This is an author produced version of *A New Iron Loss Model for Temperature Dependencies of Hysteresis and Eddy Current Losses in Electrical Machines*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/128254/

Article:

https://doi.org/10.1109/TMAG.2017.2755593
A New Iron Loss Model for Temperature Dependencies of Hysteresis and Eddy Current Losses in Electrical Machines

Shaoshen Xue1, Jianghua Feng2, Shuying Guo3, Jun Peng2, W. Q. Chu2, and Z.Q. Zhu1

1Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
2CRRC Zhuzhou Institute Co. Ltd, Shidai Road, Shifeng District, Zhuzhou, Hunan, 412001, China

Abstract—In this paper, the different temperature dependencies of hysteresis and eddy current losses of non-oriented Si-steel laminations are investigated. The measured iron loss results show that both the hysteresis and eddy current losses vary linearly with temperature between 40°C to 100°C, a typical temperature range of electrical machines. Varying rates of hysteresis and eddy current losses with the temperature are different and fluctuate with flux density and frequency. Based on this, an improved iron loss model which can consider temperature dependencies of hysteresis and eddy current losses separately is developed. Based on the improved iron loss model, the temperature influence on the iron loss can be fully considered by measuring iron losses at only two different temperatures. The investigation is experimentally validated by both the tests based on a ring specimen and an electrical machine.

Index Terms—iron loss, eddy current loss, hysteresis loss, temperature dependency, electrical machines.

I. INTRODUCTION

Iron loss is one of the most important design considerations for electrical machines. In order to predict and investigate the iron loss, various iron loss models have been developed, such as the earliest Steinmetz model in [1] three-term models in [2] and [3] as well as two-term models in [4] and [5]. All of them have been used for iron loss investigations. For example, the investigations in [6]-[12] are based on the three-term model in [3] and the investigations in [13]-[19] are based on two-term model in [4]. For electrical machine applications, the two-term models are comparatively more popular mainly due to two facts. First, the classical loss and excess loss in [3] cannot be separated by using Epstein tests [4]. Secondary, the two-term models are easier to implement and having reasonable accuracy. Amongst the two-term models, the model in [5] having variable hysteresis and eddy current loss coefficients has the best accuracy [20]-[22]. However, none of the iron loss model in [1]-[22] considers the influence of temperature.

The iron losses can be influenced by the temperature significantly, such as [23] and [24] on ferrite cores, [25] on NiFe laminations, [26] on oriented silicon laminations, and [27]-[30] on non-oriented silicon laminations. The modeling of temperature influence on iron loss is discussed in [29] and [30]. In [29] only the temperature dependency of the eddy current loss is considered while the hysteresis loss is assumed to be not influenced by the temperature. In [30] the temperature influence on the total iron loss is simply modeled by introducing an equivalent temperature dependent coefficient which is a mix of temperature influences on both the hysteresis and eddy current losses. However in [27] and [28] it has shown experimentally that the hysteresis and eddy current losses have different temperature dependencies.

The aim of this paper is to develop an iron loss model which can consider the temperature dependencies of the hysteresis and the eddy current losses separately. The iron losses at different flux density, frequency and temperature in non-oriented Si-steel laminations are measured firstly by the ring specimen test as will be described in Section II. In Section III, the accuracy of existing iron loss model having variable hysteresis and eddy current loss coefficients but without considering the temperature influence is evaluated first under constant temperature. The influence of temperature on the iron loss and the limitation of the existing model on prediction the iron loss without considering the temperature influence are also demonstrated. In Section IV, the different temperature dependencies of hysteresis and eddy current losses are investigated. An improved iron loss model considering the temperature dependencies of hysteresis and eddy current losses separately is developed and verified by the measured results of ring specimen tests. In Section V, the further experimental validation of the developed iron loss model in an electrical machine is presented.

II. IRON LOSS MEASUREMENT OF RING SPECIMEN MADE OF SILICON STEEL LAMINATIONS

In this paper, the iron loss investigation is firstly carried out based on the measured results of a ring specimen made of non-oriented silicon steel laminations. The ring specimen iron loss test has been widely used since it is easy to implement and has good accuracy [31]-[36]. The investigation is extended later to the iron loss in an electrical machine.

