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Abstract 

Reaction optimisation and understanding is fundamental for process development and is 

achieved using a variety of techniques. This paper explores the use of self-optimisation and 
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experimental design as a tandem approach to reaction optimisation. A Claisen-Schmidt 

condensation was optimised using a branch and fit minimising algorithm, with the resulting 

data being used to fit a response surface model. The model was then applied to find new 

responses for different metrics, highlighting the most important for process development 

purposes. 
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Introduction 

Traditional univarient optimisation of a chemical reaction involves the systematic and 

sequential optimisation of each individual reaction parameter until an optimum is found. While 

the execution is simple, the data will not account for interactions between reaction parameters.1 

Design of experiments (DoE) conversely uses statistical calculations to screen reactions and 

generate a polynomial model over a constrained area of experimental space. The model can 

highlight the key parameters and interactions that affect changes in the desired response, as well 

as predicting new responses depending on the model’s design. The methodology is commonly 

utilised in the pharmaceutical industry, particularly for reactions with poor yield, inconsistent 

output or unexpected results upon scale up.2 DoE is a very powerful tool and it can show where 

improvements in operating conditions can be made to deliver a more consistent and reliable 

product with respect to the optimisation target. 

One of the disadvantages of DoE arises when there are a large number of parameters requiring 

optimisation. The number of experiments required for a design increases substantially with an 



increasing number of experimental parameters. Often this number can be too large to explore 

the system efficiently, so a fractional factorial design is implemented to reduce the number of 

experiments. The disadvantage with this approach is that at least one parameter is confounded 

with an interaction, thus increasing the complexity of the model analysis. It is also very 

important that the correct limits are chosen for each parameter to ensure that there are no sudden 

changes in response and a good polynomial fit can be achieved. Furthermore, additional 

experiments might be required to verify a response, deconvolute interactions or determine the 

robustness of optimum conditions. 

Self-optimisation is a technique that could remove the problems associated with DoE whilst 

still obtaining the important information about key parameters and interactions. A self-

optimising reactor combines on-line analysis with an adaptive feedback loop and minimizing 

algorithm to autonomously execute reactions, obtain the respective yields and ultimately 

optimise a chemical process without user intervention. 3-8 The algorithm typically generates a 

cluster of points around an optimum, therefore increasing the robustness of proposed optimal 

conditions. 

The recent popularity of self-optimisation is increasing but its use in industrial chemical 

processes is severely limited.9 A continuous self-optimising reactor will benefit from the 

numerous advantages of flow reactors including high surface area to volume ratios, safer 

operation of hazardous materials, improved mixing, faster kinetics and easier access to 

automated processes.10-13 

The main disadvantage with self-optimisation is that new experiments need to be physically 

executed to optimise for a new target or different chemical compound. If DoE has already been 

carried out, new models for different responses can be calculated without complication or 

increased experimentation. 

This paper attempts to combine these two optimisation techniques in parallel. A self-

optimisation experiment will rapidly generate optimum conditions and scatter across the 



chemical space through an exploratory algorithm, whilst a response surface model (RSM) will 

permit the prediction of new responses using the experimental data. 

 

Results and Discussion  

Self-optimising reactors have been designed using a variety of analytical techniques including 

IR14-16 and NMR spectroscopy17, mass spectrometry16,18,  gas19-22 and liquid23,24 

chromatography. In this paper, a feedback-controlled flow reactor, equipped with an at-line 

HPLC system, is used to provide fast separation and quantification of the desired compounds. 

Through the combined implementation of a variable wavelength UV detector and microvolume 

sample injector, automated optimisations were executed at the mesoscale with the direct 

injection of reaction mixture into the HPLC column, thus negating the need for dilution prior 

to analysis. The optimisation target was the minor product of a Claisen-Schmidt condensation  

between acetone (1) and benzaldehyde (2) to form the desired product, benzylideneacetone (3) 

(Scheme 1).25 Strict control over the reaction parameters was required to prevent 3 reacting to 

form dibenzylideneacetone (DBA) (4) and acetone polymerization, both of which caused 

clogging in the reactor. 

 

 



Scheme 1: Claisen-Schmidt condensation between acetone (1) and benzaldehyde (2) to form 

the desired benzylideneacetone (3) and undesired benzylideneacetone (4). Acetone can also 

undergo self-condensation to form mesityl oxide (5), as well as the subsequent polymer. 

