This is a repository copy of Search for excited B_c^+ states.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/128126/

Version: Published Version

Article:

https://doi.org/10.1007/JHEP01(2018)138

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Search for excited B_c^+ states

The LHCb collaboration

E-mail: liupan.an@cern.ch

ABSTRACT: A search is performed in the invariant mass spectrum of the $B_c^+\pi^+\pi^-$ system for the excited B_c^+ states $B_c(2^1S_0)^+$ and $B_c(2^3S_1)^+$ using a data sample of pp collisions collected by the LHCb experiment at the centre-of-mass energy of $\sqrt{s} = 8$ TeV, corresponding to an integrated luminosity of 2 fb$^{-1}$. No evidence is seen for either state. Upper limits on the ratios of the production cross-sections of the $B_c(2^1S_0)^+$ and $B_c(2^3S_1)^+$ states times the branching fractions of $B_c(2^1S_0)^+ \rightarrow B_c^+\pi^+\pi^-$ and $B_c(2^3S_1)^+ \rightarrow B_c^*+\pi^+\pi^-$ over the production cross-section of the B_c^+ state are given as a function of their masses. They are found to be between 0.02 and 0.14 at 95% confidence level for $B_c(2^1S_0)^+$ and $B_c(2^3S_1)^+$ in the mass ranges $[6830, 6890]$ MeV/c2 and $[6795, 6890]$ MeV/c2, respectively.

KEYWORDS: B physics, Hadron-Hadron scattering (experiments), Spectroscopy

ArXiv ePrint: 1712.04094
Contents

1 Introduction 1

2 Detector and simulation 2

3 Event selection 3

4 Upper limits 5

5 Summary 10

The LHCb collaboration 13

1 Introduction

The B_c meson family is unique in the Standard Model, as its states contain two different heavy-flavour valence quarks. It has a rich spectroscopy, predicted by various models [1–14] and lattice QCD [15]. The ground state of the B_c meson family, the B_c^+ meson, was first observed by the CDF experiment [16, 17] at the Tevatron collider in 1998. Recently, the ATLAS collaboration reported observation of an excited B_c state with a mass of $6842 \pm 4 \text{(stat)} \pm 5 \text{(syst)} \text{MeV}/c^2$ [18]. Since the production cross-section of the $B_c(2^3S_1)^+$ state is predicted to be more than twice that of the $B_c(2^1S_0)^+$ state [8, 13, 19, 20], the most probable interpretation of the single peak is either a signal for $B_c(2^3S_1)^+ \rightarrow B_c^+ \pi^+ \pi^-$, followed by $B_c^+ \rightarrow B_c^+ \gamma$ with a missing low-energy photon, or an unresolved pair of peaks from the decays $B_c(2^1S_0)^+ \rightarrow B_c^+ \pi^+ \pi^-$ and $B_c(2^3S_1)^+ \rightarrow B_c^+ \pi^+ \pi^-$. The $B_c(2^1S_0)^+$ and $B_c(2^3S_1)^+$ states are denoted as $B_c(2S)^+$ and $B_c^*(2S)^+$ hereafter, and $B_c^*(s)(2S)^+$ denotes either state.

In the present paper, the $B_c(2S)^+$ and $B_c^*(2S)^+$ mesons are searched for using pp collision data collected by the LHCb experiment at $\sqrt{s} = 8 \text{TeV}$, corresponding to an integrated luminosity of 2fb^{-1}. The $B_c(2S)^+$ and $B_c^*(2S)^+$ mesons are reconstructed through the decays $B_c(2S)^+ \rightarrow B_c^+ \pi^+ \pi^-$ and $B_c^*(2S)^+ \rightarrow B_c^*+ \pi^+ \pi^-$ with $B_c^+ \rightarrow B_c^+ \gamma$, $B_c^+ \rightarrow J/\psi \pi^+$ and $J/\psi \rightarrow \mu^+ \mu^-$. The branching fraction of the $B_c^*(s)(2S)^+ \rightarrow B_c^*(s)^+ \pi^+ \pi^-$ decay, $B(B_c^*(s)(2S)^+ \rightarrow B_c^*(s)^+ \pi^+ \pi^-)$, is predicted to be between 39% and 59% [8, 13]. The low-energy photon in the $B_c^*(2S)^+$ decay chain is not reconstructed.