The ring specimen iron loss measuring system is shown in Fig. 1. The ring specimen has two coils. The excitation coil is supplied by an AC power source. The measuring coil, which has the same number of turns and closely wound together with the excitation coil, is connected to the oscilloscope to measure the instant effective voltage. The instant effective voltage is the voltage on the inductance of the excitation coil. By using the measuring coil, the voltage drop on the excitation coil’s resistance can be inherently excluded. The current in the excitation coil is measured by the Tektronix A622 current probe. Thus the iron loss density p_{fe} and the field strength $H(t)$ can be calculated as

$$p_{fe} = \frac{1}{\rho v} \int_{0}^{T} u(t)i(t) \, dt$$

$$H(t) = \frac{Ni(t)}{I_{eff}}$$
where ρ_{Fe} is the iron loss density. $u(t)$ is the instant induced voltage on the measuring coil. $i(t)$ is the instant current in the excitation coil. T is the time period of the current and the voltage. ρ and V are the mass density and the volume of the ring specimen, respectively. N is the number of turns of the excitation coil and the measuring coil. l_{eff} is the effective length of the ring specimen.

As shown in Table I, the specimen is specially designed to have a big ratio between its average radius and radial thickness. Thus, the flux density can be treated as evenly distributed in the ring specimen and can be calculated as

$$B(t) = \frac{\int u(t)dt}{NA}$$

where A is the cross sectional area of the ring specimen.

Furthermore, iron loss in the ring specimen is utilized to heat the ring specimen to the designate temperature while the temperature is measured by a K-type thermal couple. Thus, iron loss under different temperatures can be obtained. This method has been used in [27] and [28].

All iron losses of the ring specimen are measured when the excitation voltage is sinusoidal. In this case, the input current and hence the voltage drop on the resistance of the excitation coil are not sinusoidal. However, since the voltage drop on the resistance is much smaller compared with the input voltage, $u(t)$ in (3) is only slightly different from sinusoidal. In order to keep $u(t)$ as sinusoidal as possible, the excitation coil is also made of Litz wire with large equivalent cross-section. It is also aimed to reduce the influence of skin and proximity effects at high frequency. The measured resistance of the excitation coil is 0.04 Ω at room temperature. The measured $u(t)$ and input current waveforms are shown in Fig. 2. Thus, the flux density in the ring specimen can also be approximated as sinusoidal according to (3). The test range of the measuring system is summarized in Table II.

The measurement accuracy is very important for this investigation. The measurement accuracy in this paper depends on the accuracy of the current and voltage probes. The current probe Tektronix A622 able to measure current accurately when the current amplitude is as low as 0.05A. The lowest current amplitude during our test is 0.2A at 50Hz and 0.2T. It also able to measure the current up to 2kHz while the maximum frequency of our test is 1kHz. In terms of the voltage probe, Agilent Technologies N2791A differential voltage probe is used in the test. It able to measure voltage accurately when the amplitude is as low as 0.2V. The lowest voltage amplitude during our test is above 2V. Since the thermal time constant is much bigger than the electric time constant for out test rig, the voltage and current can be measured in a very short time before the temperature changes. Hence, the loss at different temperature can be measured accurately. Furthermore, for each set of flux density and frequency, the measurement is repeated several times to reduce the errors as much as possible.

Fig. 3 shows the measured B-H loops at 40°C when the frequency is 50Hz and 1000Hz, respectively. It can be seen that the B-H loops will be distorted when the flux density is high due to the saturation at both 50Hz and 1000Hz. The shape of B-H loops, which represents the iron losses in a time period, is frequency and flux density dependent. These dependencies will be discussed later in this paper.

