
Detection of Exocometary CO within the 440Myr Old Fomalhaut Belt: A Similar
CO+CO2 Ice Abundance in Exocomets and Solar System Comets

L. Matrà1, M. A. MacGregor2, P. Kalas3,4, M. C. Wyatt1, G. M. Kennedy1, D. J. Wilner2, G. Duchene3,5, A. M. Hughes6, M. Pan7,
A. Shannon1,8,9, M. Clampin10, M. P. Fitzgerald11, J. R. Graham3, W. S. Holland12, O. Panić13, and K. Y. L. Su14

1 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK; l.matra@ast.cam.ac.uk
2 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

3 Astronomy Department, University of California, Berkeley CA 94720-3411, USA
4 SETI Institute, Mountain View, CA 94043, USA

5 Univ. Grenoble Alpes/CNRS, IPAG, F-38000 Grenoble, France
6 Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Dr., Middletown, CT 06459, USA

7MIT Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, MA 02139, USA
8 Department of Astronomy & Astrophysics, The Pennsylvania State University, State College, PA 16801, USA
9 Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, State College, PA 16802, USA

10 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
11 Department of Physics & Astronomy, University of California, Los Angeles, CA 90095, USA

12 Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
13 School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
14 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA

Received 2017 January 24; revised 2017 May 7; accepted 2017 May 8; published 2017 June 7

Abstract

Recent Atacama Large Millimeter/submillimeter Array observations present mounting evidence for the presence
of exocometary gas released within Kuiper Belt analogs around nearby main-sequence stars. This represents a
unique opportunity to study their ice reservoir at the younger ages when volatile delivery to planets is most likely
to occur. We here present the detection of CO J=2-1 emission colocated with dust emission from the cometary
belt in the 440Myr old Fomalhaut system. Through spectrospatial filtering, we achieve a 5.4σ detection and
determine that the ring’s sky-projected rotation axis matches that of the star. The CO mass derived
( M0.65 42 10 7´ -

Å( – ) ) is the lowest of any circumstellar disk detected to date and must be of exocometary
origin. Using a steady-state model, we estimate the CO+CO2 mass fraction of exocomets around Fomalhaut to be
between 4.6% and 76%, consistent with solar system comets and the two other belts known to host exocometary
gas. This is the first indication of a similarity in cometary compositions across planetary systems that may be linked
to their formation scenario and is consistent with direct interstellar medium inheritance. In addition, we find
tentative evidence that 49 27( )% of the detected flux originates from a region near the eccentric belt’s pericenter.
If confirmed, the latter may be explained through a recent impact event or CO pericenter glow due to exocometary
release within a steady-state collisional cascade. In the latter scenario, we show how the azimuthal dependence of
the CO release rate leads to asymmetries in gas observations of eccentric exocometary belts.

Key words: circumstellar matter – comets: general – molecular processes – planetary systems – stars: individual
(Fomalhaut A) – submillimeter: planetary systems

1. Introduction

Icy comets originating from the Kuiper Belt or the Oort
cloud are believed to be the most pristine bodies in our own
solar system, relics of the environment where the planets
formed and evolved (see Mumma & Charnley 2011, and
references therein). The unambiguous detection of exocome-
tary volatiles in extrasolar debris disks, young Kuiper Belt
analogs around main-sequence stars, has recently given us the
opportunity to expand such compositional studies to planetary
systems beyond our own. Crucially, these volatile-bearing
systems are observed at a very dynamically active phase of
evolution (ages of about tens of megayears), when terrestrial
planet formation is at its final stages and volatile delivery is
most likely to take place (Morbidelli et al. 2012, and references
therein). Moreover, a comparison of volatile compositions in
systems across a range of ages and host-star properties may
yield important clues on the formation of these belts within the
protoplanetary disk (for a review, see Wyatt et al. 2015).

Compositional studies of volatiles in exocometary belts have
been carried out in terms of elemental abundances from

observations of daughter atomic species (as done in β Pictoris,
e.g., Roberge et al. 2006; Brandeker et al. 2016). In addition,
metallic gas originating from sublimation or collisional
evaporation of refractory elements has been detected and
characterized in a few systems (e.g., Redfield 2007; Nilsson
et al. 2012; Hales et al. 2017). More recently, we have also
been able to use observations of CO gas emission at millimeter
wavelengths, where this is likely produced either as a parent
molecule or through the photodestruction of CO2 (Dent
et al. 2014; Matrà et al. 2015, 2017; Marino et al. 2016).
While detection of exocometary parent molecules is the most
direct route to the composition of exocometary ices, it is
challenging due to the generally short survival timescale
of gas molecules against stellar and interstellar UV photo-
dissociation. This means that detection (so far limited to the CO
molecule) has only been achievable with the extreme increase
in sensitivity brought by the Atacama Large Millimeter/
submillimeter Array (ALMA). On the other hand, atomic
daughter products from molecular photodestruction are long-
lasting (e.g., Fernández et al. 2006; Brandeker 2011; Kral
et al. 2017) and may viscously expand over time to form an
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atom-dominated accretion disk, a picture that is consistent with
all far-infrared and millimeter observations of exocometary gas
in the β Pictoris system to date (Kral et al. 2016).