1 Sums over charge-conjugated modes are implied throughout this paper.

2 The spectroscopic notation n^2S_{LJ} is used, where n is the radial quantum number, s the total spin of the two valence quarks, L their relative angular momentum (S implies $L = 0$), and J the total angular momentum of the system, i.e. spin of the excited state. B_c^* denotes the $B_c(1^3S_1)^+$ state.
still appears in the invariant mass $M(B_c^+\pi^+\pi^-)$ spectrum as a narrow mass peak \cite{20, 21}, which is centered at $M(B_c(2S)^+) - \Delta M$, where

$$\Delta M \equiv \left[M(B_c^+) - M(B_c^+\gamma) \right] - \left[M(B_c^*(2S)^+) - M(B_c(2S)^+) \right], \quad (1.1)$$

and $M(B_c^+)$ is the known mass of B_c^+. According to theoretical predictions \cite{1-11}, the mass of the $B_c(2S)^+$ state, $M(B_c(2S)^+)$, is expected to be in the range $[6830, 6890]$ MeV/c2, and ΔM in the range $[0, 35]$ MeV/c2, such that the peak position of the $B_c^*(2S)^+$ state in $M(B_c^+\pi^+\pi^-)$ is expected to be in the range $[6795, 6890]$ MeV/c2.

2 Detector and simulation

The LHCb detector \cite{22, 23} is a single-arm forward spectrometer covering the pseudorapidity range $2 < \eta < 5$, designed for the study of particles containing b or c quarks. The detector includes a high-precision tracking system consisting of a silicon-strip vertex detector surrounding the interaction region, a large-area silicon-strip detector (TT) located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors and straw drift tubes placed downstream of the magnet. The tracking system provides a measurement of momentum, p, of charged particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200 GeV/c. The minimum distance of a track to a primary vertex (PV), the impact parameter (IP), is measured with a resolution of $(15 + 29/\sqrt{p_T}) \mu$m, where p_T is the component of the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are distinguished using information from two ring-imaging Cherenkov detectors. Photons, electrons and hadrons are identified by a calorimeter system consisting of scintillating-pad and preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons are identified by a system composed of alternating layers of iron and multiwire proportional chambers. The online event selection is performed by a trigger, which consists of a hardware stage, based on information from the calorimeter and muon systems, followed by a software stage, which applies a full event reconstruction. At the hardware stage, events are required to have at least one muon with high p_T or a hadron with high transverse energy. At the software stage, two muon tracks or three charged tracks are required to have high p_T and to form a secondary vertex with a significant displacement from the interaction point.

In the simulation, pp collisions are generated using Pythia 6 \cite{24} with a specific LHCb configuration \cite{25}. The generator BCVEGPy \cite{19} is used to simulate the production of B_c mesons. Decays of hadronic particles are described by EVTGEN \cite{26}, in which final-state radiation is generated using PHOTOS \cite{27}. The interaction of the generated particles with the detector, and its response, are implemented using the Geant4 toolkit \cite{28} as described in ref. \cite{29}. In the default simulation, the masses of the excited B_c states are set as $M(B_c(2S)^+) = 6858$ MeV/c2, $M(B_c^*(2S)^+) = 6890$ MeV/c2 and $M(B_c^*) = 6342$ MeV/c2, corresponding to $\Delta M = 35$ MeV/c2, and the $B_c^*(2S)^+$ state is assumed to be produced unpolarised. Simulated samples with different mass settings, which cover the expected mass range of the $B_c^{(*)}(2S)^+$ states, are generated to study variations in the reconstruction efficiency.
3 Event selection

