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VPH-HF: A SOFTWARE FRAMEWORK FOR THE EXECUTION OF

COMPLEX SUBJECT-SPECIFIC PHYSIOLOGY MODELLING

WORKFLOWS

ABSTRACT

Computational medicine more and more requires complex orchestrations of multiple modelling 

& simulation codes, written in different programming languages and with different 

computational requirements, which when validated need to be run many times on large cohorts 

of patients. The aim of this paper is to present a new open source software, the VPH 

Hypermodelling Framework (VPH-HF). The VPH-HF overcomes the limitations of most 

workflow execution environments by supporting both Taverna and Muscle2; the addition of 

Muscle2 support makes possible the execution of very complex orchestrations that include 

strongly-coupled models. The overhead that the VPH-HF imposes in exchange for this is small, 

and tends to be flat regardless of the complexity and the computational cost of the hypermodel 

being executed.  We recommend the use of the VPH-HF to orchestrate any hypermodel with 

an execution time of 200 seconds or higher, which would confine the VPH-HF overhead to less 

than 10%.  The VPH-HF also provide an automatic caching system over the execution of every 

hypomodel, which may provide considerable speed-up when the orchestration is run repeatedly 

over large numbers of patients or within stochastic frameworks, and the input sets are properly 

binned.  The caching system also makes it easy to form large input set / output set databases 

required to develop reduced-order models, and the framework offers the possibility to 

dynamically replace single models in the orchestration with reduced-order versions built from 

cached results, an essential feature when the orchestration of multiple models produces a 

combinatory explosion of the computational cost.
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1. INTRODUCTION

The Virtual Physiological Human (VPH) is a framework of methods and technologies that 

enables the subject-specific modelling of complex physiological, pathological, and biological 

processes, across physiological systems and space-time scales [1]. VPH technologies make it 

possible to estimate quantities that are essential in supporting an accurate medical decision, but 

that are difficult or impossible to measure directly; for example, predicting the strength of a 

bone from CT data [2], or predicting the fractional flow reserve of a coronary stenosis form 

fluoroscopy images [3]. By collecting other, more easily accessible, quantitative information 

on the subject and combining it with the available mechanistic knowledge available for that 

specific disease process, VPH models can become useful tools to support the medical decision 

in a more personalised way [2, 3].

VPH models are integrative, in the sense that they can capture and combine knowledge from 

multiple domains (biophysics, physiology, biology, pathology), multiple organ systems 

(cardiovascular and respiratory, neuromusculoskeletal, immune, endocrine, etc.), and across 
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multiple space-time scales (typically from the molecular scale to the whole organism scale) [1].

While in some cases these multiple elements of knowledge are captured into a single, extremely 

complicated mathematical model, in most cases it is more convenient to capture each element 

into a separate model, which are then orchestrated into a single simulation.  Since there is not 

a single standardised terminology to refer to these models, hereinafter we will use the 

terminology used in the CHIC project: as such orchestrations are models of models, we will 

call them hypermodels. Consistently, each composing element will be referred to as hypomodel.  

Hypomodels can be further distinguished in Component models, which contain the modelling 

knowledge, and Relational models, which define how specific quantities predicted by one 

component model transform into the inputs required by another component model (figure 1). 

Figure 1. Hypomodels and Relational models can be used to compose more complex models. 

On the left Hypomodels A and B are connected via a Relational model in the Hypermodel X. 

The process can be recursive, hypermodel X can be as hypomodel in hypermodel Y.

Table 1 provides a mapping between the terminology used here, and the closest terms used for 

two other frameworks described below.

Table 1.  Terminology mapping between VPH-HF, Taverna, and Muscle2.

VPH-HF Muscle2 Taverna

Hypermodel Model Workflow

Hypomodel Sub Model Nested Workflow

Relational model Conduit Filter (1:1 relationship),

Mapper (N:M relationship) [4]

Shim, Beanshells [5]

Several software tools are available to address this type of problem, including Discovery-Net 

[6], Kepler [7], VisTrails [8], Anduril [9], GridSpace2 [10], KNIME [11], Galaxy [12], 

Cuneiform [13], OpenAlea [14], Pegasus [15], and FabSim [16], just to name a few.

A systematic review of all these tools is beyond the scope of this paper; here we focus only on 

the two that are most relevant here. Taverna [5] and Muscle2 [4] are methodological and 

computational research frameworks to allow execution and coordination of multiple scientific 
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software which implement computational models. 

Taverna [5] uses a dataflow paradigm, well suited to address the needs of the bioinformatics 

community [17]. Bioinformatics models rarely require complex patterns of interaction and can 

be described with Directed Acyclic Graphs (DAG). Taverna also supports the integration of 

Web Services in the dataflow, since many bioinformatics databases are so large that they can 

only be queried remotely. More recently, support for conditional and cyclic data flows has been 

added, but its implementation is optimised for low numbers of iterations (for example, in loops 

workflows are executed serially, with their full instantiation overhead). Taverna provides an 

intuitive graphical user interface (Taverna Workbench) that, allowing to build scientific 

workflows with minimal computational expertise, has been adopted in different domains: 

bioinformatics [17, 18], biodiversity and ecology [19], astronomy [19, 20], heliophysics [21], 

statistics [18], and systems biology [22]. 

Muscle2 addresses the simulation needs of complex biophysics models, such as those used to 

describe mechano-biology processes. These are frequently modelled with multiscale, strongly 

coupled models, that pose considerable computational efficiency issues [23-25]. Muscle2 

includes a domain-specific language called Multiscale Modelling Language (MML) that allows 

an elegant formalisation of multiscale problems where several sub-models are coupled [25, 26] 

. The Muscle2 software suite allows an efficient distributed execution of the models [4, 24, 27].  

Muscle2 has been used to model and simulate multiscale models in a range of different 

domains: Cerebrovascular blood flow [23], irrigation network [28], Reverse engineering of 

gene regulatory networks [29], turbolence transport [30], in-stent restenosis [31] and 

biomedical simulations [23] . Recent development on the Muscle2 has added support for an 

optimised MPI interface in C++ to better exploit parallel HPC systems [27, 32].