The nearby (7.7 pc, van Leeuwen 2007), 440±40Myr old
(Mamajek 2012), A3V (Gray & Garrison 1989) star Fomalhaut
is the 18th brightest star at visible wavelengths beyond our own
Sun. The star hosts a planetesimal belt producing dust first
detected through its excess emission above the stellar photo-
sphere at infrared wavelengths (e.g., Aumann 1985) and later
imaged in thermal (Holland et al. 1998, 2003) and scattered
(Kalas et al. 2005, 2013) light. These revealed that the belt is
confined to a ring of ∼15 au width at a distance of ∼140 au
from the star, and that it has a significant eccentricity of ∼0.1.
The latter causes pericenter glow at infrared wavelengths, due
to material being significantly closer to the central star with
respect to the apocenter, causing it to be hotter and brighter
(Wyatt et al. 1999; Stapelfeldt et al. 2004; Marsh et al. 2005;
Acke et al. 2012). This eccentricity and the sharpness of the
belt’s inner edge were attributed to a shepherding planet-mass
companion (Kalas et al. 2005). The subsequent Hubble Space
Telescope (HST) discovery of the very low mass companion
Fomalhaut b (Kalas et al. 2008) appeared consistent with the
hypothesis that a planet could sculpt the inner edge
(Quillen 2006; Chiang et al. 2009), until further observations
showed that Fomalhaut b’s orbit is highly eccentric (Kalas et al.
2013; Beust et al. 2014; Pearce et al. 2015). The existence of
Fomalhaut b has been independently replicated (Currie
et al. 2012; Galicher et al. 2013), but its physical properties
continue to be investigated (Marengo et al. 2009; Kennedy &
Wyatt 2011; Janson et al. 2012, 2015; Kenyon et al. 2014;
Tamayo 2014; Kenyon & Bromley 2015; Lawler et al. 2015;
Neuhäuser et al. 2015).

ALMA 850 μm imaging of part of the belt (near the
northwest (NW) ansa) confirmed the steepness of the inner and
outer edge of the parent body distribution (Boley et al. 2012).
Further, higher resolution 1.3 mm imaging (White et al. 2017),
though only covering the region along the ring’s minor axis,
tightened the constraints on the ring’s width, as well as
confirming the slope of the size distribution previously
obtained through Australian Telescope Compact Array 7mm
observations (Ricci et al. 2012). However, only complete
millimeter imaging of the ring can constrain its azimuthal
morphology and eccentricity. We achieved the latter through a
new 1.3 mm mosaic obtained with ALMA and described in
MacGregor et al. (2017); in particular, we confirm that
the geometry of the parent body ring resembles that of the
smaller grains, and we achieve the first conclusive detection
of apocenter glow, caused by the higher surface density
expected at apocenter with respect to pericenter, due to
particles on eccentric orbits spending more time at apocenter
(Pan et al. 2016).

In parallel to the latest observations of the dust ring, recent
deep searches for molecular CO J=3-2 emission around the
belt’s NW ansa at 345 GHz with ALMA (Matrà et al. 2015), as
well as searches for atomic ionized carbon (C II) and neutral
oxygen (O I) through far-infrared Herschel spectroscopy
(Cataldi et al. 2015), yielded null results. The CO nondetection
was used to set an upper limit to the CO ice content in the
planetesimals, but this was still consistent with (and close to the
upper boundary of) the range of CO abundances observed in
solar system comets. On the other hand, the nondetection of
atomic gas, tracing the bulk of the gas in an exocometary origin

scenario, was used to derive a low upper limit to the gas/dust
ratio; being well below 1, this ruled out gas–dust interactions as
the origin for the narrow eccentric ring in the Fomalhaut
system.
In this work, we present deeper ALMA CO J=2-1

observations of the entirety of the Fomalhaut belt, yielding
the first detection of gas in the system. In Section 2 we describe
the observations, focusing on the CO imaging procedure. A
description of the detection through the spectrospatial filtering
technique first applied in Matrà et al. (2015) is in Sections 3.1
and 3.2, followed by the constraints this detection sets on the
ring’s rotation axis (Section 3.2) and total CO mass
(Section 3.3) and the consistency of the detection with the
previous observation of the CO J=3-2 transition (Section 3.4).
Finally, we analyze the radial and azimuthal morphology of the
CO emission (Section 3.5).
We then go on to discuss the implications of this result,

including proving the exocometary origin of the gas
(Sections 4.1–4.3), drawing the first comparison between the
ice content of extrasolar and solar system comets (Section 4.4),
and discussing the possible origin of the observed similarity
with a particular emphasis on interstellar medium (ISM)
volatile inheritance (Section 4.5). At the same time, we
investigate the possible cause of the tentative CO enhancement
observed at the belt’s pericenter, focusing on a general
prediction of CO pericenter or apocenter glow in eccentric
exocometary belts such as Fomalhaut (Section 4.6). We
conclude by summarizing the outcomes of this study in
Section 5.