Table I Parameters of Ring Specimen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of silicon steel laminations</td>
<td>V300-35A</td>
</tr>
<tr>
<td>Thickness of single laminations</td>
<td>mm 0.35</td>
</tr>
<tr>
<td>Outer diameter of ring specimen</td>
<td>mm 150</td>
</tr>
<tr>
<td>Inner diameter of ring specimen</td>
<td>mm 125</td>
</tr>
<tr>
<td>Total effective thickness of ring specimen</td>
<td>mm 14</td>
</tr>
<tr>
<td>Number of turns for excitation and measuring coils N</td>
<td>102</td>
</tr>
</tbody>
</table>

Table II Test Range of Ring Specimen Iron Loss Measuring System

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum output voltage in RMS value</td>
<td>V 150</td>
</tr>
<tr>
<td>Maximum output current in RMS value</td>
<td>A 30</td>
</tr>
<tr>
<td>Frequency range</td>
<td>Hz 50-1000</td>
</tr>
<tr>
<td>Temperature range</td>
<td>°C 40-100</td>
</tr>
</tbody>
</table>

Fig. 1. Schematic diagram of the ring specimen iron loss measuring system.

Fig. 2. Typical waveforms for measured currents of excitation coil and voltages of measuring coil.

(a) $B_{\text{m}}=0.2T$ and $f=50Hz$. (b) $B_{\text{m}}=1.73T$ and $f=1000Hz$.
used models when the flux density is alternating sinusoidally. Developed in [4] and [5] are two of the latest and most widely used models when the flux density is alternating sinusoidally. The model developed in [5] is experimentally confirmed to more accurate with the help of variable coefficients. The existing model (4) is able to accurately predict the iron loss at different flux densities and frequencies using measured data. Secondly, in order to simplify the modelling and the slope of the line. The hysteresis loss and eddy current loss are identifiable from the y-axis crossing point and the slope of the line. The hysteresis loss and eddy current loss coefficients are then separated. Based on the two measured results having the same flux density and the adjacent frequencies, a set of \(k_h(f, B_m) \) and \(k_e(f, B_m) \) can be calculated based on (5). In the similar way, \(k_h(f, B_m) \) and \(k_e(f, B_m) \) can be obtained under different flux densities and frequencies using the measured data. Secondly, in order to simplify the modelling of the coefficients, the variation of coefficients with the frequency is considered by using two sets of results representing the low and high frequency regions. In this paper, the low frequency covers 50Hz, 200Hz and 400Hz whilst the high frequency covers 600Hz, 800Hz and 1000Hz. This method is also used in [5]. It should be noted that the temperature influence on iron loss is not considered in this model. The coefficients of this model are obtained based on the measurement iron loss when the temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant. In this paper, all coefficients of this model are obtained when the lamination temperature is constant.
\[p_{Fe,T} = k_h(T, f, B_m) f B_m^2 + k_e(T, f, B_m) f^2 B_m^2 \]

(6)

where \(p_{Fe,T} \) is the iron loss density at the actual temperature \(T \). \(k_h(T, f, B_m) \) and \(k_e(T, f, B_m) \) are hysteresis loss and eddy current loss coefficients, respectively.

B. Modelling of temperature dependent coefficients

According to the improved iron loss model (6), iron loss coefficients at any temperature, frequency and flux density among the test range can be calculated by interpolation \(k_h(T, f, B_m) \) and \(k_e(T, f, B_m) \) the coefficient shown in Figs. 5 and 6. The temperature dependency of the iron loss can be then fully considered. However, the coefficients have to be measured at many different temperatures to guarantee the accuracy of the interpolation, which is complicated and time consuming.