The aim of this paper is to present a new open source software, the VPH Hypermodelling 

Framework (VPH-HF), which was developed in the frame of the EC-funded project 

“Computational Horizons In Cancer (CHIC): Developing Meta- and Hyper-Multiscale Models 

and Repositories for In Silico Oncology” (FP7-ICT-600841), hereinafter referred to as the 

CHIC project. The VPH-HF was developed in the attempt to address the needs of the modellers 

in the cancer research community: a rapid prototyping platform with reusable multiscale models 

that could interact using different graph topologies and capable of processing clinically relevant 

data. Our initial specifications analysis showed that some requirements would have been met 

by Taverna, some by Muscle2, and some by neither of these.  Thus, rather than re-inventing the 

wheel, we designed VPH-HF on top of Taverna and Muscle2, integrating the two frameworks, 

and adding functionalities only where necessary. Modelling is an iterative multistage activity, 

where the model evolves through a gradual process from formulation through verification, 

validation, uncertainty quantification and ultimately optimisation. The CHIC project 

computational architecture offers a collection of services that make this iterative process less 

time-consuming, including a web based graphical editor, a model continuous integration 

system, a set of repositories for data, metadata and models, and a web-based results dashboard 

to present the model outputs to the clinical end-users. At the centre of this complex architecture, 

the VPH-HF ensures the required level of execution services.

2. THE VPH HYPERMODELLING FRAMEWORK

2.1. General specifications and paradigm

The CHIC project computational architecture is schematically represented in Figure 2. 
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Figure 2. Schematic representation of the CHIC project architecture. Three different type of 

users interact with VPH-HF: the researcher composing hypomodels into hypermodels using the 

Model Editor, the system administrator controlling the VPH-HF framework via the Dashboard, 

the Clinician running hypermodels on patient-specific data to answer specific questions. The 

arrow symbol represents a link between the caller (arrow start block) and the called (arrow end 

block) in a web service call. 

Users access the system through three interfaces: modellers design their models with a visual 

editor called the VPH Hypermodelling Editor (VPH-HE), and manage their execution directly 

from the VPH-HE or through the Administration & dashboard interface of the VPH-HF; clinical 

users request the execution of existing hypermodels on selected clinical data and see the results 

through a specialised web-based user interface (called Clinical Research Application 

Framework, CRAF) that queries the relevant repositories. Users are authenticated through a 

proprietary identity provider developed by Custodix1, which exposes a standard Security 

Assertion Mark-up Language 2.0 (SAML 2.0) interface; the VPH-HF source code can be easily 

modified to work with any SAML2-based identity providers.  Similarly, the hypermodels, 

simulations, and clinical data repositories are proprietary implementations of the CHIC 

consortium, not available under an open source license.  The interaction of the VPH-HF with 

the CHIC repositories is based on standard Web Service interfaces, so the VPH-HF source code 

can be easily modified to work with any repository implementation that is exposed as a web 

service.

In this paper, we will focus our attention on the components of this architecture that are 

available as open source projects, the VPH-HF and the VPH-HE.  

The long-term objective of the VPH-HF project is to provide a complete Problem-Solving 

Environment that supports collaborative development and the re-use of complex computational 

models for computational physiology and computational medicine [33].  Originally developed 

1 https://www.custodix.com 

https://www.custodix.com
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as part of the EU-funded VPHOP project2 [34], the VPH-HF was completely re-written during 

the CHIC project. The three most important characteristics of this new implementation of the 

VPH-HF are:

1. The VPH-HF framework translates two of the best practices in software development, 

reusability, and continuous integration, to the modelling domain. Through the VPH-HE 

a user can design new hypermodels by re-using models already available in the 

repository and test them in a continuous integration process. Every time a model is 

updated in the model repository, it is versioned and automatically deployed on a 

computational host. A test suite is run for verifying the correctness and the outcome is 

published on a continuous integration dashboard;

2. The VPH-HF framework is designed to execute virtually any workflow pattern, to allow 

rapid prototyping and reusability of models; both Taverna and Muscle2 workflows can 

be designed and executed through the VPH-HF, offering the best of the two 

frameworks;

3. The VPH-HF framework offers two key features to improve the computational 

efficiency of complex workflows composed by reusable models, caching of executions 

and a surrogate model replacement service. 

The underlying assumption on which the VPH-HF operates is that an orchestration of 

computational models (hypermodel), given an input set, produces an output set through the 

orchestrated execution of a heterogeneous collection of hypomodels.  This orchestration is 

described in terms of data flow (how data sets are created and exchanged between hypomodels) 

and of control flow (the orchestration logic of the hypomodels). In this paradigm, a hypomodel 

is seen as a black-box object, with input and output ports that define how it manipulates the 

data flow, and a control port through which the control flow is delivered to the hypomodel. The 

VPH-HF allows any simulation software to be made compatible with this paradigm, using a 

software wrapping approach.

The VPH-HE is a web-based environment for designing scientific workflows [35]. It was 

originally developed in the context of EU-funded TUMOR project to provide an easy, intuitive, 

and secure environment for the design of integrative, predictive, computational models 

represented as scientific workflows. In the context of the CHIC project, VPH-HE was greatly 

extended to integrate with the VPH-HF and the rest of the CHIC infrastructure and also enriched 

in terms of functionality and user friendliness. It features a graphical frontend supporting the 

design of complex integrative models through a familiar “box-and-arrows” user interface. The 

underlying paradigm is that of “data-flow” enriched with complex validity checks for the 

connections to facilitate the construction of well-founded multilevel hypermodels.

2.2. Architectural design

The architecture of VPH-HF has been inspired by the concept of modularity: each component 

can be used in isolation or in ensemble with others to offer more sophisticated functionalities.  

Each component provides services (or interfaces to services) to other components via 

communication protocols over a network such as HTTP, HTTPS and AMQP3 following the 

Service Oriented Architecture (SOA) pattern. All the software components expose a standard 

interface (API) that potentially allows them to be used in isolation.  The web components of 

2 http://cordis.europa.eu/docs/projects/cnect/5/223865/080/publishing/readmore/2009-2104-VPHOP-VPH-MOY-DEF.pdf 
3 https://www.amqp.org/ 

http://cordis.europa.eu/docs/projects/cnect/5/223865/080/publishing/readmore/2009-2104-VPHOP-VPH-MOY-DEF.pdf
https://www.amqp.org/
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the hypermodelling framework are designed according to the representational state transfer 

(REST) architectural style [36].

Two use cases have driven the architectural design:

- Modellers: a modeller installs some hypomodels and wraps them with VPH-HF,

publishes them in the model repository, and then uses the VPH-HE to create new

hypermodels that orchestrate those hypomodels. They then use the VPH-HF to test their

execution and to run them for validation studies, until they can be made available to

clinical users.

- Clinical users: a clinical user uploads the data of a patient in the clinical data repository,

then requests the execution of an existing hypermodel on those clinical data, and

accesses the results though an easy-to-use user interface.

VPH-HF uses a client-server architecture to process, server-side, the requests coming from the 

consumers such as the VPH-HE. The modules that form the VPH-HF, and the logical 

relationships are shown in Figure 3.  

