix S = blkdiag
(

(In + µ)−1, (In + µ)−1
)

and by invoking Sylvester’s law of inertia [28], we see that

the matrix on the left hand side of (III.8) is positive definite

if and only if the following matrix inequality is satisfied
[

(In + µ)−2M −σM1n1
⊤
nD

−1

∗ (In + µ)−1
D

−1

]

> 0. (III.9)

The inequality (III.9) can be written as

Hnom −

[

(µ2 + 2µ)(In + µ)−2M 0n×n

0n×n µ(In + µ)−1
D

−1

]

> 0,

where Hnom is defined in (III.4). Furthermore, since µ, M
and D are all diagonal matrices, we have that
[

(µ2 + 2µ)(In + µ)−2M 0n×n

0n×n µ(In + µ)−1
D

−1

]

≤

[

g2(ǫ)M 0n×n

0n×n g1(ǫ)D
−1

]

,

where g1(ǫ) and g2(ǫ) are defined in (III.3). Consequently,
under the standing assumptions, see (III.4), ∇2

xV |x∗ >
0, confirming the positive definiteness of V . Note that
∇xV

∣

∣

x∗
= 03n−1 and ∇2

xV |x∗ > 0 implies that x∗ is a
strict local minimum of V [29].
Next, we calculate the time derivative of V along the
solutions of (III.1), which yields

V̇ (η) = −ω̃
⊤(In + µ)−1

Dω̃ + ω̃
⊤(In + µ)−1

p̃− p̃
⊤
D

−1
Bω̃

+ σp̃
⊤(In + µ)D−1

1n1
⊤

nDω̃ − σp̃
⊤(In + µ)D−1

1n1
⊤

n p̃

+ p̃
⊤LCω̃ − p̃

⊤LC p̃+ σω̃
⊤(In + µ)M1n1

⊤

nD
−1

Bω̃,

= −η
⊤

[

T11 T12

∗ T22

]

η = −η
⊤
Tη,

(III.10)

where η = col(ω̃, p̃) and

T11 = (In + µ)−1D

− σ

2

(

(In + µ)M1n1
⊤
nD

−1
B+D

−1
B1n1

⊤
nM(In + µ)

)

,

T22 = LC + σ

2

(

(In + µ)D−1
1n1

⊤
n + 1n1

⊤
nD

−1(In + µ)
)

,

T12 =
1

2

(

−(In + µ)−1 − σ(In + µ)D−1
1n1

⊤

nD +D
−1

B− LC

)

.

Note that the entries of the matrix T in (III.10) are uncertain,
because the clock drift matrix µ is uncertain. Hence, to obtain
verifiable conditions that ensure T > 0 and, thus, V̇ (η) is
negative definite, we note that T can be decomposed as

T = T −
1

2

(

Γ1T̂1 + T̂
⊤

1 Γ1

)

−
1

2

(

Γ2T̂2 + T̂
⊤

2 Γ2

)

, (III.11)

where T̂2 is defined in (III.2) and

Γ1 = blkdiag
(

µ(In + µ)−1, µ(In + µ)−1
)

,

Γ2 = blkdiag (µ, µ) , T̂1 =

[

D −In
0n×n 0n×n

]

.
(III.12)

For any matrices A ∈ R
n×n and B ∈ R

n×n, it holds that

AB +B⊤A⊤ ≤ 2‖A‖2‖B‖2In.

Therefore from (III.11), we have that

T ≥ T −
(

‖T̂1‖2‖Γ1‖2 + ‖T̂2‖2‖Γ2‖2
)

I2n.

Assumption 3.2 together with (III.3), implies that

‖Γ1‖2 ≤ g1(ǫ), ‖Γ2‖2 ≤ ǫ,

where Γ1 and Γ2 are defined in (III.12). Therefore,

T ≥ T −
(

g1(ǫ)‖T̂1‖2 + ǫ‖T̂2‖2
)

I2n. (III.13)

From (III.12), we have that

‖T̂1‖2 =

√

λmax(T̂1T̂⊤
1 ) =

√

λmax(D2) + 1.

Turning to T̂2,

‖T̂2‖2 =

√

λmax(T̂2T̂⊤
2 ) ≤ ζ ⇔ λmax(T̂2T̂

⊤
2 ) ≤ ζ2,

⇔ T̂2T̂
⊤
2 ≤ ζ2I2n,

⇔
1

ζ
T̂2T̂

⊤
2 − ζI2n ≤ 0,



where ζ > 0 is an upper bound for ‖T̂2‖2. By using the Schur

complement [28], the last inequality above is equivalent to

the second inequality in (III.5). Thus, from (III.13) we see

that T > 0 if

T −
(

ǫζ + g1(ǫ)
√

λmax(D2) + 1
)

I2n > 0.

This is the first condition in (III.5). Thus, with the made

assumptions, T > 0 implies that

V̇ (η) < 0 for η(t) 6= 02n,

V̇ (η) = 0 for η(t) = 02n.
(III.14)

This shows that x∗ is stable. Recall η(t) = col(ω̃, p̃) and

therefore V̇ (η) does not depend on θ̃.