2. Observations

We observed the Fomalhaut belt with the ALMA array using
Band 6 receivers, allowing simultaneously a wide bandwidth
for 1.3 mm dust continuum imaging and a native spectral
resolution of 1.27 km s−1 around the rest frequency of the CO
J=2-1 transition (230.538 GHz). The observational setup and
the calibration, data reduction, and continuum imaging
processes are described in detail in MacGregor et al. (2017).
Within the spectral window containing the CO line, we carried
out continuum subtraction on the combined visibility data set
using the uvcontsub task within the CASA software package
(version 4.5.2, McMullin et al. 2007). We image the visibility
data set using the CLEAN task. We do not apply any image
deconvolution, but carry out our analysis (next section) on the
primary beam-corrected dirty CO data cube. To enhance
detectability of low CO surface brightness, we apply a taper
within CLEAN to achieve an imaging resolution that better
matches the width of the ring (2. 36 2. 13 ´  , as opposed to the
1. 52 1. 12 ´  resolution achieved from natural visibility
weights). These imaging steps should not affect our results
significantly compared to using the visibilities directly, since
our u-v coverage yields a well-behaved dirty beam with little
sidelobe emission, never above the ∼4% level. Our final data
cube has a root mean square (rms) noise level of 0.7 mJy
beam−1 in a 1.3 km s−1 channel for a beam size of
18.2 16.4 au´ at the distance of the Fomalhaut system. The
expected systematic flux calibration accuracy is of order ∼10%
(Fomalont et al. 2014).
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3. Results and Analysis

3.1. Spatial Filter: CO J=2-1 Detection

Figure 1 (top right) shows the CO J=2-1 moment-0 map of
the Fomalhaut ring, spectrally integrated within±3.5 km s−1

around the expected radial velocity of the star (v 5.8,LSR = 
0.5 km s−1; Gontcharov 2006). No statistically significant
emission is observed above a noise distribution that is well
approximated by a Gaussian and that has an rms of
4 mJy km s−1 beam−1. The few 3–4σ peaks observed are in
line with the expectation from the Gaussian noise distribution
and the large number of resolution elements in the image. The
contour lines indicate the sky region where continuum emission
is detected above the 4σ level (MacGregor et al. 2017),
corresponding to an area comprising a number of beams of
N 40beams ~ . As done for previous Band 7 CO observations of
the Fomalhaut system (Matrà et al. 2015), we now proceed by
assuming that any CO present in the system should be of
secondary origin and colocated with the dust from which it is
produced, and later on we test these assumptions (Sections 3.5
and 4.1). This allows us to apply a spatial filter, that is, to
spatially integrate the CO data cube over this region where the
continuum is detected, yielding an improvement on the signal-
to-noise ratio (S/N) equal to N 6.4beams ~ . The obtained 1D

spectrum, shown in Figure 1 (left), presents a 3.3σ peak at a
velocity consistent with the expected v ,LSR .

3.2. Spectral + Spatial Filter: S/N Boost and Kinematics

In order to test the robustness and improve the significance
of the detection, we make the further assumption that the CO
gas lies in a vertically flat disk in Keplerian rotation around a
star of 1.92 Me, with the same orbital parameters as the dust
ring, obtained from dust continuum imaging (MacGregor
et al. 2017) and consistent with scattered light imaging (Kalas
et al. 2013). Then, for each pixel location x y,sky sky( ), where
0, 0( ) is the accurately known location of the star (detected in
the continuum data set), we can determine the expected radial
velocity field v x y,z sky sky( ) of the gas, both for the case in which
the NW ansa is moving away from us (Figure 1, center right) or
toward us (Figure 1, bottom right). Using this predicted
velocity field, we apply a spectral filter; that is we shift the 1D
spectrum at each x y,sky sky( ) pixel location by v x y,z sky sky- ( ),
moving any CO emission from the predicted disk velocity to
the stellar velocity v ,LSR . If we then sum together the
contributions from all pixels where the dust continuum is
detected (or in other words, if we apply the spatial filter), we
obtain a spectrum that is free from noise originating from
spectral channels as well as spatial locations where no CO

Figure 1. CO J=2-1 ( 230.538restn = GHz) spectra of the Fomalhaut system obtained using different filtering techniques to achieve maximum S/N. Top: spectrum
obtained through a spatial filter, by spatially integrating emission over the area where the dust continuum from the ring is detected at a level 4s> (shown by contours
overlaid on the moment-0 image displayed on the right). Center: spectrum obtained by applying a spectrospatial filter. The same spatial filter as above is applied after
shifting the 1D spectrum at each spatial location by an amount equal to the opposite of its expected Keplerian radial velocity (see corresponding velocity map on the
right). Bottom: spectrum obtained by applying the same spectrospatial filter, but assuming a reversed velocity field, with the NW ansa coming toward us (again, see
corresponding velocity map on the right). A 3.3s peak at a velocity consistent with that of the star (gray shaded region) is obtained using the spatial filter (top) and is
boosted to 5.4s using the spectral filter with the NW ansa moving away from us (center). The red shaded region is the spectrally unresolved Gaussian that best fits the
filtered data.
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emission is expected. As shown in Figure 1 (center left, for the
velocity field in center right), this method boosts the S/N of the
peak to 5.4s.

The spectral filter yields kinematic information on the
orbiting gas, since the S/N of the CO line is maximized only
for the correct velocity field. This is because, for an incorrect
velocity field, the spectral filter spreads CO emission over a
larger number of velocity channels, reducing the S/N (see
Figure 1, bottom left and right). This proves that CO gas in the
NW ansa is moving away from us, while gas in the southeast
(SE) ansa is coming toward us (Figure 1, center right). This is
consistent with the kinematics of the star, whose SE part was
also found to be moving toward us (Le Bouquin et al. 2009).
We note that this information is still insufficient to derive the
sense of rotation of the ring on-sky (clockwise or counter-
clockwise), and in turn which side of the ring is closer to Earth
and forward scattering (see discussion in Min et al. 2010; Kalas
et al. 2013). This is because both the star and the CO only
inform us on the sky-projected rotation axis, which is
perpendicular to the sky-projected major axis of the ring and
points in the northeast (NE) direction. However, the crucial
missing piece of information is whether the ring’s rotation axis
is pointing toward us (i.e., inclination of 65~+  to the plane of
the sky) or away from us ( 65~-  inclination). Therefore, the
current data are insufficient to determine whether the ring is
rotating in a clockwise or counterclockwise direction on-sky,
and whether the brighter NE side observed by HST is in front of
or behind the sky plane.