 Figure 3: VPH-HF components. The researcher is composing hypomodels into hypermodels 

using the Model Editor, the system administrator is controlling the VPH-HF framework via the 

Dashboard. The arrow symbol represents a link between the caller (arrow base block) and the 

called (arrow head block) in a service call.

Here is a brief description of each module function and its role in the architecture:

1. User Interfaces: these are the components which are used by the end-users to interact

with the back-end of the VPH-HF architecture to allow the creation, submission, and

monitoring of a hypermodel execution.  The VPH-HE model editor allows the creation

and execution of the hypermodels, the monitoring of the execution progress, and the

visualization of the output results. The Admin & Dashboard web interface was

implemented to provide a simple and direct interface to VPH-HF for independent

testing; it lets the user execute existing hypermodels on available data, and provides a

dashboard to monitor the execution, retrieve the results, and analyse the logs.
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2. Director: this module coordinates all the other modules of the VPH-HF backend with

respect to the execution of a hypermodel and handles the communication to and from

the User Interfaces and the Execution Services. It exposes coherent APIs of all VPH-

HF hypermodel execution functionalities for the external consumer.

4. Orchestrator: this module is the service that orchestrates the hypermodel execution by

requesting from the Execution Services the execution of the hypomodels in the correct

order as specified by the Director.

5. Message Broker: this module is responsible for message validation, transformation,

and routing. The message broker is a component that gives the hypermodelling

framework a common place where the different components can send and receive

messages in an asynchronous way, effectively implementing the decoupling among the

web applications. The message broker is used in VPH-HF for:

- Push notifications including the status of the hypomodel execution, status of the

hypermodel execution and message errors;

- Task submissions to an asynchronous task queue based on distributed message

passing (including submission of a workflow execution, polling and downloading

output from the Execution Services).

6. Storage Management Service (SMS): this module provides the VPH-HF with an

interface to different storage solutions; specifically, it provides an API for the Director

module to retrieve the necessary inputs for the execution and to save the outputs. The

SMS module implements two functionalities: a Local File-System Storage Service, and

a File Transfer service. The Local File-System Storage Service is a RESTful web

service that provides a basic interface to store, retrieve, and delete files in the local file

system. This service can be extended in the future to support virtually any storage

system. The File Transfer Service is a web service that provides an interface to external

repositories and to the Execution Services to perform file transfer operations.

7. Authentication service: this service takes care of confirming the identity of the user

and provides access to users, whose identity is verified, according to the associated

permissions. The Authentication Service was designed to be configurable so that VPH-

HF can work with different authentication mechanisms. The default authentication

system is a brokered authentication in which an authentication broker (an Identity

Provider) is responsible for authenticating the users and issuing time-limited identity

tokens to all the services. Such identity tokens can be used by the users to access the

project’s services.

8. Registry: The main role of the Registry service is to register and deploy a hypomodel

into the hypermodelling platform in order to be used by the VPH-HE for the hypermodel

composition and executed. The Registry uses the model metadata fetched from the

Model Repository and the computational infrastructure specifications to automatically

wrap a model according to the VPH-HF paradigm. Moreover, it provides, in real time,

a list of all the hypomodels/hypermodels accessible within the VPH-HF instance (for

example those available for testing but not yet uploaded into the Model Repository),

including valid input sets, hypermodel description and (possibly) output sets for each of

them.

7. Caching Service: Caching is a technique for optimization which, when enabled, stores

previous execution input / output data set pairs for selected models. On each request, a

combination of (model ID + input values) is checked for a matching cached execution:
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if found in the database, the memorized output files are returned to the Execution 

Services instead of re-executing the identical request. If no matching execution is found, 

the model is run, and the execution parameters are added to the cache.  The immediate 

benefit of the caching service is that the re-run of models with the same input comes at 

a negligible computational cost; more importantly, when properly populated, the cache 

of a computationally expensive model can be used to build reduced-order versions of 

such models, such as surrogate models.

8. Surrogate Modelling Service (SUMOS): Computational implementations of 

mechanistic models are expected to predict a natural phenomenon with the highest 

accuracy and the lowest possible computational cost. The trade-off between speed and 

accuracy is crucial in domains like in silico medicine where a simulation is run for each 

patient (which requires small computing costs), or where the clinical decision that uses 

the prediction as support needs to be taken in a fixed (short) amount of time. Surrogate 

modelling (or meta-modelling) is a methodological approach where a high-fidelity 

model or full-order model is replaced with a simplified lower-fidelity/reduced-order 

model with a significantly shorter execution time. The SUMOS service provides a set 

of functionalities for VPH-HF for retrieving surrogate models suitable for replacing a 

full-order, more computationally expensive models, ranking them by accuracy and 

execution time over a reference dataset, and substituting them in the execution, with 

dramatic speed-up, especially for expensive hypomodels that are called recursively. 

2.3. Implementation details

2.3.1. Hypomodels wrapper

To be handled by the VPH-HF or recognised by the VPH-HE, any simulation software must be 

installed in the machine where the Execution Services run (or on any other machine that can be 

reached with a secure shell (SSH) connection from that machine), and then exposed as a 

command-line Taverna service, that Taverna indicates as External Tool Service. At that point, 

the hypomodel is abstracted as any other Taverna service, and can be orchestrated with any 

other Taverna service.

For hypermodels that require Muscle2 to be executed efficiently, first each hypomodel is 

installed locally, and enabled to interoperate via Muscle2 (Muscle2 requires message passing, 

which implies source-code level modifications, in many cases).  Once the Muscle2 workflow 

runs, it can be exposed to Taverna and the VPH-HF using an External Tool Service called 

Muscle2 Coupler. This service wraps the Muscle2 instructions that are extracted from the 

xMML description of the hypermodel and translated in a Ruby script.

2.3.2. User Interfaces

The Hypermodelling Editor consists of two main components: the frontend is a web application 

running in the user’s browser that retrieves the models’ information from the backend server. 

This two-tier architecture allows for greater flexibility in the user interface, while at the same 

time it offers greater scalability and performance, since most data are stored in the backend 

server where they are subject to more heavyweight processing. Due to the different operational 

contexts, different technologies are used for the implementation of the two components. The 
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browser-based frontend is built using a mix of Javascript, HTML5, and Elm4, a statically typed 

functional programming language for the Web. The server is built with more conventional 

technologies, Java as the main programming language and PostgreSQL as the relational 

database system for the persistence of the managed data. The two tiers communicate using an 

HTTP-based RESTful API, while the “Server-sent Events” API5 is used for the “real time” 

“push” of new information from the backend server to the frontend user interface.