Therefore, to conclude local AS of x∗, we need to show

that the following implication holds along solutions of the

system (III.1)

Tη(t) ≡ 02n ⇒ lim
t→∞

x(t) = x∗. (III.15)

Since T > 0, from the second equation in (III.14), we have

that ω̃ = 0n and p̃ = 0n, which, from (III.1), also implies

that θ̃ is constant. Moreover at η(t) = 02n, from the second

equation in (III.1), we obtain that

0n = −R(∇U(θ̃ + θ∗)−∇U(θ∗)),

which by multiplying from the left with R⊤ and rearranging

terms is equivalent to

R⊤R∇U(θ̃ + θ∗) = R⊤R∇U(θ∗). (III.16)

Note that R⊤R is invertible and recall that ∇2U(θ∗) > 0
[26]. Therefore, in a neighborhood of the origin, (III.16) only

holds for θ̃ = 0n−1. This shows that the implication (III.15)

holds and hence ensuring AS of x∗, completing the proof.

Remark 3.5: By fixing the tuning parameter σ, the design

conditions (III.4) and (III.5) are a set of LMIs that can be

solved efficiently using standard software [30]. Furthermore,

the design conditions are independent of an actual equi-

librium point. Consequently, if they are satisfied, then the

corresponding GDAI controller guarantees local AS of any

synchronized motion of the closed-loop dynamics (III.1).

IV. CASE STUDY

In this section, the performance and robustness of a MG

operated with the control (II.4) designed via the criterion

(III.4),(III.5) is illustrated. At first, we introduce the em-

ployed MG and then the simulation scenario.

The MG (Figure 1) used in the case study is simulated

using MATLAB R©/Simulink R© and PLECS [31]. Constant

impedance loads are connected at all GFIs. The system

parameters are given in Table I. In order to evaluate the

robustness of (III.4),(III.5) with respect to further model un-

certainties, a small positive line resistance value is considered

in the simulations, see Table I. Based on [10], [11], [32],

the clock drift factors for the simulated GFIs are chosen as

µ1 = 0, µ2 = 1ms, µ3 = 0.5ms and µ4 = −1ms. Thus, the

clock of GFI1 in Figure 1 is chosen as the master clock and

B is selected, such that Bµ = 04×4 in (II.6). In the present
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Fig. 1: MG used in simulation

TABLE I: MG parameters

Grid forming units

Unit (at node) Mi (MWs2) Di(MWs)
GFI (1,2,3 and 4) 0.079 0.398

Constant impedance loads

Unit (at node) Apparent power [KVA] Load power factor

Loads (1,2,3 and 4) 500 1

Line parameters

Between nodes Resistance [mΩ] Inductance [µH]

1 and 2 0.71 20.2

2 and 3 3.5 101.2

3 and 4 2.8 80.9

case, this implies that D−1
B = B̃ = diag(b̃, 0, 0, 0) where

b̃ > 0 is a design parameter. With the considered clock drift

factors, ǫ = 0.001 in Assumption 3.2.
The stability criterion (III.4), (III.5) is solved for D−1 > 0,

B̃ ≥ 0 and LC ≥ 0 with σ = 0.05 and ζ = 2 using
the optimization toolbox Yalmip [30] and the solver Mosek
[33] in MATLAB R©/Simulink R©. We obtained the control
parameters

D = diag(0.825, 1.174, 1.174, 1.174),B = diag(2.578, 0, 0, 0),

LC =







1 −0.66 0 −0.34
−0.66 2 −1.34 0

0 −1.34 2 −0.66
−0.34 0 −0.66 1






.

The feasibility of (III.4), (III.5) implies that the equilibrium

point of a GDAI controlled MG is locally asymptotically

stable in the presence of clock drifts. Furthermore, we sim-

ulate the GDAI controlled MG shown in Figure 1 using the

above-given control parameters. In simulation, PS weights

[1], [26] were chosen as χ = D where X = diag(Xi) ∈
R

n×n
>0 . The GDAI controller is activated at 10 seconds. In

Figure 2, we can see that within a few seconds the internal

inverter frequencies converge close to the nominal value

(ωd = 50Hz), but not exatly to 50Hz in the presence of

clock drifts. It has been shown in [1] that the aforementioned

problem is noticeable even for usual distributed secondary

frequency control schemes like [5], [6], [8], [9].

At first, we are interested in achieving ω∗ = ωd using

GDAI control (II.4), where ω∗ is defined in (II.5). In the

enlarged plot at 42.5 seconds in Figure 2, we can see that

the synchronized electrical frequency ω∗ (GFI1 frequency,

green colored curve) coincides with ωd = 50Hz and hence

confirms that ω∗ = ωd at steady state. Furthermore, be-

tween 0 to 10 seconds, the weighted power flows given

by (Pi − P d
i )/Xi, i ∈ N do not reach consensus. At 10



seconds, when the GDAI controller is activated, the weighted

power flows attain consensus at steady state, see the enlarged

plot for weighted power flows at 42.5 seconds. At 50 and

75 seconds, a constant power load of 500 kVA with unity

power factor is added at GFI4 and GFI3 respectively. The

control performance following the additional load steps at

50, respectively, 75 seconds is also satisfactory.
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Fig. 2: Frequency (ωi/2π) and weighted power flows (Pi −
P d
i )/Xi versus time (in seconds)

V. CONCLUSIONS

A design criterion for a GDAI controlled MG ensuring

robust stability in the presence of clock drifts is presented.

Unlike existing solutions for secondary frequency control in

MGs, GDAI control achieves accurate steady state frequency

restoration, PS and local AS in the presence of clock drifts.

Finally, numerical solution and simulated output confirms the

accomplishment of the aforementioned control objectives.

Future research will incorporate time delays in commu-

nication network used in GDAI control. Also, we plan to

test the GDAI controller on a real MG. Another interesting

aspect is to consider time varying voltage amplitudes in the

analysis.
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