To select $B_c^+ \rightarrow J/\psi \pi^+$ decays, J/ψ candidates are formed from pairs of opposite-charge tracks. The tracks are required to have p_T larger than 0.55 GeV/c and good track-fit quality, to be identified as muons, and to originate from a common vertex. Each J/ψ candidate with an invariant mass between 3.04 GeV/c2 and 3.14 GeV/c2 is combined with a charged pion to form a B_c^+ candidate. The pion is required to have $p_T > 1.0$ GeV/c and good track-fit quality. The J/ψ candidate and the charged pion are required to originate from a common vertex, and the B_c^+ candidates must have a decay time larger than 0.2 ps. Each of the particles is associated to the PV that has the smallest χ^2_{IP}, where χ^2_{IP} is defined as the difference in the vertex-fit χ^2 of a given PV reconstructed with and without the particle under consideration. The χ^2_{IP} of the B_c^+ (π^+) candidate is required to be < 25 (> 9) with respect to the associated PV of the B_c^+ candidate. To further suppress background, a requirement on a boosted decision tree (BDT) [30, 31] classifier is applied. The BDT classifier uses information from the χ^2_{IP} of the two muons, the J/ψ, and the B_c^+ mesons with respect to the associated PV; the p_T of both muons, the J/ψ and π^+ mesons; and the decay length, decay time, and the vertex-fit χ^2 of the B_c^+ meson. The BDT is trained with signal events taken from simulation and background events from the upper sideband containing B_c^+ candidates with masses in the range [6370, 6600] MeV/c2. The distributions of the BDT response for the simulation and the background subtracted data are in agreement. The criterion on the BDT output is chosen to maximise the figure of merit $S/\sqrt{S+B}$, where S and B are the expected numbers of signal and background in the range $M(J/\psi \pi^+) \in [6251, 6301]$ MeV/c2. The mass of the J/ψ candidates is constrained to the known value [32] to improve the B_c^+ mass resolution. The B_c^+ signal yield is obtained by performing an unbinned extended maximum likelihood fit to the $M(J/\psi \pi^+)$ mass distribution, as shown in figure 1. The signal component is modelled by a Gaussian function with asymmetric power-law tails as determined from simulation. The mean and resolution of the Gaussian function are free parameters in the fit. The combinatorial background is described with an exponential function. The contamination from the Cabibbo-suppressed channel $B_c^+ \rightarrow J/\psi K^+$, with the kaon misidentified as a pion, is described by a Gaussian function with asymmetric power-law tails. The parameters are also fixed from simulation, with only the Gaussian mean related to the $B_c^+ \rightarrow J/\psi \pi^+$ signal as a free parameter to account for the possible small mass difference in data and simulation. The signal yield of B_c^+ decays is determined to be 3325 ± 73.

To reconstruct the $B_c^{(*)}(2S)^+$ states, the B_c^+ candidates with $M(J/\psi \pi^+) \in [6200, 6340]$ MeV/c2 are combined with two opposite-charge tracks. The tracks are required to have $p_T > 0.25$ GeV/c, momenta larger than 2 GeV/c and good track-fit quality, and to be identified as pions. The $B_c^{(*)}(2S)^+$ candidates are required to have good $B_c^+ \pi^+ \pi^-$ vertex-fit quality. To improve the $B_c^{(*)}(2S)^+$ mass resolution, the mass of B_c^+ candidates is constrained to the known B_c^+ mass [34], and the reconstructed $B_c^{(*)}(2S)^+$ mesons are

3The J/ψ mass is taken to be 3096.916 MeV/c2 according to the 2014 edition of the Review of Particle Physics [32], rather than 3096.900 MeV/c2 in the 2016 edition [33]. The effect of this choice on the final result is negligible.
constrained to originate from the associated PV. To optimise the sensitivity of the analysis, a selection based on a multilayer perceptron (MLP) [35] classifier is applied. To distinguish the signal candidates from combinatorial background, the MLP classifier uses information on the angles between the B_c^+ and π^+, B_c^+ and π^-, and π^+ and π^- candidate momenta projected in the plane transverse to the beam axis; the angles between the $B_c^{(s)}(2S)^+$ momentum and the B_c^+, π^+, and π^- momenta in the $B_c^{(s)}(2S)^+$ centre-of-mass frame; the minimum cosine value of the angles between the momentum of the B_c^+ meson or of one of the pions from $B_c^{(s)}(2S)^+$ and the momentum of the muons or pion from the B_c^+ meson; and the vertex-fit χ^2 of the $B_c^{(s)}(2S)^+$ meson. In simulation, these variables have similar distributions for the $B_c(2S)^+ \rightarrow B_c^+\pi^+\pi^-$ and $B_c^{(s)}(2S)^+ \rightarrow B_c^+(\rightarrow B_c^+\gamma)\pi^+\pi^-$ decays. Therefore, the combination of the simulated candidates for the decays $B_c(2S)^+ \rightarrow B_c^+\pi^+\pi^-$ and $B_c^{(s)}(2S)^+ \rightarrow B_c^+(\rightarrow B_c^+\gamma)\pi^+\pi^-$ is used as signal for the MLP training, and the background sample consists of the candidates in the lower and upper sidebands of the $M(B_c^+\pi^+\pi^-)$ mass spectrum in data, with $M(B_c^+\pi^+\pi^-) \in [6555, 6785]$ MeV/c2 and $[6900, 7500]$ MeV/c2, respectively. The MLP response is transformed to make the signal candidates distributed evenly between zero and unity, and the background candidates cluster near zero. Only the candidates with transformed output values smaller than 0.02 are rejected, retaining 98% of the signal. The remaining candidates are divided into four categories with the MLP response falling in $(0.02, 0.2)$, $(0.2, 0.4)$, $(0.4, 0.6)$ and $(0.6, 1.0]$, respectively. The $M(B_c^+\pi^+\pi^-)$ distributions in the expected signal region for the four MLP categories are shown in figure 2. The mass resolutions $\sigma_w(B_c^{(s)}(2S)^+)$, can be determined from the simulated samples of the $B_c(2S)^+ \rightarrow B_c^+\pi^+\pi^-$ and $B_c^{(s)}(2S)^+ \rightarrow B_c^+(\rightarrow B_c^+\gamma)\pi^+\pi^-$ decays. The differences between the mass resolutions.
in data and simulation are evaluated with the control decay mode $B_{c}^{+} \rightarrow J/\psi \pi^{+}\pi^{-}\pi^{+}$, which has the same final state as the signal and a large yield, and are corrected by applying a scale factor. The obtained mass resolutions are $\sigma_{w}(B_{c}(2S)^{+}) = 2.05 \pm 0.05 \text{MeV}/c^{2}$ and $\sigma_{w}(B_{c}^{*}(2S)^{+}) = 3.17 \pm 0.03 \text{MeV}/c^{2}$. The $M(B_{c}^{+}\pi^{+}\pi^{-})$ distributions are consistent with the background-only hypothesis, as determined by the scan described below.