The Admin & Dashboard interface is built using a mix of Javascript (jQuery) and HTML5.

2.3.3. VPH-HF backend

The modules of the VPH-HF backend were implemented in Python. Python has been chosen 

for its clean syntax, portability, rapid development, and ability to integrate external software 

modules. Another reason is that Python is the language of Django, the web framework on which 

the backend of the Hypermodelling engine is built. The Django framework was enriched with 

the features of the Django REST6 toolkit to simplify the building of APIs according to the REST 

architectural style.

The VPH-HF backend modules store their internal data (workflows, files, flags, etc.) into a 

SQL database using the Django object-relational mapping layer, which supports several 

relational database products, such as SQlite, MySQL and PostgreSQL.

2.3.4. Orchestrator and Execution services

The VPH-HF is based on the client-server paradigm in which the Orchestrator module 

coordinate the execution of hypermodels through the Execution Services.  The Orchestrator 

module is implemented in Python 2.7, and invokes a Taverna Server version 2.5.47, hosted by 

an Apache Tomcat web server. When a hypermodel contains Muscle2 execution instructions, 

a special Taverna module called Muscle2 Coupler is executed, which passes the Muscle2 

instructions in the Ruby language to the Muscle2 server for execution.

The orchestrator module requests an execution by sending a hypermodel definition to the 

Taverna server, written in the Taverna 2 T2Flow format.  Once Taverna instantiates the 

workflows, the Orchestrator sends the appropriate values to the input port of the hypermodel 

and starts its execution.

For hypermodels defined partially or entirely with Muscle2, the Muscle2 execution is 

embedded within a Taverna workflow.  The Taverna T2Flow includes the Muscle2 Coupler 

service, which is configured to execute the Muscle2 hypermodel, and copy the results into the 

Taverna temporary directory for the muscle2 coupler component.  Input values are passed to 

the Muscle2 model in the same way they are passed to any other executable wrapped into a 

Taverna module. 

2.3.5. Message Broker

The message broker module provides content and topic-based message routing using the 

publish–subscribe pattern. For this function, we chose to use RabbitMQ8, a popular 

4 http://elm-lang.org/ 
5 https://www.w3.org/TR/eventsource/ 
6 http://www.django-rest-framework.org/ 
7 http://www.taverna.org.uk; the Taverna project has now migrated to Apache: https://taverna.incubator.apache.org 
8 https://www.rabbitmq.com/ 

http://elm-lang.org/
https://www.w3.org/TR/eventsource/
http://www.django-rest-framework.org/
http://www.taverna.org.uk
https://taverna.incubator.apache.org
https://www.rabbitmq.com/
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implementation of the standard Advanced Message Queueing Protocol (AMQP). AMQP 

features an efficient and flexible publish/subscribe interface that is independent of the data 

model. In VPH-HF RabbitMQ is also exposed through Celery9, an asynchronous task queue/job 

queue based on distributed message passing. Celery is written in Python and integrates easily 

into the Django web framework.

2.3.6. Interaction between VPH-HE, VPH-HF, and repositories

The VPH-HE editor and the VPH-HF framework communicate both directly and indirectly by 

exchanging information through various data repositories: the model repository, which contains 

the full description of all hypomodels and hypermodels; the clinical data repository, where all 

patient-specific inputs for the models are stored; and the simulations repository, which contains 

all input and output sets involved in each execution of each model. The integration of the 

repositories in the VPH-HF allows for a “separation of concerns” and efficiency in inter-

component communication. The sequence of interactions during the hypermodel construction 

and execution can be represented by the follow steps:

- The modeller users (computational biologists, mathematical modellers, clinical and 

biomedical researchers) upload their computational models in the Model Repository, 

accompanied with the executable artefacts and the proper annotation to make them 

discoverable. When a new model is registered with the Model Repository, a new message is 

published in the Message Broker that notifies the VPH-HF platform. The new model is then 

retrieved, and a series of tests are performed to make sure that it’s compatible with the 

execution requirements of the platform. If the tests are successful, the new model is 

registered in the platform and can then be used in the construction of new hypermodels. 

- The VPH-HE Editor retrieves the descriptions of the available hypomodels from the Model 

Repository and presents them to the user. Based on the descriptions of the models and their 

annotations, the user builds a new hypermodel by “linking” them (i.e. connecting outputs of 

a model and the inputs of other models) in a graphical way. New hypermodels are saved to 

the Models repository alongside the various hypomodels.

- At any time, the user can execute the hypermodel. After some validation checks on the 

constructed hypermodel, the VPH-HE Editor encodes the graphical representation of the 

hypermodel in the Multiscale Modelling Language (MML) meta-modelling language [4, 37] 

using the XML-based representation (xMML). The xMML model description is then saved 

in the Model Repository as the “executable code” of the new hypermodel along with the 

pertinent metadata like the creator’s identification, date & time of creation, etc.

- For the hypermodel to run, some input data should be also provided. The Editor contacts the 

Clinical Data Repository to retrieve any patient specific data that can be used as inputs to 

the hypermodel, subject to the access rights that the specific user has. 

- When the patient specific inputs have been selected and any other hypermodel input 

parameters have been completed by the user, the Editor first prepares a new experiment in 

the Simulations Repository, and then launches the execution by contacting the Engine and 

sending it information including the hypermodel identification and the input data to be used. 

It is important to note that any patient specific data (e.g. medical images) to be used for the 

execution are sent by reference, i.e. the Editor sends only their URIs that refer to the data 

objects stored in the Clinical Data Repository. The Clinical Data Repository makes sure that 

9 http://www.celeryproject.org/ 

http://www.celeryproject.org/
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all uploaded data are immutable, i.e. they are not altered during any processing. In this way, 

references to the data can be freely exchanged as they will always refer to the same content.

- When the VPH-HF receives the launch command, it first contacts the Model Repository to 

retrieve the execution information of the hypermodel referenced in the message. The xMML 

description is subsequently retrieved and, based on this, the Engine recovers the hypermodel 

composition and connections required for the execution. The execution environment is then 

prepared and the hypermodel is run.

- When the hypermodel completes its execution, the Engine updates the experiment record in 

the Simulations Repository with the result status and the outputs produced during the 

execution. When the Simulations Repository has been updated, the Engine publishes a new 

message in the Message Broker to notify the VPH-HE that the hypermodel has concluded 

its execution. The message contains the experiment identification and all needed correlation 

information that links to this hypermodel.

- The VPH-HE Editor receives the “execution finished” message and based on the experiment 

identification number, it retrieves the execution status and the final results from the 

Simulations Repository. It then allows the user to download the complete set of outputs and 

execution log.