Based on Figs. 5 and 6, it can be further seen that both the hysteresis and eddy current loss coefficients vary approximately linearly with temperature although the varying rate changes with flux density and frequency. These linear variations have also been confirmed in [26] and [27]. Nevertheless, the relationship between these losses and temperature will be far away from linear when the temperature is above 200°C [28]. However, electrical machines rarely operate at a temperature higher than 200°C. Therefore, a simple linear relationship between the coefficients and the temperature can be considered for the typical operation temperature range of electrical machines. On the other hand, it should be noted from Figs. 5 and 6 that the varying rates of hysteresis and eddy current loss coefficients with the temperature are different even under the same flux density and frequency. By considering all these aspects, the temperature dependent iron loss coefficients can be modelled as:

\[k_h(T, f, B_m) = k_{th}(T, f, B_m)k_{ht}(f, B_m) \]

(7)

\[k_e(T, f, B_m) = k_{te}(T, f, B_m)k_{et}(f, B_m) \]

(8)

where \(k_{th}(T, f, B_m) \) and \(k_{te}(T, f, B_m) \) are the temperature dependent coefficients of hysteresis and eddy current losses. \(k_{ht}(f, B_m) \) and \(k_{et}(f, B_m) \) are the hysteresis and eddy current loss coefficients when the temperature is \(T_0 \).

As demonstrated above, hysteresis and eddy current loss coefficients vary linearly with temperature with different rates. Therefore, the temperature dependent coefficients can be expressed as:

\[k_{th}(T, f, B_m) = 1 + (T - T_0)D_{hyst}(f, B_m) \]

(9)

\[k_{te}(T, f, B_m) = 1 + (T - T_0)D_{eddy}(f, B_m) \]

(10)

where \(D_{hyst}(f, B_m) \) and \(D_{eddy}(f, B_m) \) are varying rates of the hysteresis and eddy current loss coefficients with temperature and can be calculated by measured hysteresis losses and eddy current losses at two different temperatures \(T_0 \) and \(T_1 \) for the same frequency and flux density as:

\[D_{hyst}(f, B_m) = \frac{k_{ht}(f, B_m) - k_{ht}(f, B_m)}{(T_1 - T_0)k_{ht}(f, B_m)} \]

(11)

\[D_{eddy}(f, B_m) = \frac{k_{et}(f, B_m) - k_{et}(f, B_m)}{(T_1 - T_0)k_{et}(f, B_m)} \]

(12)

where \(k_{ht}(f, B_m) \), \(k_{ht}(f, B_m) \), \(k_{et}(f, B_m) \) and \(k_{et}(f, B_m) \) are the hysteresis and eddy current loss coefficients when the temperature is \(T_1 \) and \(T_0 \), respectively.

In this paper, \(T_1 \) is set to 100°C and \(T_0 \) is set to 40°C. Positive \(D_{hyst}(f, B_m) \) or \(D_{eddy}(f, B_m) \) means that the loss increases with temperature rise while negative \(D_{hyst}(f, B_m) \) or \(D_{eddy}(f, B_m) \) means that the loss decreases with temperature rise.
rise. According to (11) and (12), the improved iron loss model has two advantages: First, the temperature dependencies of the hysteresis loss and the eddy current can be considered separately. Second, the temperature influence on the iron loss can be considered by the measured results at only two different temperatures \(T_1 \) and \(T_0 \).

In order to investigate the variation of \(D_{\text{hyst}}(f, B_m) \) and \(D_{\text{eddy}}(f, B_m) \) with the frequency, the whole frequency test range 50-1000Hz is simply divided into two segments, i.e., the low frequency 50-400Hz and the high frequency 400-1000Hz. Fig. 7 shows the \(D_{\text{hyst}}(f, B_m) \) and \(D_{\text{eddy}}(f, B_m) \) at low frequency and high frequency, respectively. By applying \(D_{\text{hyst}}(f, B_m) \) and \(D_{\text{eddy}}(f, B_m) \) to (9) and (10) respectively, the temperature dependent coefficients can be then obtained. Fig. 8 shows the predicted temperature dependent coefficients at low frequency and high frequency, respectively. The temperature influences on the iron losses are then considered by substituting these temperature dependent coefficients to (7) and (8).

![Fig. 7. Hysteresis loss varying rate \(D_{\text{hyst}} \) and eddy current loss varying rate \(D_{\text{eddy}} \). (a) low frequency (50-400Hz), (b) high frequency (400-1000Hz).](image)

Fig. 7. Hysteresis loss varying rate \(D_{\text{hyst}} \) and eddy current loss varying rate \(D_{\text{eddy}} \). (a) low frequency (50-400Hz), (b) high frequency (400-1000Hz).