4 Upper limits

As no significant $B_{c}^{(*)}(2S)^{+}$ signal is found, upper limits are set, for each $B_{c}^{(*)}(2S)^{+}$ mass hypothesis, on the ratio \mathcal{R} of the $B_{c}^{(*)}(2S)^{+}$ production cross-section times the branching fraction of $B_{c}^{(*)}(2S)^{+} \rightarrow B_{c}^{(*)+}\pi^{+}\pi^{-}$ to the production cross-section of the B_{c}^{+} state. The ratio \mathcal{R} is determined for $B_{c}^{(*)}(2S)^{+}$ and B_{c}^{+} candidates in the kinematic ranges $p_{T} \in [0,20] \text{GeV}/c$ and rapidity $y \in [2.0,4.5]$, and is expressed as

$$\mathcal{R} = \frac{\sigma_{B_{c}^{*(2S)^{+}}} \cdot \mathcal{B}(B_{c}^{*(2S)^{+}} \rightarrow B_{c}^{(*)+}\pi^{+}\pi^{-})}{\sigma_{B_{c}^{+}} \cdot \mathcal{B}(B_{c}^{+} \rightarrow B_{c}^{(*)+}\pi^{+}\pi^{-})}$$

$$= \frac{N_{B_{c}^{(*)}(2S)^{+}} \cdot \mathcal{E}_{B_{c}^{(*)}(2S)^{+}}}{N_{B_{c}^{+}} \cdot \mathcal{E}_{B_{c}^{+}}},$$

(4.1)
where \(\sigma \) is the production cross-section, \(N \) the yield, and \(\varepsilon \) the efficiency of reconstructing and selecting the \(B_{1+}^c \) or \(B_{1+}^{c\ast}(2S)^+ \) candidates in the required \(p_T^+ \) and \(y \) regions. In the case \(\Delta M = 0 \), the reconstructed \(B_{c}(2S)^+ \) and \(B_{c}^{\ast}(2S)^+ \) states fully overlap, and the ratio \(R \) corresponds to the sum of the \(R \) values of the \(B_{c}(2S)^+ \) and \(B_{c}^{\ast}(2S)^+ \) states. The upper limits are calculated using the CL\(_s \) method [36], in which the upper limit for each mass hypothesis is obtained from the CL\(_s \) value calculated as a function of the ratio \(R \).

The test statistic is the ratio of the likelihoods of the signal-plus-background hypothesis and the background-only hypothesis, defined as

\[
Q(N_{\text{obs}}; N_S, N_B) = \frac{L(N_{\text{obs}}; N_S + N_B)}{L(N_{\text{obs}}; N_B)},
\]

(4.2)

where \(N_{\text{obs}} \) is the number of observed candidates, \(N_B \) is the expected background yield, and \(N_S \) is the expected signal yield. For a given value of the ratio \(R \), \(N_S \) is determined as

\[
N_S = R \cdot N_{B_{1+}} \cdot \frac{\varepsilon_{B_{1+}}^{(2S)^+}}{\varepsilon_{B_{1+}}^{c}}.
\]

(4.3)