2.3.7. Authentication service

The default authentication protocol for exchanging authentication and authorization data 

between security domains in the VPH-HF is the SAMLv210 protocol.  SAML is an XML-based 

protocol that uses security tokens to exchange identity assertions of an end-user between an 

Identity Provider and a Service Provider. SAMLv2 can also support web Single Sign On (SSO) 

authentication and authorization scenarios.

Caching Service The VPH-HF Caching Service optimises performance by avoiding redundant 

hypomodel executions on an already processed input dataset. A memorization function maps 

the input dataset to the corresponding output dataset for each model, using a database. For each 

model execution request, the set of input files are hashed to create a ‘fingerprint’ that is used as 

a lookup in the database for the corresponding output datasets produced in previous model 

executions. When a model has been executed previously, a database entry is found and the 

location of a local copy of the output dataset is provided as result, skipping the model execution. 

Like in the processor’s cache, resources are limited, with storage being a constraint. A data 

storage policy should be considered especially in scenarios where datasets are relatively large. 

The cache can be enabled or disabled on a per-model basis depending on need. For instance, 

the user can disable caching for models that work with sensitive personal data for which 

appropriate security measures to protect them are not in place. Moreover, the following 

situations are undesirable for caching:

- Low hit rates (input sets are rarely repeated), and no plan to build a surrogate for that model;

- Non-unique relation between inputs and outputs (e.g. a model using an internal random 

number generator);

- Restricted access to input or output files.

Figure 4 highlights two additional components required for caching; a database for storage and 

10 http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html 

http://docs.oasis-open.org/security/saml/Post2.0/sstc-saml-tech-overview-2.0.html
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Cache Agent to manage the flow control and caching logic.

The outer boxes represent independent virtual machines, the ‘Workflow Orchestration’ is a 

deployed instance of the VPH-HF while the Execution Machine is a remote node where the 

Execution Services are running the models.  By inserting the Cache Agent between the Model 

Wrapper and the Taverna temporary directory an execution can be replaced with a database 

load when the cache detects a hit. 

Figure 4. UML diagram of the interaction between the two components forming the caching 

service module.

This is possible because each input/output is represented as a file. 

The control flow to handle a cache miss is:

1. Taverna Server first populates a temporary working directory with input files;

2. Then the Cache Agent hashes all input files to create a fingerprint;

3. The hash or fingerprint is checked against the Cache Database and returns a MISS;

4. The Model Wrapper is executed:

4.1. Input files are staged to the remote machine;

1.1. A model is executed;

1.2. The generated output files are staged back to the Taverna temporary directory;

2. The Cache Agent stores the output files in the Cache Database using the input hash as 

a reference;

3. The workflow completes, and control is handed back to VPH-HF.

The control flow to handle a cache hit is:

1. Taverna Server first populates a temporary working directory with input files;

2. Then the Cache Agent hashes all input files to create a fingerprint;

3. The hash or fingerprint is checked against the Cache Database and returns a HIT;

4. The Cache Agent populates the working directory with matching output files;

The workflow completes, and control is handed back to VPH-HF.

2.3.8. Surrogate Modelling Service

The surrogate modelling service (SUMOS) is a software component providing services to be 
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consumed by applications like VPH-HF and the VPH-HE Editor (Figure 5). It is implemented 

mainly as Python modules exposing an API to retrieve a list of available surrogate models 

ranked by estimated accuracy and execution time. The default policy for the hypermodelling 

execution framework is to use the surrogate model available with the highest accuracy and 

shorter execution time below a required value. Surrogate models validated by the modeller for 

their use are published in the Model Repository.

Figure 5. Architecture of the Surrogate Modelling Service. The diagram shows how the 

services are deployed on physical nodes and how they interact via web services.

The SUMOS module also offers the possibility to re-train (or reparametrize) a surrogate model 

when new simulation data generated by the full-order model is available. It is therefore coupled 

with the Caching Service to build an updated dataset of all executions of the full-order model 

that can be used to retrain the surrogate models to improve their accuracy. When the re-train of 

a surrogate produces a model with a better accuracy, the modeller can validate the outcome and 

replace the older instance in the CHIC Model Repository with the new one. Surrogate models 

follow the same versioning and validation procedure implemented for the models in Model 

Repository as de facto they can also be considered stand-alone models.

The SUMOS and Caching services have been designed to reduce simulation time via two 

approaches:

- Avoid redundant executions when models have been already run on the provided inputs and 

thereby outputs are already available;

- Replace a model execution with one of its surrogate models of an acceptable accuracy and 

shorter computational time.

2.3.9. Source code availability

The source code of the VPH-HF framework and of the VPH-HE editor are released as open-
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source software under the Apache License and hosted on Github11, from where it can be freely 

downloaded. 

All the components (except for the Repositories that are proprietary software) and libraries 

which VPH-HF depends on or is connected to are open-source software. To name a few, the 

Execution services (Taverna v2 and Muscle2) are released in previous projects (myGrid, 

Mapper) under the LGPL license (v2.1 and v3 respectively); RabbitMQ under the Mozilla 

Public License v1.1 and Django under the BSD License. A complete list of interdependencies 

and relative licenses is available in the GitHub VPH-HF repository.

 

3. METHODS

3.1. An exemplary hypermodel: nephroblastoma growth model

The CHIC architecture supports the creation of robust, reproducible, collaborative models 

(hypermodels) of disease by composition of reusable, interoperable component models 

(hypomodels). The cancer domain was used as a paradigmatic example of the hypermodelling 

of a complex disease.  Figure 6 represents the entire nephroblastoma growth hypermodel 

developed by the CHIC consortium. It consists of one technical hypomodel that performs 

common pre-processing tasks, and five biologically driven hypomodels that represent distinct 

aspects of tumour evolution and interaction with the tumour environment.

Figure 6. Multiscale model of the growth of a nephroblastoma.

The Onco-Simulator [38] is a spatially discrete hypomodel that simulates cancer cell 

proliferation and treatment effect in function of tumour, treatment, and patient-specific 

parameters. Environmental parameters influencing cancer growth are represented by four 

11 https://github.com/INSIGNEO/VPH-HF 

https://github.com/INSIGNEO/VPH-HF
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further hypomodels.

Based on the current cell population in each time step, the Vasculature Model solves a reaction 

diffusion partial differential equation for glucose concentration in the growth domain, based 

loosely on a spatially resolved version of [39]. This information is used by the Metabolic 

Model12 to compute the local proliferation of tumour cells within each discrete element of the 

domain based on encoded knowledge about glucose-dependent biological processes. For 

example, reduced availability of glucose will result in an increase of the fraction of dormant 

cells. This spatial map of proliferation rates in turn informs the growth dynamics of the Onco-

Simulator.