A gradient HPLC method at 254 nm was developed to quantify compounds of interest. While 

adequate separation between species was achieved, preliminary HPLC calibrations resulted in 

a non-linear response for 2 and 3 at the reference wavelength of 254 nm. UV spectra of both 

compounds were obtained to determine the wavelengths at which each species could be 

quantified, without saturating the detector (Figure 1). The HPLC method was consequently 

modified to momentarily switch to 295 nm and 333 nm, when compounds 2 and 3 were 

respectively eluted, to ensure the detector would not be saturated during optimisation. This new 

method allowed linear calibrations of species 2-5. 

 

 

Figure 1: UV absorption spectra of benzaldehyde (2) and benzylideneacetone (3) in ethanol 

between 190 and 400 nm. Dashed lines indicate wavelengths selected for variable wavelength 

HPLC method. 

 



All components were monitored and controlled via a bespoke MATLAB based software 

package (Reaction setup is shown Figure 6). The flow rates of the three reagent pumps and 

reactor temperature were varied to maximise the yield of 3. Table 1 displays the optimisation 

limits for the four reaction variables. Acetone flow was controlled relative to 2 to ensure it was 

always in excess, while the temperature was limited to 80°C after initial experiments exhibited 

polymer formation beyond this. While previous literature and preliminary experiments can be 

used to constrain the experimental space and speed up the optimisation process, the algorithm 

is also capable of optimising within the entire operating range of the equipment being utilised. 

This capability is particularly advantageous when no prior knowledge of a chemical process is 

available. 

 

The algorithm used for the optimisation was SNOBFIT, a constrained branch and fit function 

that locates optima by fitting polynomials to the response of experimental data points.26 During 

an optimisation it focuses on locating optimal conditions, whilst simultaneously exploring 

empty space to prevent premature termination at local optima. In the event of multiple optima 

within a chemical system, the algorithm is capable of exploring both regions of experimental 

space within a single experiment. 

 

Table 1: Parameter limits for the automated optimisation to maximise yield of 3 

Reaction 

Variable 

Benzaldehyde 2 Flow / 

mmol min-1 a 

NaOH Flow / 

mmol min-1 b 

Acetone Flow / 

mol. equivalent.c 

Temperature / °C 

Limits 0.4 – 2.0  0.04 – 0.25  1 – 7  10 – 80  

a1.95 M solution in ethanol with 0.0325 M biphenyl internal standard; b0.2 M solution in 

ethanol; cneat liquid, controlled with respect to flow rate of 2 

 



The optimisation cycle was repeated until a total of 70 experiments had been executed. The 

results (Figure 2) indicate that an optimum yield of 66.0% was achieved at a benzaldehyde (2) 

flow rate of 0.4 mmol/min, with 7 molar equivalents of acetone and a reactor temperature of 

35.8 °C. The catalyst concentration of 0.25 M is also displayed in molar equivalents relative to 

benzaldehyde to ease comparability between runs. Because the catalyst concentration was 

regulated in mmol/min (Table 1), the algorithm minimised the flow rate of benzaldehyde to 

0.4 mmol/min, whilst maximising the catalyst flow rate to 0.25 mmol/min, to achieve this 

maximum equivalence. While the cluster of high yield experiments surrounding the optimum 

were all executed at maximum NaOH equivalence, there are other experiments exhibiting yields 

of around 60%, with much lower NaOH equivalents, which suggests that catalyst concentration 

may not be the most significant yield limiting factor in this reaction. Following the data points 

along the y-axis suggests there is some dependence on acetone concentration. This is better 

appreciated when the data is viewed along the y-axis (Figure 2b) where this is a clear correlation 

between acetone equivalence and yield. 

There is an interaction between the benzaldehyde and NaOH flow rates and temperature, which 

can be observed through the points at maximum acetone equivalence. As the flow rate of 

benzaldehyde (2) increases, NaOH decreases in order to accommodate for the decrease in 

residence time. This is paired with an increase in temperature to achieve higher yields at lower 

catalyst loadings. This all contributes to a large area of points resembling a cliff edge at the 

border of the experimental space. 