The likelihood \(L \) is defined as

\[
L(n; x) = \frac{e^{-x}}{n!} x^n.
\]

(4.4)

The total statistical test value \(Q_{\text{tot}} \) is the product of that for each of the four MLP categories. The CL\(_s \) value is the ratio of CL\(_{s+b} \) to CL\(_b \), where CL\(_{s+b} \) is the probability to find a \(Q_{\text{tot}} \) value smaller than the \(Q_{\text{tot}} \) found in the data sample under the signal-plus-background hypothesis, and CL\(_b \) is equivalent probability under the background-only hypothesis. The CL\(_{s+b} \) and CL\(_b \) values are obtained from pseudoexperiments, in which the input variables are varied within their statistical and systematic uncertainties. The \(B_{c}(2S)^+ \) state is searched for by scanning the mass region \(M(B_{1+}^{c\ast}\pi^+\pi^-) \in [6830, 6890] \text{ MeV}/c^2 \), which is motivated by theoretical predictions [1–11]. The value of \(\Delta M \) is successively fixed to 0, 15, 25 and 35 MeV/c\(^2\). The search windows are within \(\pm 1.4\sigma_w(B_{c}^{(c\ast)(2S)^+}) \) of the \(B_{c}^{(c\ast)(2S)^+} \) mass hypotheses. This choice of the search window gives the best sensitivity according to ref. [37].

The selection efficiencies \(\varepsilon_{B_{1+}} \) and \(\varepsilon_{B_{1+}^{c\ast}(2S)^+} \) are estimated using simulation. The track reconstruction efficiency is studied in a data control sample of \(J/\psi \rightarrow \mu^+\mu^- \) decays using a tag-and-probe technique [38], in which one of the muons is fully reconstructed as the tag track, and the other muon, the probe track, is reconstructed using only information from the TT detector and the muon stations. The track reconstruction efficiency is the fraction of \(J/\psi \) candidates whose probe tracks match fully reconstructed tracks. The particle-identification (PID) efficiency of the two opposite-charge pions is determined with a data-driven method, using a \(\pi^+ \) sample from \(D^\ast \)-tagged \(D^0 \rightarrow K^-\pi^+ \) decays. The total efficiency \(\varepsilon_{B_{1+}} \) is determined to be 0.0931 ± 0.0005, where the uncertainty is the statistical uncertainty of the simulated sample. The \(B_{c}^{(c\ast)(2S)^+} \) efficiencies obtained from the default simulation, where \(M(B_{c}(2S)^+) = 6858 \text{ MeV}/c^2 \) and \(M(B_{c}^{\ast}(2S)^+) = 6890 \text{ MeV}/c^2 \), are summarised in table 1. The variation of the efficiencies with respect to \(M(B_{c}(2S)^+) \) and \(M(B_{c}^{\ast}(2S)^+) \), assumed to be linear, is studied using the data simulated with different
The mean value of the same function as in the nominal background modelling. The difference between the data sample, while the candidates in the opposite-sign and the same-sign data samples and from the potential mismodelling of the background. The former is studied by performing a large set of pseudoexperiments, in which the samples are generated by randomly taking candidates from the potential mismodelling of the background is estimated via extrapolation from the same-sign sample. The background is modelled by an empirical threshold function as shown in figure 3, where the threshold is taken to be \(M(B^+_c) + M(\pi^+) + M(\pi^-) = 6555 \text{ MeV}/c^2 \). The other parameters are fixed according to the \(M(B^+_c\pi^+\pi^-) \) distribution of the same-sign sample, which is constructed with \(B^+_c\pi^+\pi^- \) or \(B^+_c\pi^-\pi^- \) combinations.

The sources of systematic uncertainties that affect the upper limit calculation are studied and summarised in table 2. The systematic uncertainty on \(N_{B^+_c} \) comes from the potentially imperfect modelling of the signal, and has been studied using pseudoexperiments. The uncertainty on \(\varepsilon_{B^+_c} \) is due to the limited size of the simulated sample. The uncertainty on \(N_B \) comes both from differences between the combinatorial backgrounds in the opposite-sign and the same-sign data samples and from the potential mismodelling of the background. The former is studied by performing a large set of pseudoexperiments, in which the samples are generated by randomly taking candidates from the data sample, while the candidates in \(M(B^+_c\pi^+\pi^-) \in [6785, 6900] \text{ MeV}/c^2 \) are taken from the same-sign sample. The \(M(B^+_c\pi^+\pi^-) \) distributions of the pseudosamples are fit using the same function as in the nominal background modelling. The difference between the mean value of \(N_B \) obtained from the pseudoexperiments and the nominal value is taken as the systematic uncertainty. The potential mismodelling of the background is estimated by using the Bukin function [39] as an alternative model and the differences to the nominal results are taken as systematic uncertainties. The uncertainties on \(\varepsilon_{B^+_c}(2S)^+ \) are dominated by the uncertainty due to the finite size of the simulated samples, but also include the systematic uncertainties on the PID and track reconstruction efficiency calibration, which come from the limited size and the binning scheme of the calibration samples. The variations of efficiency with respect to \(M(B_c(2S)^+) \) and \(M(B^*_c(2S)^+) \) are fitted with linear functions, and the uncertainties of such fits are taken as systematic uncertainties.