Similarly, cellular sensitivity or resistance to treatment is a determinant of cancer evolution and 

treatment outcome. The cell kill probability for a tumour cell is explicitly computed by the 

Molecular Model [40] based on the molecular profile of the patient.

Mechanical forces caused by tumour expansion constitute a further environmental factor that 

affects tumour development. The Biomechanical Simulator [41] uses the finite element method 

(FEM) to compute the mechanical effect of the growing tumour in a 3D model of healthy and 

cancerous tissues. The resulting pressure field informs tumour growth direction. 

The complete nephroblastoma hypermodel is represented figure 7 in the VPH-HE. 

It is represented in VPH-HF as a hybrid hypermodel: it combines strongly-coupled hypomodels 

with weakly-coupled ones to form a hypermodel. The strongly-coupled part, outlined in a red 

box in Figure 7, comprises the Onco-Simulator, the Vasculature model, the Metabolic model, 

and the Biomechanical Simulator.

The full Nephroblastoma model is available in the model repository as model #108.  We used 

it to profile the VPH-HF.  To evaluate the VPH-HF “overhead” on smaller models, we also 

profile a few other models available in the repository, which had much smaller execution time 

(models #93, #94, and #109).

12 The metabolic hypomodel is currently under publication: it utilizes the generic genome-scale human metabolic network 

reconstructions and describes the metabolic activity of the chemical reactions at flux level using the Flux Balance Analysis 

constraint-based method. The model assumes that cancer cells are under a selective pressure to increase their proliferation 

rate. At each time interval, the glucose concentration is estimated at every position in the computational grid through the 

vasculature hypomodel. The metabolic model provides information regarding the proliferation rate given the available 

glucose that is then used from the Onco-Simulator to update its state.



17

Figure 7.  Nephroblastoma growth model representation in the Hypermodelling Editor.

3.1.1. An example of surrogate modelling integration: Oxford growth model

Surrogate modelling integration is demonstrated using a mathematical model of tumour 

spheroid growth. A previously described computational framework (Chaste) is adopted to 

model the growth of a two-dimensional tumour spheroid in an oxygen rich environment [42, 

43]. Individual cells are explicitly modelled, with progression through the cell cycle governed 

by the local oxygen tension. Cell-cell mechanical interactions are modelled using linear springs, 

with neighbours identified using a Delaunay triangulation on the cell centres [44]. Oxygen 

tension is prescribed on the growing outer boundary of the spheroid and decreases toward the 

centre due to consumption by cells. The reaction-diffusion equations governing oxygen 

transport are solved using the finite element method, with temporal re-meshing of the growing 

domain [43]. A flow-chart for the single hypermodel is shown in [43]. The spheroid initially 

undergoes rapid growth, at a rate dependent on the rate of oxygen consumption by cells, the 

oxygen dependent duration of the cell cycle, and the prescribed oxygen tension on the 

boundary. Growth is limited by oxygen availability, gradually slowing as available oxygen is 

restricted to a thin annulus on the periphery [45]. While in the test formulation the run-time 

never exceeds 140 minutes to simulate a week of tumour growth, the clinical application of this 

model would require its generalisation to 3D, and a time scale for simulated growth of months, 

rather than weeks, making some order-reduction strategy indispensable.

The formulation of a tailored surrogate model for the Oxford growth mathematical model 

requires careful analysis and validation, with few examples in the literature for similar 

applications to date. Since the focus of the present study is mostly on infrastructure, a generic 

surrogate model is adopted, while research into tailored surrogate models for tumour growth is 

on-going. A mathematical model (or reference model) can be approximated with a surrogate 

using a number of different techniques, reviewed in [46-48].
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Here we focus on response surface methods, which are overviewed in [49] and in [50]. The 

adopted method identifies a linear combination of polynomials that minimise the error between 

surrogate and reference models using the least squares method. A set of samples is generated 

on a Cartesian rectangular grid in the parameter space of the reference model. Samples and the 

outputs produced by the reference model are collected in a training set. The Oxford growth 

model predicts the diameter of the tumour spheroid over time given the initial number of cells, 

their cell cycle G1 phase duration and the oxygen consumption rate. For the presented example, 

the cell cycle G1 duration is varied, while the oxygen consumption rate (a rate constant in a 

first order sink in the oxygen transport reaction diffusion partial differential equation) is fixed 

at 780 per hour.

Samples are taken in the 2-dimensional space obtained from the Cartesian product of the cell 

cycle G1 duration parameter and simulated growth time vectors, using 20 evenly distributed 

values in the interval (12, 40) hours for the former and (0, 178) hours in the latter, divided into 

891 steps. Adopted parameter values and ranges are chosen to give qualitatively and 

quantitatively similar growth behaviours to those observed experimentally in [51]. The least 

squares method is used to identify the regression coefficients that best fit the training set, as ��
described in [49, 51]. We used a fourth order polynomial, including mixed terms from the 

second order to the fourth order:

= +� = �4(�1,�2) �0 + �1�1 +  �2�2 +  �3�2
1 +  �4�2

2 +  �5�1�2
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2
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2

where is the duration of the cell cycle G1, and  is the growth time.�1  �2

3.2. Execution environment 

The two models were built with the VPH-HE and executed through the VPH-HF framework, 

using Execution Services running on the CHIC private cloud. The private cloud is based on the 

OpenStack platform13 and it’s built using (in total) 64 physical cores (128 threads w/ hyper-

threading technology) of high-end processing power, 1 TB RAM, 17.7 TB storage space over 

RAID60 configuration (fault tolerance + speed efficiency), and 1Gbit subnet with a pool of 128 

floating IPs (individual bridged access to public network). With this configuration, the CHIC 

private cloud can easily support more than 100 virtual machines (VMs) with the typical 

configuration of a middle-end server (2-4 vCPUs, 8 GB RAM, 150 GB disk space). The largest 

of these virtual machines is dedicated to model execution and it consists of 16 vCPU, 128 GB 

RAM, and almost 1TB disk volume.

The profiling of the surrogate modelling service on the tumour spheroid growth were obtained 

on a Linux Redhat 7.2 workstation with two Intel(R) Xeon(R) CPU E5-2695 v2 @ 2.40GHz 

and 256GB of RAM.