As predicted, formation of DBA (4) increases at lower acetone concentrations with a maximum 

yield occurring at 3.1 molar equivalences. Below this concentration, formation of ketone 3 may 

be hindered by a reduced rate of acetone enolate formation.27 

The residence time was calculated for each set of conditions to determine the point at which the 

sample eluting from reactor, was representative of the preset experimental parameters. Most 

experiments exhibited a residence time between 5 and 15 mins. Given that multiple experiments 



across this range exhibited yields in excess of 60%, residence time was not deemed to have a 

significant impact on the yield of 3. However, for chemical processes where a given 

optimisation target is dependent on residence time, the system autonomously optimises this 

parameter within the confines of the flow rate limits. 

 

 

Figure 2: a): Each point represents one of the experiments executed during the optimisation. 

Graph displays five variables as follows: (x) molar flow rate of benzaldehyde, (y) molar 

equivalents of acetone, (z) temperature of tubular flow reactor. The point size denotes the NaOH 



catalyst concentration in each run. The colour of each point represents the yield (%) of 3 in 

relation to 2. A maximum yield of 66.0% was achieved, the conditions of which are highlighted 

by the star. b) Identical to a) but rotated to depict data as viewed along the y-axis. 

 

The formation of other UV active species which were not calibrated prior to the optimisation 

could also be monitored because a full HPLC chromatogram was collected for each set of 

reaction conditions. Any compounds of interest could be characterised against reference 

materials and subsequently quantified following a HPLC calibration. The HPLC method 

switches to 254 nm outside regions of interest to maximise absorption resulting from ancillary 

organic species. This, coupled with the direct injection of sample into the instrument, ensures 

that even low level products can be detected.  

The concentration of any compound can later be increased with the corresponding yield 

optimisation.22 The existing responses can be used as a starting point to limit the number of 

experiments required for completion, but additional optimisations ultimately result in an 

increase of time and resource. A better methodology could be to predict where unknown 

compounds have the highest yields and then carry out yield optimisations in a smaller operating 

window around that point. This can be achieved by fitting a response surface to the existing 

data. 

Response surfaces were obtained for compounds 2, 3 and 4 using a multiple linear regression 

(MLR) fit. 28 Models were first generated by including all square and interaction terms, then 

removing non-significant coefficients for which the calculated error potentially equalled zero. 

Next, experiments were removed that fell beyond ± 2.5 standard deviations (SD) on a normal 

probability residual plot. Outliers are typically removed (or repeated) if they fall outside of ±4 

SD but the lower tolerance in this instance allowed for a better fit and greater predictability. 

The lowest number of experiments in a model was 65, which was in excess of the requirement 

for a central composite design, which is 24 plus mid-points. The prior removal of high error 



experiments was therefore not deemed to numerically compromise the model. A good fit was 

achieved for all three compounds with R2 values of 0.73 (2), 0.91 (3) and 0.85 (4). These models 

also showed a moderate level of predictability with Q2 values of 0.66 (2), 0.86 (3) and 0.78 (4). 

 

The models were subsequently used to predict an optimum yield by maximising the response 

of 3 (minimum tolerance 65%) and minimising 2 and 4 (maximum tolerance 5%). Conditions 

obtained that satisfied two of those criteria were: 1.97 mol/min of 2, 4.8 molar eq. of acetone, 

0.1 mmol/min of NaOH and a reactor temperature of 80 °C, generating 3 in a 61.1% yield. 

These conditions do not match the optimal conditions generated by the self-optimisation, for 

which the model calculates a yield of 59.5 %. Both the predicted and experimental optima are 

within the error associated with HPLC analysis, indicating that there is a plateau of conditions 

that generate 3 at approximately 60% yield. 

Further scrutiny of the SNOBFIT optimum data point showed that there was a significant rise 

in yield compared to points in close vicinity. This, coupled with the disagreement in optima 

between the two techniques prompted some further experimentation to study the reproducibility 

of the algorithm optimum. Three further experiments were carried out at the optimum 

conditions, which generated 3 in a mean yield of 64.4% ± 0.3% (arithmetic mean ± 1 SD). This 

shows that the previous optimum value was possibly caused by an integration error from HPLC 

analysis.  