3.3. Total Flux and CO Mass

In order to measure the integrated CO J=2-1 line flux and
the velocity centroid, we fit a Gaussian to the spectrospatially
filtered spectrum derived above and shown in Figure 1 (center
left). The best-fit Gaussian width is consistent with the line
being unresolved, as expected from the application of our
filtering method, and the best-fit velocity is 6.1±0.2 km s−1,
consistent with the expected stellar velocity of 5.8±
0.5 km s−1. The best-fit integrated line flux is 68±
16 mJy km s−1 (including the absolute flux calibration uncer-
tainty, added in quadrature to the uncertainty from the Gaussian
fit), or 5.2 1.2 10 22 ´ -( ) Wm−2.

Assuming that the CO is optically thin to the line of sight at
the observed frequency (which we verify in the next
paragraph), we use a nonlocal thermodynamic equilibrium
molecular excitation analysis (Matrà et al. 2015) to derive
constraints on the total CO mass in the system. The derived
mass value depends on two unknown parameters, the kinetic
temperature of the gas and the density of the main collisional
partners. We take the main colliders to be electrons, since these
are most likely to be the dominant species for which CO
collision rates are known if the gas is of exocometary origin
(Matrà et al. 2015). We cover the full electron density
parameter space between the radiation-dominated and local
thermodynamic equilibrium regimes, and we probe a wide
range of kinetic temperatures between 10 and 1000 K. The CO
mass derived is in the range M0.65 42 10 7´ -

Å( – ) , where the
boundaries were obtained from the 1s limits on the integrated
line flux. This is the lowest CO mass detected in any
circumstellar disk to date, which is readily understood by
noting that Fomalhaut, at a distance of 7.7 pc, is the nearest
circumstellar disk where CO has been searched for by ALMA

to date. We will discuss the implication of this mass
measurement in Section 4.1.
We note that the CO excitation model does not yet account

for the effect of infrared or UV pumping, that is, transitions
between vibrational and electronic levels within the molecule.
These are excited in the presence of a strong infrared or UV
radiation field, as may be the case around an A star such as
Fomalhaut. As molecules relax to the ground electronic or
vibrational levels, higher rotational levels may be more
populated than predicted through CMB radiation alone,
affecting the rotational level populations. Nonetheless, this
would only influence the molecule in the radiation-dominated
regime, or in other words it would only change our upper limit
on the derived range of CO masses. Since less mass would be
needed to produce the same flux in the presence of significant
UV/IR pumping, our derived CO mass range can be taken as a
conservative estimate and is likely narrower than derived
above.
We now carry out a check to probe the optical thickness of

the CO line. We assume that the CO density is uniform in a
disk with inner radius at R 136.3 au= and R 13.5 auD =
wide, with a constant aspect ratio h=H/R (height above the
midplane divided by the radius) equal to the best-fit mean
proper eccentricity of the planetesimals from continuum
observations (0.06, MacGregor et al. 2017). This way, we can
derive the ring volume and hence measure an average CO
number density for our range of CO masses, obtaining a range
of number densities in the range 2 75 10 2´ -( – ) cm−3. We
then estimate the maximum column density using the longest
path length along the line of sight passing through our
simple model ring described above. We neglect any column
density enhancement expected at the two ansae due to
projection effects (see Section 4.6). For the range of number
densities above, this yields maximum column densities of
0.04 1.67 1014´( – ) cm−2 for a maximum line-of-sight path
length of ∼15 au. Finally, we calculate the maximum optical
thickness through its definition (Equation (3) in Matrà et al.
2017) for the full range of electron densities and kinetic
temperatures probed above, and for an intrinsic line width
taken to be equal to the Doppler broadening expected from
each of the temperatures considered. The maximum, worst-
case-scenario optical thickness we obtain is 0.18t (with
values ranging down to 10−4 depending on the parameters),
which confirms our optically thin assumption and our CO
mass measurement.