13 https://www.openstack.org/ 

https://www.openstack.org/
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3.3. Profiling

The average time was obtained tracking the progress of multiple executions by noting the time 

at specific points. Intervals are calculated from these ‘time stamps’ to show a breakdown of the 

total execution in proportion to three sub tasks.  In particular (Figure 8):

- Client Communication, is the average time needed submitting a new execution request to 

the VPH-HF API, such as the uploading of input files and waiting for the new job to show 

a status of INITIALIZED.

- Model Execution is measured by running a RabbitMQ listener in a separate thread during 

each test run. The time of each message is recorded, giving us the interval between the first 

hypomodel start time and last hypomodel completion time. 

- VPH-HF Processing, is the time taken for staging inputs and processing outputs. Its 

calculated as ‘VPH-HF execution time’ - ‘Hypomodel(s) execution time’.

Figure 8. Timeline of a workflow execution in VPH-HF.

4. RESULTS

4.1. Construction of the hypermodels

The exemplary models were installed and configured in the CHIC model repository without 

any difficulty. The Oxford Growth model is a simple hypomodel, that executes within Taverna 

in a single step. After the installation of Chaste, it required only 20 minutes to expose the 

hypomodel in the VPH-HF framework, and run the model checking script, which gave no 

errors.  

The development of the Nephroblastoma growth model required considerably more work due 

to its complexity. The strongly-coupled part, outlined in a red box in Figure 7, was first built 

graphically in the VPH-HE and then registered in VPH-HF. The strongly-coupled hypomodels 

had to be integrated using Muscle2, and the resulting hypermodel was wrapped by the Registry 

into a Muscle2 Coupler Taverna service. The entire hypermodel was finally built in the VPH-

HE by linking the strongly coupled hypermodel with the technical and the molecular 

hypomodels.  Because of the stochastic nature of the model, the execution time depends on the 

input values, and ranges between 10 and 20 minutes (wall-clock time) to execute on the CHIC 

private Cloud.

4.2. Execution profiling

Figure 9 shows the non-cached execution time of the nephroblastoma hypermodel (model #108) 

and its constituent hypomodels we profiled, average over 30 runs with different inputs values. 
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Figure 9. Average non-cached execution time of the nephroblastoma growth hypermodel and 

its hypomodels over 30 runs with different inputs.  The total execution time is divided in 

separated in communication, VPH-HF latency, and hypermodel execution.

When run with an input set never run before (i.e., no cache), the models we profiled executed 

in between 20 and 1150 seconds. When run within a 100 points Monte Carlo the 

nephroblastoma hypermodel would take around 23 hours to execute.  The VPH-HF introduces 

an overhead of only 20-25 seconds per execution, which remains quite constant regardless of 

the complexity or the computational cost of the model.  

4.3. Caching profiling

The idea of adopting the caching service is to avoid running previous identical executions at 

the expense of an increase of storage space. If the time required by the caching service to pull 

the output data from the database to the execution sandbox is negligible with respect to the 

average execution time, the positive impact of caching is considerable. 

When all the models being profiled were run again with the same input sets, the VPH-HF 

automatically retrieved the output sets from the cache. In this case, the average execution time 

was 20-30 seconds, and most of this time was used by the VPH-HF, with the client-server 

communication overhead limited to around two seconds, and the model execution (which now 

is limited to the cache retrieval time) well below one second (Figure 10). This aspect is 

highlighted in Table 2: without caching, most of the time is spent in the model execution 

(T_e/T_tot ), with caching the most time-consuming part is shifted to the post-processing ≃ 1
phase (T_p/T_tot ).≃ 1
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Figure 10. Average cached execution time of the nephroblastoma growth hypermodel and its 

hypomodels over 6 runs with different inputs, separated in communication, VPH-HF latency, 

and hypermodel execution.

Of course, for hypermodels with a shorter execution time, multiple inputs, and larger file sizes, 

the adoption of a cache might not be convenient anymore.  Figure 11 plots the execution time 

averaged over 5 consecutive runs of a generic hypermodel for both cache hit and cache miss 

cases, as the number of input and the file size is increased. Every input of file size N is made 

by N elements where one third are random integer values, one third are random floating-point 

values and one third are 32bits chunks of random data. The plots show that the execution time 

increases almost linearly with the file size and the slope increases with the number of inputs. 

Considering the worst case (InPorts = 45, N = 1000000) the execution time for a Cache Hit is 

around six seconds and the execution time overhead for a cache miss, 12 seconds.
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Figure 11.  Profiling of the caching service: execution time (in seconds) overhead in case of 

cache miss (left), and total execution time in case of cache hit (right).

Table 2.  Profiling of the caching service: speedup (T_tot_no_caching / T_tot_caching) and 

relative time consumption of each of the three tasks with/without caching: model execution 

(T_e/T_tot), VPH-HF processing (T_p/T_tot) and Client communication (T_c/T_tot).

No-caching Caching

Model_ID T_e/T_tot T_p/T_tot T_c/T_tot T_e/T_tot T_p/T_tot T_c/T_tot

Speed-up

93 0.897 0.096 0.007 0.017 0.921 0.062 9.47

94 0.549 0.417 0.034 0.016 0.930 0.054 1.90

108 0.966 0.031 0.004 0.012 0.954 0.034 25.55

109 0.944 0.052 0.004 0.033 0.924 0.043 14.16

4.4. Impact of surrogate modelling 

The Oxford agent-based tumour spheroid growth model, shown in Figure 12(a), is relatively 

computationally expensive. As shown in Figure 12(b), run-time scale linearly with number of 

cells, which can in turn increase exponentially as the growth simulation progress. It provides a 

good exemplary case for the evaluation of a surrogate modelling framework, as the tumour 

growth dynamics for this situation are well known; in particular, the tumour volume growth 

can be described as a general logistic function of time [45] (Figure 12(c)).  

A 4th order polynomial root-square-mean approximant was found to be sufficiently accurate 

(Adjusted-R2 = 0.9934; root mean square error = 20 μm). Reference and surrogate model 

predictions are shown for 4th order polynomial fits in Figures 12(c). Samples (training data 

from the reference model) are plotted with black dots, while the response surfaces are plotted 

as a coloured surface. 
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Approximating of the Oxford growth model using the 4th order polynomial surrogate model 

reduces the computational complexity from a linear/exponential to a constant, as shown in 

Figure 12(d). The execution time for the surrogate models is 0.7s and is mostly due to its 

implementation as a configurable model reading its configuration from files. The prediction 

time is 0.015s, with the rest of the time spent accessing the configuration files and running the 

Python interpreter. 