A second self-optimisation for the generation of 3 was executed to determine if yields could be 

further increased by expanding on the existing experimental space. As lower acetone 

equivalents previously displayed lower yields, Table 2 shows how acetone equivalence limits 

were increased from 1-7 to 5-14 molar equivalents. The maximum NaOH flow rate was also 

increased to 0.1 mmol/min as the optimum point was at its upper limit. Whilst the model-

predicted optimum was close to the maximum upper limit of benzaldehyde flow rate, this 

parameter limit was halved (to 1 mmol/min) to compensate for the increase in experimental 



space and minimise the detriment to operating efficiency. The maximum temperature was also 

reduced from 80 to 60 °C for the same reasons.  

The SNOBFIT algorithm was then restarted using existing data within the new operating 

conditions (Table 2). The new optimisation required 36 further experiments and produced 

optimum conditions of 0.76 mmol/min of 2, 14 eq of acetone, 0.15 mmol/min of NaOH, and a 

temperature of 43 °C, generating 3 in a 67% yield (Figure 3). 

Table 2. Parameter limits for the extended optimisation to maximise yield of 3. 

Reaction 

Variable 

Benzaldehyde 2 Flow / 

mmol min-1 a 

NaOH Flow / 

mmol min-1 b 

Acetone Flow / 

mol. equivalent.c 

Temperature / 

°C 

Limits 0.4 – 1.0  0.10 – 0.25 5 – 14  10 – 60 °C 

a1.95 M solution in ethanol with 0.0325 M biphenyl internal standard; b0.2 M solution in 

ethanol; cneat liquid, regulated with respect to flow rate of 2  

 

 

Figure 3. Plot of experiments performed during extended automated yield optimisation of 

benzylideneacetone (3) via the aldol condensation of benzaldehyde (2) with acetone. The 

graphical parameters are identical to Figure 2, while the optimisation parameters have both been 



adjusted to allow for more acetone and catalyst equivalents versus the first yield optimisation 

(see Table 2). A maximum yield of 66.6% was achieved as highlighted by the star. 

 

New models were fitted using the same approach and improved R2 (fit) and Q2 (predictability) 

was achieved for all models using the data from the extended optimisation (Figure 4Error! 

Reference source not found.). Optimum conditions were predicted as previously described 

and the model calculated revised conditions to generate product 3 in a 63.6 % yield (Figure 5). 

Whilst this yield is still lower than the experimental self-optimisation, the expansion of 

experimental space has resulted in an increased yield from the previously predicted result of 

61.1%. The conditions also correlate better with the optimum produced by self-optimisation 

(0.741 mmol/min of 2, 12.4 mol. eq of 1, 0.112 mmol/min of NaOH at 47.2 °C). 

 

Figure 4. Comparison of the change in R2 and Q2 between the models generated from the 

original and extended data. 
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Figure 5: Contour plot of predicted benzylideneacetone yields using original and extended 

data. Optimum point with a predicted yield of 63.6% is shown by crosshair. 

 

 

While it seems achievable to improve the maximum observed product 3 yield of 67% by 

extending the experimental space to allow for greater acetone and hydroxide equivalents, it is 

worth considering whether increasing the reagent cost in pursuit of a higher product yield would 

be financially or materially efficient upon scale up of the reaction. Although yield was the target 

parameter in this optimisation, previous research has demonstrated how these systems can be 

utilised to optimise other metrics such as E factor, process mass intensity and reaction 

productivity to improve the sustainability of a chemical process.16,23,29,30 The advantage of a 

statistical model following self-optimisation means that such metric analyses can be carried out 

without further practical experiments. 

This ability to predict alternative metrics has been demonstrated by further fitting of the 

experimental data used to create the existing models. The metrics explored in this study were 

process mass intensity (PMI),31 a measure of the total chemical resource per mass unit of 

product; space time yield (STY), the mass of product formed per unit volume per unit time; and 

the raw material cost per kg of product (see supporting information for calculations). New 

models for these metrics were fitted using MLR with R2 values of 0.93 (PMI), 0.92 (STY) and 

0.90 (cost); and Q2 values of 0.86 (PMI), 0.86 (STY) and 0.83 (cost). 



 

Table 3. Effect of different metrics on the product composition of compounds 2-4 

Metric 

target 

2 / % Yield 3 / % Yield 4 / % Yield PMI STY / g L-

1 h-1 

Cost / £ 

kg-1 

Yield 3.22 65.62 3.01 18.48 633.20 33.45 

PMI 4.54 47.90 6.02 13.81 614.36 27.92 

STY 3.06 62.15 4.45 19.11 872.69 34.50 

Cost 4.15 58.81 4.13 14.30 798.39 26.72 

Yield PMIa 4.28 55.32 4.70 13.99 729.52 26.91 

PMI Costb 2.96 64.81 3.66 16.35 769.93 29.57 

The first column shows the metric target, responses are shown in the rows. Maximum values 

are highlighted in bold, minimized values are highlighted in italics. Unformatted values display 

the models’ predicted values. amaximise the yield of 3 whilst minimising the PMI; bminimise 

both PMI and cost. 