3.4. Consistency with Archival Band 7 Observations

We now check that our detection of the CO J=2-1 line is
consistent with the CO J=3-2 upper limit available from
previous ALMA Band 7 observations (Matrà et al. 2015). For a
well-characterized millimeter radiation field such as that around
Fomalhaut (see Figure 3 in Matrà et al. 2015), line ratios of
optically thin molecular transitions only depend on two free
parameters determining the level populations of the upper level
of each transition. These are the gas kinetic temperature Tk and
the density of collisional partners ne-. Taking our J=2-1
integrated line flux of 5.2 1.2 10 22 ´ -( ) Wm−2 and the 3σ
upper limit of 18×10−22 Wm−2 on the J=3-2 line flux from
Matrà et al. (2015), we obtain an upper limit on the average
3-2/2-1 line ratio in the Fomalhaut ring of 3.5 or 6.7,
depending on whether we consider our J=2-1 measurement
or its 3σ lower limit. This line ratio upper limit of 3.5 in
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Fomalhaut will therefore trace a line in Tk–ne- space (Figure 2),
the latter two quantities being degenerate. For comparison, we
show the average line ratio measured in the β Pictoris disk
(Matrà et al. 2017). While strictly speaking we can only
exclude 3-2/2-1 line ratios higher than 6.7, we find that the
archival nondetection of the J=3-2 transition is in agreement
with a β Pictoris-like gaseous environment (average line ratio
of 1.9± 0.3) and fully consistent with the new J=2-1
detection. While this is purely a consistency check, we remind
the reader that there is no reason to assume that the electron
density or CO excitation conditions in the Fomalhaut belt
should be the same as around β Pictoris. Furthermore, we note
once again that the introduction of UV/IR pumping in our
model may influence Figure 2 by increasing the minimum
possible line ratio in the radiation-dominated regime of
excitation (left-hand side in the figure).

3.5. Radial and Azimuthal Morphology

In order to extract information on the spatial distribution of
CO, we relax the assumption that it must be colocated with the
dust millimeter continuum. In particular, we apply the spectral
filter method to the entire data cube, shifting spectra in each
spatial pixel to align CO emission with the stellar velocity.
Instead of spatially integrating across the area where the
continuum is detected, we examine the channel map corresp-
onding to the stellar velocity (as shown in Figure 3). As
expected, due to spatial dilution of the emission, no obvious
significant emission is seen along the whole dust ring. For a
given semimajor axis in the ring’s orbital plane, taking once
again the orbital parameters from dust continuum fitting, we
can obtain a sky-projected orbit, and we average all azimuthal
contributions along it to obtain an intensity profile as a function
of ring semimajor axis. The black line in Figure 4 shows the
semimajor axis profile between 50 and 220 au obtained by

azimuthally averaging around all true anomalies, showing a CO
detection at the semimajor axis and width consistent with the
dust continuum ring. This confirms that CO is indeed colocated
with dust in the Fomalhaut belt.
Finally, we test for any indication of azimuthal asymmetry in

the CO emission. To begin with, we construct the same

Figure 2. Color map of the CO J=3-2/J=2-1 line ratios expected for a
wide range of kinetic temperatures Tk and electron densities ne-. The disk-
averaged upper limit we estimate in the Fomalhaut belt is consistent with the
value found for the β Pic disk, implying that similar excitation conditions in the
two disks are still possible and explaining the CO J=3-2 Fomalhaut
nondetection in Matrà et al. (2015).

Figure 3. The color scale shows the CO S/N map obtained after spectral
filtering. For each pixel, given some orbital parameters (see main text),
emission from the velocity channel corresponding to the expected Keplerian
velocity is shown. The thin white contours represent regions where the dust
continuum is detected above the 4σ level. Wedges of different colors represent
regions used to obtain the radial profiles displayed through the same colors in
Figure 4. A significant enhancement is seen in the southern (S) wedge and is
located near the best-fit pericenter location (plus sign) as determined from
ALMA dust continuum imaging (MacGregor et al. 2017).

Figure 4. Radial profiles obtained through azimuthal averaging of the
spectrally filtered CO map. Lines of different colors show profiles averaged
within each of the wedges in Figure 3. The blue shaded region represents the

1s confidence interval as a function of radius within the south wedge. This
interval is similar for other wedges, not shown for clarity. The black line and
gray shaded region (shifted vertically by −2 mJy beam−1 per channel) are the
same profile and confidence interval obtained through azimuthal averaging
over all azimuths.
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semimajor axis profile for each of six azimuthal regions, or
“wedges,” as displayed through different colors in Figure 3.
These profiles are shown by the corresponding colors in
Figure 4. For a perfectly axisymmetric on-sky surface bright-
ness distribution of the ring, due to averaging across only about
one-sixth of the azimuths, we expect the S/N in each wedge to
decrease by a factor of 6 2.45~ = compared to the profile
averaged across all azimuths and to lie at the 1 2s– level.
However, the majority of CO emission appears to originate
from the south (S) wedge (blue), where CO is detected at the
6.2s level. The latter is also apparent in Figure 3, where we see
that this region of emission is located near the ring’s pericenter
location, as determined by ALMA dust continuum fitting
( 22 .5 4 .3w =    , black cross in Figure 3; MacGregor
et al. 2017). We find that the flux in the S wedge contributes
to 49 27( )% of the flux integrated across all azimuths; given
the low S/N levels, we cannot distinguish whether all of the
emission originates from this wedge or whether other regions
also contain CO emission, as however hinted at by the low
levels of positive emission observed across all wedges.

To analyze this azimuthal variation in more detail, Figure 5
shows the azimuthal profile obtained by integrating emission
between semimajor axes of 120 and 150 au for all true
anomalies f. We recover the enhancement at pericenter (true
anomaly f 0= ) and another 2.6s peak of emission at
f 45~ , also evident in Figure 3. We then fit a cosine
function to this azimuthal profile; this is a good representation
of the expectation from our steady-state release model
discussed in Section 4.3, for the case where a pericenter
enhancement of the CO mass with respect to apocenter is
predicted. We use Levenberg–Marquardt least-squares mini-
mization to find the best-fit phase, mean intensity, and
pericenter-to-apocenter intensity enhancement ( I I1 apo peri- )
of our model cosine function. The phase obtained with respect
to pericenter (20 25  ) is consistent with the model having a
maximum near pericenter. The mean (0.68± 0.16 mJy beam−1

per 1.3 km s−1 channel) being significantly different from zero
is further confirmation of our detection at a level consistent
with the radial profile in Figure 4, bottom, and with the
spectrum in Figure 1, center left. This cosine fit leads to an

estimate of a pericenter enhancement with respect to apocenter
of 88 25( )%. We will compare such an enhancement to
model predictions in Section 4.6.