![Fig. 8. Predicted temperature dependent coefficients of hysteresis loss and eddy current loss. (a) \(k_{\text{h}} \) in low frequency (50-400Hz), (b) \(k_{\text{e}} \) in low frequency (50-400Hz), (c) \(k_{\text{h}} \) in high frequency (400-1000Hz), (d) \(k_{\text{e}} \) in high frequency (400-1000Hz).](image)

Fig. 8. Predicted temperature dependent coefficients of hysteresis loss and eddy current loss. (a) \(k_{\text{h}} \) in low frequency (50-400Hz), (b) \(k_{\text{e}} \) in low frequency (50-400Hz), (c) \(k_{\text{h}} \) in high frequency (400-1000Hz), (d) \(k_{\text{e}} \) in high frequency (400-1000Hz).

C. Validation of improved iron loss model

Fig. 9 shows the measured and predicted iron loss at different frequency and flux density when the temperature is 100°C. It can be seen that when the temperature changes to 100°C, the improved model can track the variation of iron loss more precisely. In order to compare the predicted and measured iron losses more clearly and comprehensively, the relative prediction error is employed,

\[
\text{err} = \frac{(P_{\text{Fe,Pre}} - P_{\text{Fe,Mea}})}{P_{\text{Fe,Mea}}} \tag{13}
\]

where \(\text{err} \) is the relative prediction error, \(P_{\text{Fe,Pre}} \) is the predicted iron loss density, \(P_{\text{Fe,Mea}} \) is the measured iron loss density.

With the help of the relative prediction error, it is much easier to show whether the influence of temperature is considered effectively or not. The variation of the relative
prediction error with the temperature will be stable and stay low if the influence of temperature is considered effectively.

Fig. 10 shows the comparison of relative prediction errors of existing and improved models at different flux density, frequency and temperature. It can be seen that the relative prediction errors of existing model (4) vary significantly with the temperature rise. This is due to the fact that the existing model (4) cannot reflect the temperature influence on iron losses. The prediction iron losses of the existing model keep constant while the actual iron losses vary significantly when temperature changes. On the other hand, the improved model (6) can predict the iron losses with low and stable relative prediction errors even when the temperature changes significantly. This is due to the fact that the improved model (6) can track the iron loss variation with temperature. This means that the improved model can consider the temperature influence on iron losses effectively.

Fig. 10. Relative prediction errors of existing and improved models, (a) B_m=0.2T, (b) B_m=1.0T, (c) B_m=1.73T

V. FURTHER EXPERIMENTAL VALIDATION IN AN ELECTRICAL MACHINE

In the previous sessions, the accuracy of the improved iron loss model on predicting the iron loss considering temperature influence has been validated by the measured results of ring specimen test. However, the flux density distribution and variation in electrical machines are uneven and much more complicated than the ones in the ring specimen. Therefore, it is important to evaluate the accuracy of the improved model in real electrical machines, which is carried out in this section.

The measuring system of iron loss in an electrical machine under different flux density, frequency and temperature is shown in Fig. 11. A 12/10 IPM machine is employed for the test. In order to remove the mechanical loss and the magnet eddy current loss, the machine rotor is locked and there is no magnet in the rotor. The three-phase windings are powered by the three-phase AC power source. The measured iron loss of the electrical machine can be obtained by subtracting the copper loss from the total loss.

\[P_{Fe} = P_{in} - P_{Cu} \] (14)

where \(P_{Fe} \) is the total iron loss of the electrical machine, \(P_{in} \) is the input power to the machine, \(P_{Cu} \) is the copper loss, which can be calculated by the measured winding resistance considering temperature dependency.