No evidence of the \(B^*_c(2S)^+ \) signal is observed. The measurement is consistent with the background-only hypothesis for all mass assumptions. The upper limits at 90% and 95% confidence levels (CL) on the ratio \(R \), as functions of the \(B^*_c(2S)^+ \) mass states, are shown in figure 4. All the upper limits at 95% CL on the ratio \(R \) are contained

<table>
<thead>
<tr>
<th>MLP category</th>
<th>(0.02, 0.2)</th>
<th>(0.2, 0.4)</th>
<th>(0.4, 0.6)</th>
<th>(0.6, 1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_c(2S)^+)</td>
<td>0.148 ± 0.006</td>
<td>0.140 ± 0.006</td>
<td>0.130 ± 0.006</td>
<td>0.256 ± 0.008</td>
</tr>
<tr>
<td>(B^*_c(2S)^+)</td>
<td>0.118 ± 0.003</td>
<td>0.140 ± 0.004</td>
<td>0.144 ± 0.004</td>
<td>0.288 ± 0.005</td>
</tr>
</tbody>
</table>

Table 1. Efficiencies for the \(B^*_c(2S)^+ \) states in the regions \(p_T \in [0, 20] \text{ GeV}/c \) and \(y \in [2.0, 4.5] \) for each MLP category. The efficiencies obtained before applying the MLP classifier are 0.0091±0.0002 and 0.0086 ± 0.0001 for \(B_c(2S)^+ \) and \(B^*_c(2S)^+ \), respectively. The uncertainties are statistical only, and are due to the limited size of the simulated sample.

mass settings. This variation is considered when searching for the \(B^*_c(2S)^+ \) states at other mass settings. The expected background yield in each of the \(B^*_c(2S)^+ \) signal regions, \(N_B \), is estimated via extrapolation from the \(M(B^+_c\pi^+\pi^-) \) sidebands for each MLP category. The background is modelled by an empirical threshold function as shown in figure 3, where the threshold is taken to be \(M(B^+_c) + M(\pi^+) + M(\pi^-) = 6555 \text{ MeV}/c^2 \). The other parameters are fixed according to the \(M(B^+_c\pi^+\pi^-) \) distribution of the same-sign sample, which is constructed with \(B^+_c\pi^+\pi^- \) or \(B^+_c\pi^-\pi^- \) combinations.

The sources of systematic uncertainties that affect the upper limit calculation are studied and summarised in table 2. The systematic uncertainty on \(N_{B^+_c} \) comes from the potentially imperfect modelling of the signal, and has been studied using pseudoexperiments. The uncertainty on \(\varepsilon_{B^+_c} \) is due to the limited size of the simulated sample. The uncertainty on \(N_B \) comes both from differences between the combinatorial backgrounds in the opposite-sign and the same-sign data samples and from the potential mismodelling of the background. The former is studied by performing a large set of pseudoexperiments, in which the samples are generated by randomly taking candidates from the data sample, while the candidates in \(M(B^+_c\pi^+\pi^-) \in [6785, 6900] \text{ MeV}/c^2 \) are taken from the same-sign sample. The \(M(B^+_c\pi^+\pi^-) \) distributions of the pseudosamples are fit using the same function as in the nominal background modelling. The difference between the mean value of \(N_B \) obtained from the pseudoexperiments and the nominal value is taken as the systematic uncertainty. The potential mismodelling of the background is estimated by using the Bukin function [39] as an alternative model and the differences to the nominal results are taken as systematic uncertainties. The uncertainties on \(\varepsilon_{B^*_c}(2S)^+ \) are dominated by the uncertainty due to the finite size of the simulated samples, but also include the systematic uncertainties on the PID and track reconstruction efficiency calibration, which come from the limited size and the binning scheme of the calibration samples. The variations of efficiency with respect to \(M(B_c(2S)^+) \) and \(M(B^*_c(2S)^+) \) are fitted with linear functions, and the uncertainties of such fits are taken as systematic uncertainties.