4. Discussion

Through spectral and spatial filtering applied to new ALMA
observations, we detected low levels of CO J=2-1 emission
colocated with dust in the Fomalhaut ring, and we measured the
CO gas mass to be between 0.65 and M42 10 7´ -

Å. We then
used line velocities to show that the ring’s sky-projected
rotation axis points to the NE, matching that of the star; in other
words, the SE ansa is moving toward us, and the NW away
from us. Finally, we presented tentative evidence that most of
the detected emission originates near the ring’s pericenter, as
determined by our fitting of the ALMA dust continuum image
(MacGregor et al. 2017).
In this section, we investigate the origin of the CO observed,

proving its exocometary nature and discussing its origin in
either a recent impact or a steady-state release. Then, we use a
steady-state collisional cascade model to derive exocometary
ice compositions. This allows us to compare Fomalhaut with
other planetary systems, including the solar system, and to
make the prediction of CO pericenter or apocenter glow in
eccentric exocometary rings.

4.1. The Exocometary Nature of the Gas

The origin of gas remains to be found for most of the known
gas-bearing debris disks. A primordial versus secondary origin
dichotomy has emerged in the past years, due to the youth
( 40 Myr ) of the detected systems (see Section 1). Aside from
a tentative detection of CO emission in the 1–2 Gyr old η Corvi
system (Marino et al. 2017), which is not colocated with the
outer dust belt and remains to be confirmed, Fomalhaut is the
most evolved debris belt to host CO gas, at an age of
(440± 40) Myr.
Can the observed CO have survived since the protoplanetary

phase of evolution? CO survival requires shielding from the
interstellar UV radiation field, which otherwise rapidly
photodissociates the molecule on a timescale tphd of 120 years.
This shielding can be produced by CO itself and other
molecules such as H2, where the latter dominates the gas mass
in the primordial origin scenario. In Section 3.3, through a
simplified model, we estimated an average number density of
CO in the ring of order 2 75 10 2´ -( – ) cm−3. In this model, a
CO molecule sitting in the radial and vertical center of the ring
will therefore have a CO column density of order
10 1012 14– cm−2 surrounding it and, assuming a low CO/H2

abundance ratio of 10−6 (similar to that found in the old TW
Hya protoplanetary disk; Favre et al. 2013), a H2 column
density of order 10 1018 20– cm−2. Since these CO and H2

column densities are insufficient to shield CO over the system’s
lifetime (Visser et al. 2009), we conclude that the observed CO
cannot have survived since the protoplanetary phase. We note
that freeze-out onto grains is also negligible, due to the
relatively low density of grains in the ring and their temperature
being much above the CO freeze-out temperature (Matrà et al.
2015). The observed CO must therefore be of secondary origin,
that is, recently produced through either continuous, steady-
state replenishment or a recent stochastic event. We analyze
both possibilities below.

Figure 5. Radially integrated intensity between 120 and 150 au (blue line) as a
function of true anomaly from the spectrally filtered CO map in Figure 3. The
shaded region represents the 1s confidence interval. The red line is the cosine
function that best fits the data; the red shaded region is the 1s interval of its
best-fit mean, confirming our detection. The vertical thin gray lines are the
locations of the on-sky ansae.
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4.2. Origin of the Gas: Stochastic Collision

For a stochastic collision, the requirement is recent
production of the observed CO mass, at least M6.5 10 8´ -

Å.
Assuming a 10% CO+CO2 mass fraction, this requires the
destruction of a comet of total mass M6.5 10 7´ -

Å, or about
300 Hale–Bopp masses (e.g., Weissman 2007). Given the
observationally well constrained mass loss rate of small grains
through the collisional cascade (Appendix B) and the known
CO mass and photodestruction rate (previous section), we can
estimate (see next section) the collisional mass loss rate of such
large, CO+CO2-rich bodies in the cascade, obtaining a range of

M0.012 0.046 Å– Myr−1. Then, we can estimate that the time-
scale for collisions between any such supercomets to take place
is 14–54 years, meaning that the rate is 2.2–8.6 every 120 years
(the survival timescale of CO). This would suggest that it is
possible that the recent destruction of a large body within the
belt, alone, produced all of the observed CO mass.