Figure 12.  (a) Simulated tumour spheroid growth in an environment with fixed oxygen tension 

of 25 mmHg (oxygen consumption rate = 666.0 per hour, cell cycle time = 16 hours). (b) The 

execution or ‘wall’ time increases linearly with cell number in the studied cases. Discontinuities 

are due to synchronous division of sub-populations of cells, which is expected in models of this 

type. (c) Response surface and reference model predictions for the fourth order polynomial with 

interacting terms. The black dots are the reference model sample values, while the RSM is the 

coloured surface. Predicted tumour diameters over simulation time as cell cycle time is 

increased in the range 12-40 hours are shown. (d) The execution time for the reference model 

and surrogate models compared to the simulation time. The execution time for the surrogate 

model is approximately constant at 0.7s.

5. DISCUSSION

The aim of this paper was to present a new open source software, the VPH Hypermodelling 

Framework (VPH-HF), which allows users to compose complex hypermodels (orchestrations 

of models) from a heterogeneous collection of hypomodels developed with different 
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programming languages and/or modelling software, and execute them efficiently in a 

production environment, where each hypermodel is expected to be executed many times with 

different input sets, each typically presenting a single patient, or a single control of a single 

patient.

The VPH-HF addressed most specifications emerged in the support of computational oncology 

applications.  The integration of Taverna provided all essential workflow execution services, 

and the possibility to reuse all components and workflows made available by the large Taverna 

community. The integration of Muscle2 provided the support for the execution of very complex, 

strongly coupled, hypermodels. The overhead that the VPH-HF imposes is small and tends to 

be flat regardless of the complexity and the computational cost of the hypermodel being 

executed.  We recommend the use of the VPH-HF to orchestrate any hypermodel with an 

execution time of 200 seconds or higher, which would confine the VPH-HF overhead to less 

than 10%.

An important factor in the adoption of a new technology is the steepness of the learning curve.  

While complex models are designed, it is easier in many cases formulate the in term of simple 

orchestrations of multiple hypomodels; this approach offers a more rapid prototyping, where 

single hypomodels can be replaced with others with moderate effort.  Once the hypermodel 

architecture is defined, the introduction of more complex execution flows, and the possibly to 

strongly couple two or more hypomodels, can make the hypermodel more formally rigorous, 

and in some cases even more efficient.  By incorporating the best of both worlds, VPH-HF 

enable the rapid-prototyping typical of Taverna with the capability of building complex, 

strongly coupled workflows typical of Muscle2.

The introduction of an automatic caching system over the execution of every hypomodel can 

provide considerable speed-up when the hypermodel is run repeatedly over large numbers of 

patients, and the input sets are properly binned.  The caching system also makes it easy to form 

large input set / output set databases required to develop surrogate or reduced-order models, 

which can gradually replace the most computationally expensive hypomodels.  These 

technologies can render subject-specific modelling technologies cost-effective and time-

effective, two frequently stringent requirements for the clinical adoption of these technologies.

Also, the possibility to dynamically replace hypomodels with surrogate versions built from 

cached results might be the only viable option when we need to build strongly-coupled 

hypermodels affected by combinatory explosion. A typical example is an hypermodel that 

couples a stiff Ordinary Differential Equation (ODE) model characterised by a very large 

number of computationally cheap iterations, with a Partial Differential Equation (PDE) model 

characterised by a smaller number of very expensive iterations. When two such hypomodels 

are coupled, the combined computational cost can become intractable. With the VPH-HF 

technology it is straight-forward to perform a parameter sweep of the PDE model, create a large 

cache of results, and use it to build a surrogate model, that when coupled to the ODE keeps the 

computational cost of the ODE/PDE hypermodel comparable to that of the ODE hypomodel 

alone.  The test on the Oxford tumour model confirmed that where a satisfactory surrogate 

model can be formulated, the acceleration of simulations can be substantial.

Another important feature of the VPH-HF is its integration with model and clinical trial 

repositories, making an ideal technology to deploy production environments for subject-

specific modelling.  As this field is emerging from its pioneering days, the need for production 

environments, such as those developed by the CHIC project, will become more and more 

important. 
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This study presents several limitations. The most important is that some parts of the CHIC 

framework will not be released under an Open Source license. With reference to Figure 2, the 

CRAF clinical interface is probably too specific for application targeted by CHIC to be of any 

general interest, and non-essential for the redeployment of VPH-HF; however, the 

hypermodels, simulations, and clinical data repositories, as well as the identity provider 

components are necessary for the VPH-HF to run. Regarding the identity provider, it should be 

quite straightforward to replace the call to the CHIC proprietary service to a public identity 

provider service such as that offered by the Google Identity Platform, or the various available 

SAML identity providers based on Shibboleth, for example.  For the repositories, it should be 

equally straightforward to modify the VPH-HF to read and write the data currently held in the 

various repositories from a local file system.  These two modifications would allow the VPH-

HF to run ‘out of the box’, and we hope the Open Source community behind this project will 

introduce them soon. 

The second limitation is that we conducted the profiling only on one hardware configuration.  

However, while the specific figures might change, the VPH-HF overhead is so limited that such 

changes would unlikely change our conclusions.

The third limitation is the qualitative way we reported the benefits of the VPH-HF in the 

construction of hypermodels. The development of a large complex hypermodel remains in a 

large part a complex activity, which involves considerable specialism; thus, it would be 

impossible to offer any reproducible quantification of the effort required to build hypermodels. 

However, the use of a visual editor such as the VPH-HE, and a models’ repository with 

automated model-checking scripts can go a long way to reduce the time and effort required.

A last limitation, this of the VPH-HF itself, is that currently the VPH-HF does not directly 

support the distributed computing features offered by Taverna and Muscle2. Following the 

security and accessibility specifications imposed by the CHIC project, the VPH-HF was 

developed and deployed exclusively on a private cloud. The configuration adopted in the 

project consisted of virtual machines (VM) with the role of application server (running VPH-

HF and Taverna Server), high-end VM (running MUSCLE2 and the models) and VM for 

repositories and VPH-Editor.  A different configuration for a public cloud can be implemented 

in the future extending the VPH-Editor to provide accounting service and a publicly accessible 

interface. While it is already possible to set statically in the wrapper the IP address of the 

machine to which VPH-HF connects to, a skilled developer could configure a specific 

deployment of the VPH-HF so that the underlying workflow execution services exploits such 

features, for example interfacing with a scheduler like PBS deployed on a large-scale 

supercomputer. Looking from the system administrator perspective, VPH-HF is easy to install 

and configure as it requires only SSH tunnels to transfer data and run remote simulations 

without cumbersome system configurations.

In conclusion, the VPH-HF offers a powerful technology for the development and execution of 

complex hypermodels used in subject-specific biomedical modelling. 
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