No evidence of the \(B^*_c(2S)^+ \) signal is observed. The measurement is consistent with the background-only hypothesis for all mass assumptions. The upper limits at 90% and 95% confidence levels (CL) on the ratio \(R \), as functions of the \(B^*_c(2S)^+ \) mass states, are shown in figure 4. All the upper limits at 95% CL on the ratio \(R \) are contained
Figure 3. The $M(B_c^+\pi^+\pi^-)$ distributions in the same-sign (darkgreen shaded areas) and data (points with error bars) samples in the range [6600, 7300] MeV/c² with the background model (blue solid line) overlaid, for the four MLP categories. The areas between the two vertical red lines are the signal regions.

<table>
<thead>
<tr>
<th>MLP category</th>
<th>(0.02,0.2)</th>
<th>(0.2,0.4)</th>
<th>(0.4,0.6)</th>
<th>(0.6,1.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_{B_c^+}$</td>
<td>1.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varepsilon_{B_c^+}$</td>
<td>0.5%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N_B</td>
<td>4.2%</td>
<td>9.0%</td>
<td>15.0%</td>
<td>6.9%</td>
</tr>
<tr>
<td>$B_c(2S)^+ \rightarrow B_c^+\pi^+\pi^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varepsilon_{B_c(2S)^+}$</td>
<td>4.6%</td>
<td>4.7%</td>
<td>4.9%</td>
<td>3.6%</td>
</tr>
<tr>
<td>Efficiency variation $vs. M(B_c(2S)^+)$</td>
<td>0.6%</td>
<td>1.3%</td>
<td>1.8%</td>
<td>2.7%</td>
</tr>
<tr>
<td>$B_c^(2S)^+ \rightarrow B_c^\pi^+\pi^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\varepsilon_{B_c^*(2S)^+}$</td>
<td>3.5%</td>
<td>3.3%</td>
<td>3.3%</td>
<td>2.7%</td>
</tr>
<tr>
<td>Efficiency variation $vs. M(B_c^*(2S)^+)$</td>
<td>1.0%</td>
<td>1.8%</td>
<td>2.5%</td>
<td>4.3%</td>
</tr>
</tbody>
</table>

Table 2. Summary of the systematic uncertainties entering the upper limit calculation for the four MLP categories.
between 0.02 and 0.14. Theoretical models predict that the ratio R has no significant dependence on y and p_T of the B_c^+ mesons [19], allowing comparison with the ATLAS result [18]. The most probable interpretation of the ATLAS measurement is that it is either the $B_c^*(2S)^+$ state or a sum of $B_c(2S)^+$ and $B_c^*(2S)^+$ signals under the $\Delta M \sim 0$ scenario. For both interpretations of the ATLAS measurement, the comparison of the ratio R between the LHCb upper limits in the vicinity of the peak claimed by ATLAS at $M(B_c^{(*)}(2S)^+) = 6842$ MeV/c^2 and the ratios determined by ATLAS are given in table 3. The LHCb and ATLAS results are compatible only in case of very large (unpublished) relative efficiency of reconstructing the $B_c^{(*)}(2S)^+$ candidates with respect to the B_c^+ signals for the ATLAS measurement.

Figure 4. The upper limits on the ratio $R(B_c^{(*)}(2S)^+)$ at 95% and 90% confidence levels under different mass splitting ΔM hypotheses.
Table 3. Comparison of the \mathcal{R} value between the LHCb upper limits at 95% CL and the ATLAS measurement \cite{18}, where $0 < \varepsilon_{7,8} \leq 1$ are the relative efficiencies of reconstructing the $B_{c}^{(*)}(2S)^{+}$ candidates with respect to the B_{c}^{+} signals for the 7 and 8 TeV data, respectively.