 

Table 3 shows how the model responses change with optimum conditions for different metric 

targets. The maximum yield exhibits poor responses for PMI, STY and cost, showing how high 

yielding reactions can be wasteful and unproductive. The optimum response for PMI is the least 

productive and for the studied metrics, predicts the lowest yield for 3 at 48%. There is good 

correlation between the responses of PMI and cost for all the metric targets. This should be 

expected as both are dependent on the ratio of product to substrates and reagents. The raw 

material cost calculation aims to put bias on reducing the concentrations of expensive material. 

However, this reaction may not best represent this capability as all substrates are relatively 

inexpensive. It should be noted that lower cost promotes a higher yield to a greater extent than 

lower PMI, thus indicating that raw material cost could be the most important metric in this 



reaction format. This is assuming that the adoption of cheaper reagent does not increase the 

reaction complexity and therefore increase the cost of work-up and purification. 

 

Table 4. Predicted conditions for the optimum responses to different metric targets 

Metric target 2 Flow / mmol 

min-1 

NaOH Flow / 

mmol min-1 

Acetone / 

equivalents 

Temperature / 

°C 

Yield 0.741 0.112 12.4 47.2 

PMI 0.846 0.044 6.0 44.1 

STY 1.000 0.150 13.9 42.2 

Cost 0.986 0.067 9.2 47.1 

Yield PMIa 0.915 0.055 7.5 45.5 

PMI Costa 0.998 0.096 10.5 46.8 

amaximize the yield of 3, minimize the PMI; bminimize both PMI and cost. 

 

The conditions for the optimal responses are shown in Table 4. The flow rate of 2 is close to its 

upper limit for every target. This reduces the residence time and consequently increases the 

reaction productivity (STY). The acetone equivalents are generally lower than those generated 

by the yield driven self-optimisation, thus limiting the reagent waste (through PMI and cost). 

Strict temperature control is required in compensation to maintain the high yields of 3, whilst 

minimising risk of polymer formation. 

 

Conclusion 

The yield of a minor product in a Claisen-Schmidt condensation has been optimised using a 

self-optimising flow reactor equipped with an online HPLC system. The reaction in this paper 

was optimised directly at the mesoscale to produce 0.24 kg/day of the desired 



benzylideneacetone, 3. Through the development of a variable wavelength HPLC method, all 

organic species of interest could be quantified within their respective linear detection limits. 

With the data obtained from the self-optimisation, a response surface was fitted to the main 

compounds of interest in the reaction (2-4). After an analysis of the self-optimisation data and 

resulting models, it was decided to execute a further optimisation in a larger chemical space. 

The second experimental optimisation improved upon the yield of 3 and the increased 

correlation between the new optimum and surrounding experimental points, provided a greater 

range of conditions at which optimal yields could be obtained. The subsequent statistical model 

of the extended optimisation also predicted similar optimal conditions.  

It should be noted that the choice of algorithm in the initial self-optimisation step is critical to 

achieving a good fit to the RSM. The simplex algorithm and modifications thereof,32-35 are a 

popular choice in self-optimising systems.16,17,19-24 During operation, however, only 

experiments with an improved predicted response will be executed, therefore negating valuable 

information existing in the experimental space between the initial and optimum points. The 

execution of random conditions and exploration of free space offered by SNOBFIT provides a 

scatter of data, without which the additional response surface fitting would not be possible. In 

this study, the increased robustness resulting from the additional experimental points around 

the optimum would also have been forfeited with a simplex approach. 

In this example, the experimental optimum was identified at the edge of the initial optimisation 

space. Prediction of the optimum via the statistical model was therefore compromised due to 

the inability to fit a polynomial to changes induced by the cliff edge. The experimental self-

optimisation, however, freely explored the edge of the optimisation space to identify the point 

of maximum yield. For these reasons, we believe that self-optimisation is the superior technique 

for chemical process optimisation. When used in tandem, however, the subsequent response 

fitting of self-optimisation data can predict the responses of different species and even alternate 



metrics without additional experimentation. It therefore follows that self-optimisation and DoE 

can be interdependent, rather than conflicting techniques, which can combine to provide a 

wealth of information in the scale-up and process optimisation of chemical systems. 