However, this conclusion is subject to the assumption that
bodies of the required M6.5 10 7´ -

Å mass for CO release,
which would be ∼100 km in size, lose mass at the same rate as
other bodies participating in the collisional cascade. This
implicitly assumes an extrapolation of the size distribution from
small, observable grains up to bodies of this size. Although
∼100 km is consistent with observations of the Kuiper and
asteroid belts in the solar system (Bottke et al. 2005; Fraser
et al. 2014), as well as other planetesimal growth models
(Johansen et al. 2015; Shannon et al. 2016), it remains to be
determined whether such large bodies in the Fomalhaut belt
exist and participate in the collisional cascade. If we extrapolate
the power-law size distribution of Wyatt & Dent (2002) to large
sizes (n D D q2 3µ -( ) with q 11 6= , Figure 8 in their paper),
we find that there should be 7×107 objects with this or larger
mass within the Fomalhaut ring. Then, the collision timescale
of one supercomet is 1.0 3.8 Gyr~ – , which is longer than the
∼440Myr age of the system. This indicates supercomets would
have seldom collided over the age of the system, and their size
distribution would therefore have been set by growth processes
during planet formation, where the latter is completely
unconstrained observationally. In addition, if the extrapolation
of the size distribution to these sizes were valid, the total mass
of the belt (∼0.4 Jupiter masses) would be ∼4 times higher
than the 29M⊕ that an initial minimum-mass solar nebula
(MMSN) planetesimal disk would have had between 120 and
150au (Kenyon & Bromley 2008). In general, these required
high belt masses challenge the validity of our extrapolation and
point to a likely steeper size distribution for the large
primordial bodies (as is the case for Kuiper Belt objects, e.g.,
Schlichting et al. 2013).

Overall, this caveat would make our estimated high collision
rate for large bodies an upper limit. To conclude, it is therefore
possible that the destruction of a large icy body released all the
CO observed in the Fomalhaut ring, although a reasonable
likelihood for this event to happen requires the Fomalhaut belt
to be massive, of order of a few times higher than the
expectation from an MMSN-like disk.

4.3. Origin of the Gas: Steady-state Release
and Ice Composition

On the other hand, we can consider the total gas release
expected from the steady-state collisional cascade in the
framework described in Matrà et al. (2015) and already applied

to other debris disks hosting secondary gas (see Section 4.4).
Regardless of the details of the ice-removal mechanism, this
method can be used to estimate the CO+CO2 ice mass fraction
in Fomalhaut’s exocomets that is required to produce the
observed CO gas. In summary, we assume that a steady-state
collisional cascade is in place within the ring, with large parent
bodies grinding down to produce dust of sizes all the way down
to the blow-out limit (e.g., Wyatt & Dent 2002).
Solid mass is being inputted through catastrophic collisions

of the largest comets in the collisional cascade, and the CO
+CO2 mass fraction will be lost through gas release within the
cascade. The condition of steady state imposes that the rate at
which mass is being inputted by the largest bodies MDmax( ˙ ) is
equal to the sum of the rate at which mass is being lost through
CO+CO2 outgassing (MCO CO2+˙ ) and the rate at which mass is
being lost through radiation forces at the bottom of the cascade,
M .Dmin
˙ Assuming that all of the CO+CO2 ice is lost through the
cascade before reaching the smallest-sized grains (see discus-
sion in next section), we have M f M ,DCO CO CO CO2 2 max=+ +

˙ ˙
meaning that we can measure the CO+CO2 ice mass fraction in
exocomets fCO CO2+ through

f
M M

1

1
. 1

D
CO CO

CO CO
2

min 2

=
++

+˙ ˙ ( )

In a steady state, the outgassing rate of CO+CO2 molecules
equals their destruction rate (where the latter is known) through
M M tCO CO CO phd2 obs=+˙ . Additionally, the mass loss rate MDmin

˙
of CO+CO2-free particles at the small size end of the
collisional cascade can be estimated by considering the
collision timescale of particles just above the minimum
size in the distribution (Appendix B). The latter is well
constrained by observations and can be calculated as shown in
Equation (21).
Overall, the CO+CO2 ice mass fraction of exocomets can

therefore be estimated through

f
R R f L M t M

1

1 0.0012
, 2CO CO 1.5 1 2 0.5

phd CO
12

obs 

=
+ D+ - - -

( )

where R and RD are in au, Lå and Må are in Le and M t, phd is
in years, and MCO obs inM⊕. The CO+CO2 ice mass fraction in
Fomalhaut is therefore in the range 4.6%–76% (taking the
observed belt parameters quoted in Appendix B).

4.4. Comparison with Other CO-bearing Systems: An Overall
Similarity to Solar System Comets

Our compositional measurement in exocomets within the
Fomalhaut ring adds to the other two measurements of the CO
+CO2 exocometary ice mass fraction obtained through ALMA
observations of second-generation CO gas, β Pictoris (Matrà
et al. 2017) and HD 181327 (Marino et al. 2016). For
consistency, we also apply our updated, more accurate
estimation of the ice mass fraction presented here to these
systems, using the same belt and stellar parameters as in the
original works. We find that the CO+CO2 ice mass fraction
becomes 32%< for β Pictoris (using the 3σ upper limit on the
CO mass) and in the range 0.8%–3.7% for HD 181327 (using
the 1s range of the CO mass). These two systems both
belong to the β Pic moving group at an estimated age of
23±3Myr (Mamajek & Bell 2014) and are much younger
than Fomalhaut, but they nonetheless present compositions that
are within an order of magnitude of one another (Figure 6). For
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example, the weak detection in Fomalhaut compared to β Pic is
easily explained by the fact that Fomalhaut is much less
collisionally active. Indeed, the mass loss rate through the
cascade is 20 times higher for the β Pictoris disk, and the
higher amounts of CO also mean that some self-shielding takes
place, increasing the photodissociation timescale by a factor of
∼2.5 (Matrà et al. 2017). Overall, for the same CO+CO2 ice
content, this indicates that the CO gas mass would be at least
50 times higher in β Pic with respect to Fomalhaut, in
agreement with the observations. On the other hand, we note
that our new Fomalhaut measurement is at least marginally
inconsistent with that in the HD 181327 debris ring, potentially
suggesting an intrinsic difference in composition or gas release
mechanism between these two systems.