<table>
<thead>
<tr>
<th></th>
<th>$\sqrt{s} = 7$ TeV</th>
<th>$\sqrt{s} = 8$ TeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS</td>
<td>$(0.22 \pm 0.08 \text{ (stat))}/\varepsilon_{7}$</td>
<td>$(0.15 \pm 0.06 \text{ (stat))}/\varepsilon_{8}$</td>
</tr>
<tr>
<td>LHCb</td>
<td>$-$</td>
<td>$< [0.04, 0.09]$</td>
</tr>
</tbody>
</table>

5 Summary

In summary, a search for the $B_{c}(2S)^{+}$ and $B_{c}^{*}(2S)^{+}$ states is performed at LHCb with a data sample of pp collisions, corresponding to an integrated luminosity of 2 fb^{-1}, recorded at a centre-of-mass energy of 8 TeV. No significant signal is found. Upper limits on the $B_{c}(2S)^{+}$ and $B_{c}^{*}(2S)^{+}$ production cross-sections times the branching fraction of $B_{c}^{(*)}(2S)^{+} \rightarrow B_{c}^{(*)+}\pi^{+}\pi^{-}$ relative to the B_{c}^{+} cross-section, are given as a function of the $B_{c}(2S)^{+}$ and $B_{c}^{*}(2S)^{+}$ masses.

Acknowledgments

We thank Chao-Hsi Chang and Xing-Gang Wu for frequent and interesting discussions on the production of the B_{c} mesons. We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb institutes. We acknowledge support from CERN and from the national agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (The Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain); SNSF and SER (Switzerland); NASU (Ukraine); STFC (United Kingdom); NSF (U.S.A.). We acknowledge the computing resources that are provided by CERN, IN2P3 (France), KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP (United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (U.S.A.). We are indebted to the communities behind the multiple open-source software packages on which we depend. Individual groups or members have received support from AvH Foundation (Germany), EPLANET, Marie Skłodowska-Curie Actions and ERC (European Union), ANR, Labex P2IO, ENIGMASS and OCEVU, and Région Auvergne-Rhône-Alpes (France), RFBR and Yandex LLC (Russia), GVA, XuntaGal and GENCAT (Spain), Herchel Smith Fund, the Royal Society, the English-Speaking Union and the Leverhulme Trust (United Kingdom).

Open Access. This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
References

[16] CDF collaboration, F. Abe et al., Observation of the B_c meson in $p\bar{p}$ collisions at $\sqrt{s}=1.8$ TeV, Phys. Rev. Lett. 81 (1998) 2432 [hep-ex/9805034] [SPIRE].

[17] CDF collaboration, F. Abe et al., Observation of B_c mesons in $p\bar{p}$ collisions at $\sqrt{s}=1.8$ TeV, Phys. Rev. D 58 (1998) 112004 [hep-ex/9804014] [SPIRE].

[22] LHCb collaboration, The LHCb Detector at the LHC, 2008 JINST 3 S08005 [SPIRE].

[38] LHCb collaboration, Measurement of the track reconstruction efficiency at LHCb, 2015 JINST 10 P02007 [arXiv:1408.1251] [SPIRE].

The LHCb collaboration

University of Maryland, College Park, MD, United States
Syracuse University, Syracuse, NY, United States
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to
University of Chinese Academy of Sciences, Beijing, China, associated to
School of Physics and Technology, Wuhan University, Wuhan, China, associated to
Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to
Department of Fisica, Universidad Nacional de Colombia, Bogota, Colombia, associated to
Institut für Physik, Universität Rostock, Rostock, Germany, associated to
National Research Centre Kurchatov Institute, Moscow, Russia, associated to
National Research Tomsk Polytechnic University, Tomsk, Russia, associated to
Instituto de Fisica Corpuscular, Centro Mixto Universidad de Valencia - CSIC, Valencia, Spain, associated to
Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to
Los Alamos National Laboratory (LANL), Los Alamos, United States, associated to
Universidade Federal do Triângulo Mineiro (UFTM), Uberaba-MG, Brazil
Laboratoire Leprince-Ringuet, Palaiseau, France
P.N. Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia
Università di Bari, Bari, Italy
Università di Bologna, Bologna, Italy
Università di Cagliari, Cagliari, Italy
Università di Ferrara, Ferrara, Italy
Università di Genova, Genova, Italy
Università di Milano Bicocca, Milano, Italy
Università di Roma Tor Vergata, Roma, Italy
Università di Roma La Sapienza, Roma, Italy
AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Kraków, Poland
LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain
Hanoi University of Science, Hanoi, Vietnam
Università di Padova, Padova, Italy
Università di Pisa, Pisa, Italy
Università degli Studi di Milano, Milano, Italy
Università di Urbino, Urbino, Italy
Università della Basilicata, Potenza, Italy
Scuola Normale Superiore, Pisa, Italy
Università di Modena e Reggio Emilia, Modena, Italy
Iligan Institute of Technology (IIT), Iligan, Philippines
Novosibirsk State University, Novosibirsk, Russia
Deceased