 

Experimental 

Automated yield optimisation: Reaction control, yield calculation and process optimisation 

were under full MATLAB automation via a bespoke program utilising the SNOBFIT 

optimisation algorithm. The reactor was setup as displayed in Figure 6 for HPLC calibration 

and experimental yield optimisations. 

 

 

 

Figure 6: Schematic of automated self-optimising flow reactor. Bespoke MATLAB based 

control software monitored and regulated the following: flow rate and pressure of the reagent 

pumps (P1, P2 & P3); temperature of the tubular reactor and activation of the sample injector. 

Reagents were pumped at the specified flow rates through individual Jasco PU-980 HPLC 

pumps and mixed via Swagelock 1/16” tee-pieces. The reaction mixture was heated to the 

specified temperature using a Polar Bear Plus Flow Synthesizer. A sample from each set of 

conditions was acquired by a VICI Valco 4 Port Microvolume Sample Injector. HPLC analysis 

was carried out by an Agilent 1100 HPLC System with G1314B Variable Wavelength Detector. 



Pressure was maintained using a Jasco BP-1580 Back Pressure Regulator and Polyflon 1/16” 

(OD) PTFE tubing was utilised throughout the 6.5 ml reactor. 

 

Five sets of reaction conditions were initially selected and autonomously executed by the 

software. The yields of these experiments were calculated from the HPLC response using a 

biphenyl present in the reagent. Subsequent conditions were then generated by fitting yield 

responses to the data using the SNOBFIT. 70 experiments were executed as 14 cycles of 5 

experiments under full MATLAB automation. Following initial response fitting, an additional 

36 experiments were carried as described in Table 2.  

Variable wavelength HPLC Method: Calibration and optimisation analyses were executed 

using an Agilent 1100 Series HPLC System equipped with a G1312A binary pump and G1314B 

variable wavelength detector (VWD). Compounds were separated via an Ascentis Express C18 

column (5.0 µm particle size, 4.6 mm diameter x 50 mm length). Mobile phase was a binary 

mixture of acetonitrile and water (MeCN-H2O), each containing 0.1% (v/v) of trifluoroacetic 

acid. Method was gradient based with a 5:95 (v/v) MeCN-H2O starting mixture. Concentration 

was immediately increased to 95:5 (v/v) MeCN-H2O via a 7 min linear gradient, followed by 

an immediate decrease back to 5:95 (v/v) MeCN-H2O via a 2 min linear gradient, where it 

remained for 1 min. Total run time was 10 mins at a constant flow rate of 1.2 ml/min with a 

column temperature of 20 °C throughout. The absorption wavelength of the VWD operates at 

base value of 254 nm. 3.4 mins into the method, the wavelength switches to 295 nm for 0.2 

mins. At 4.2 mins, there is a switch to 333 nm for 0.2 mins. 

Acquisition of UV spectra: 2 M solutions of 2 and 3 in ethanol were manually injected through 

an Agilent 1100 HPLC System with G1314B variable wavelength detector. A UV absorption 

spectrum between 190 and 400 nm was captured for each species upon elution. 

HPLC Calibration: Reactor was setup as depicted in Figure 6. A solution of analyte (2.0 M) 

was pumped against solvent at varying flow rates, with a total flow of 1 ml/min, to create a 10-



point calibration graph. Two reactor volumes of material was eluted prior to HPLC sample 

injection. Flow rates and sample injection were autonomously controlled via a MATLAB based 

program. 

Statistical Modelling: Multiple linear regression fits were applied to the automated 

experimental results using the MODDE software package from UMetrics. Predicted responses 

for the yields of compounds 2, 3 and 4, as well as reaction metrics including process mass 

intensity, space time yield, and bulk cost of reagents were obtained using multiple linear 

regression. Interactions with the potential of zero contribution to the measured response, as well 

as individual experiments with high residual error were negated to maximise the model fitting.       

See ESI for full details on the reactor setup, HPLC method, individual parameters for the 

automated yield optimisations and the statistical analysis methodology.  
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