In order to measure the temperatures of different parts of the electrical machine, six thermal couples are installed at the stator yoke, the coil, the stator tooth, the tooth tip, the rotor magnet slot and the rotor yoke as it shown in Fig. 12. The electrical machine is heated to the target temperature by its own losses. Fig. 13 shows the temperature variation in different parts of the electrical machine when the phase current is 2.16A and 3.11A.
at 1000Hz, respectively. It can be seen that after two hours heating on the machine, the heat transfer is almost completed and the temperatures of different parts tend to be stable. When the phase current is 2.16A, 1000Hz, the hottest part is the coil (71ºC) and the coolest part is the rotor yoke (68ºC) after 120 mins heating. The temperature difference between different parts is very small and the average temperature of different part is 69ºC. In this circumstance, the temperature of the electrical machine can be approximately considered as 69ºC. On the other hand, when the phase current is 3.11A, 1000Hz, the hottest part is the coil (103ºC) and the coolest part is the stator yoke (99ºC) after 120 mins heating, the average temperature of different part is 100ºC. The temperature of the electrical machine can be approximately considered as 100ºC In order to ensure the thermal transferring is completed for each test, the machine is heated to the designated temperature by a long-term heating. Then, the losses are measured by applying the pre-tuned input. Since the measuring process will only take a few seconds, the temperature variation during the measurement can be neglected. The iron losses under different currents at 69ºC and 100ºC can be obtained by repeating the foregoing process.

To predict the iron loss, the electrical machine is modelled in the FEA software with the measured phase current waveforms shown in Fig. 14. Fig. 15 shows the simulated flux density distribution by FEA when the phase current I_a=0A, I_b=6.12A, I_c=6.12A. Then, the iron loss is predicted from flux density variations in each FE element using the improved iron loss model. It should be noticed that the flux density in the electrical machine can be rotational. The rotational flux density is decomposed into two alternating directions, i.e. the major-axis and the minor-axis as shown in Fig. 16. The major-axis is aligned with the long side of the rotational flux density while the minor-axis is aligned with the short side of the rotational flux density. The iron loss in each alternating direction can be calculated, respectively. The total iron loss under rotational flux density can be then obtained by the sum of iron losses at these two directions. The temperature dependent losses coefficients for the core are obtained by the ring specimen tests using the same lamination. The measured and predicted iron losses of the electrical machine are compared to evaluate the model accuracy.

Fig. 17 shows measured and predicted results at 69ºC and 100ºC. The numerical results are listed in Table III in Appendix. It can be seen that when the temperature rises to 69ºC and 100ºC, the improved model (6) can reflect the variation of the iron loss while the existing model (4) cannot. The accuracy of the improved model (6) is therefore much better than that of the existing model (4) with the help of temperature dependent coefficients. The effectiveness of the improved model on iron loss prediction in the electrical machine is then confirmed.
the eddy current losses are developed. It is also investigated. It is found that both the hysteresis and eddy current losses vary with the temperature. An improved iron loss model considering temperature dependencies of the hysteresis and eddy current losses of non-oriented Si-steel laminations are fully considered by simply measured results at two different temperatures. The investigation is experimentally validated by both the lamination ring specimen test and the lock rotor no-PM electrical machine test. This iron loss model could be useful for electromagnetic-thermal coupled analyses to predict the iron loss as well as the temperature distribution in electrical machines. These modelling and electromagnetic-thermal coupled analyses will be carried out in the future.

VI. CONCLUSIONS

In this paper, different temperature influences on hysteresis and eddy current losses of non-oriented Si-steel laminations are investigated. It is found that both the hysteresis and eddy current losses vary with the temperature. An improved iron loss model considering temperature dependencies of the hysteresis loss and the eddy current loss separately is developed. It is also found that the variations of hysteresis and eddy current losses with temperature is almost linear for the typical operation range of electrical machines although the varying rate of hysteresis and eddy current losses are different. Based on these linear relationships, a simplified modelling method of the temperature dependent loss coefficients is also proposed. Using the improved model, the temperature influence on iron loss can be fully considered by simply measured results at two different temperatures. The investigation is experimentally validated by

REFERENCES

APPENDIX

TABLE III MEASURED AND PREDICTED RESULTS

<table>
<thead>
<tr>
<th>Frequency</th>
<th>2A</th>
<th>5A</th>
<th>7A</th>
</tr>
</thead>
<tbody>
<tr>
<td>69°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured (W)</td>
<td>0.30</td>
<td>1.20</td>
<td>2.12</td>
</tr>
<tr>
<td>Existing model (W)</td>
<td>0.73</td>
<td>1.55</td>
<td>2.20</td>
</tr>
<tr>
<td>Improved model (W)</td>
<td>0.72</td>
<td>1.51</td>
<td>2.13</td>
</tr>
<tr>
<td>Measured (W) (Variation compare to 69°C)</td>
<td>0.28 (-6.0%)</td>
<td>1.18 (-1.6%)</td>
<td>1.99 (-6.2%)</td>
</tr>
<tr>
<td>Existing model (W)</td>
<td>0.73</td>
<td>1.55</td>
<td>2.20</td>
</tr>
<tr>
<td>Improved model (W) (Variation compare to 69°C)</td>
<td>0.71 (-1.4%)</td>
<td>1.48 (-2.1%)</td>
<td>2.06 (-3.3%)</td>
</tr>
<tr>
<td>100°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured (W)</td>
<td>0.77</td>
<td>2.59</td>
<td>6.95</td>
</tr>
<tr>
<td>Existing model (W)</td>
<td>1.23</td>
<td>3.42</td>
<td>5.62</td>
</tr>
<tr>
<td>Improved model (W)</td>
<td>1.21</td>
<td>3.34</td>
<td>5.41</td>
</tr>
<tr>
<td>Measured (W) (Variation compare to 69°C)</td>
<td>0.68 (-11%)</td>
<td>2.39 (-7.7%)</td>
<td>6.81 (-1.9%)</td>
</tr>
<tr>
<td>Existing model (W)</td>
<td>1.23</td>
<td>3.42</td>
<td>5.62</td>
</tr>
<tr>
<td>Improved model (W) (Variation compare to 69°C)</td>
<td>1.19 (-1.7%)</td>
<td>3.27 (-1.9%)</td>
<td>5.20 (-3.9%)</td>
</tr>
<tr>
<td>69°C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measured (W)</td>
<td>7.64</td>
<td>27.8</td>
<td>44.3</td>
</tr>
<tr>
<td>Existing model (W)</td>
<td>7.36</td>
<td>30.1</td>
<td>48.4</td>
</tr>
<tr>
<td>Improved model (W)</td>
<td>7.15</td>
<td>28.4</td>
<td>45.6</td>
</tr>
<tr>
<td>Measured (W) (Variation compare to 69°C)</td>
<td>6.68 (-12%)</td>
<td>25.7 (-7.6%)</td>
<td>42.3 (-4.6%)</td>
</tr>
<tr>
<td></td>
<td>69°C</td>
<td></td>
<td>100°C</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Existing model (W)</td>
<td>7.36</td>
<td>30.1</td>
</tr>
<tr>
<td>Improved model (W)</td>
<td>6.94</td>
<td>26.7</td>
<td>42.8</td>
</tr>
<tr>
<td></td>
<td>(-2.9%)</td>
<td>(-5.9%)</td>
<td>(-6.2%)</td>
</tr>
<tr>
<td></td>
<td>Measured (W)</td>
<td>22.1</td>
<td>83.0</td>
</tr>
<tr>
<td>Existing model (W)</td>
<td>25.2</td>
<td>88.9</td>
<td></td>
</tr>
<tr>
<td>Improved model (W)</td>
<td>24.4</td>
<td>83.9</td>
<td></td>
</tr>
<tr>
<td>Measured (W)</td>
<td>19.9 (-10%)</td>
<td>77.6 (-6.6%)</td>
<td></td>
</tr>
<tr>
<td>Existing model (W)</td>
<td>25.2</td>
<td>88.9</td>
<td></td>
</tr>
<tr>
<td>Improved model (W)</td>
<td>23.7 (-2.9%)</td>
<td>78.8 (-6.0%)</td>
<td></td>
</tr>
</tbody>
</table>