Despite the rather large error bars on the measurements
obtained so far, Figure 6 also shows that the CO+CO2 mass
fraction in exocomets is consistent with that of solar system
comets. A caveat to keep in mind in this comparison is that
mass fractions in solar system comets are derived from
measurements of the relative abundance of CO and CO2

compared to H2O. On the other hand, their refractory-to-
volatile mass ratio, required to derive the CO+CO2 mass
fraction, is only poorly (if at all) known, due to the difficulty in
remote measurements of dust production rates. The only comet
for which this is measured robustly in situ is comet 67P/
Churyumov–Gerasimenko (67P), where the dust-to-ice mass
ratio is 4±2 in the coma (Rotundi et al. 2015) and consistent
with (though not directly constrained by) density measurements
of the interior of its nucleus (Pätzold et al. 2016). We therefore
assumed all solar system comets to have an equal refractory-to-
volatile mass ratio of 4, though note that this may be subject to
scatter across comet families and individual objects.

Another underlying assumption is that we are using
observation-based estimates of the gas production (outgassing)
rates of CO and CO2 (as well as H2O for solar system comets)
as a probe for their relative solid abundance; in other words, we
are assuming that CO+CO2 ice and refractories are removed at
rates that reflect their internal composition. In solar system

comets, linking outgassing rates in the comae and nuclei
abundances depends not only on a comet’s distance from the
star (as clearly seen, e.g., for Hale–Bopp; Biver et al. 2002), but
also on its detailed thermal and structural properties (Marboeuf
et al. 2012). However, CO/H2O and CO2/H2O outgassing rate
ratios are generally measured near a comet’s perihelion, where
the process is dominated by water sublimation, which carries
along CO and CO2 trapped within it. Then, for a comet with a
mostly homogeneous composition and dominated by clathrates
(as shown to hold for 67P; Luspay-Kuti et al. 2016), outgassing
ratios are expected to be a good representation of its ice
abundance (see, e.g., Marboeuf & Schmitt 2014).
As with solar system comets, our exocometary abundance

derivation also assumes that CO and CO2 ice, as well as
refractories, are released at rates that reflect their composition;
in the context of our steady-state model, this is valid as long as
two conditions apply:

1. No CO or CO2 is removed as ice by way of the smallest
blow-out grains in the cascade, which is of order ∼10 μm
in the Fomalhaut belt (though it can vary depending on
grain composition). In other words, these ices are only
removed as gas. This applies if ices are completely lost
further up the collisional cascade, that is, if either the
sublimation or photodesorption timescale is shorter than
the collision timescale for grains larger than the blow-out
size. Taking as an example a pure water ice grain 20 mm
in size, the results of Grigorieva et al. (2007) can be
used to show that its photodesorption timescale is
∼13,700 years. On the other hand, its collisional lifetime
is ∼4×105 years (Wyatt & Dent 2002), meaning that
water ice cannot survive on the surface of grains at the
bottom of the collisional cascade. A similar argument
applies for a pure CO2 ice grain, whose photodesorption
timescale will be very similar to that of water, due to a
similar photodesorption yield of ∼10−3 molecules
photon−1 (Grigorieva et al. 2007; Öberg et al. 2009).

The next question is whether CO gas or CO2 ice can
remain trapped within refractories all the way down to the
smallest sizes in the cascade. Due to its low sublimation
temperature (∼20 K), CO is trapped already in gas form at
the blackbody temperature of a dust grain within the
Fomalhaut belt (∼48 K), and for small grains at the bottom
of the cascade, it is likely to diffuse through the refractory
layer. On the other hand, CO2 has a higher sublimation
temperature of ∼80 K (Collings et al. 2004). The hottest
grains will be those near the blow-out limit (∼10 μm),
which will have a temperature close to that observed in the
spectral energy distribution (SED, ∼74 K; Kennedy &
Wyatt 2014). Further heating is likely to take place through
collisions themselves (e.g., with accelerated high-β grains,
as proposed by Czechowski & Mann 2007), increasing the
likelihood of CO2 sublimation and subsequent release
through diffusion. In conclusion, while further detailed
modeling is necessary, we deem it very unlikely for any
CO to be retained within grains down to the smallest
sizes in the cascade, but on the other hand we cannot
exclude that a fraction of CO2 ice may instead be retained
within a refractory mantle. The latter would cause an
underestimate of the CO+CO2 exocometary mass fractions
presented here.

2. CO and CO2 production is not dominated by resurfacing
collisions, which preferentially occur for large bodies at the

Figure 6. CO+CO2 mass fraction (%) in solar system comets where both
measurements are present (red, assuming a dust-to-ice ratio of ∼4 as measured
in comet 67P; Rotundi et al. 2015) and in exocometary belts observed so far
(blue, derived in the steady-state framework). The tick labels on the top x axis
indicate the spectral type of the host star. Compositions were derived from
Matrà et al. (2017) (β Pic), Marino et al. (2016) (HD 181327), this work
(Fomalhaut), and Le Roy et al. (2015) and references therein for solar system
comets. Shaded regions represent the ranges of mass fractions expected from
direct inheritance of ISM compositions (assuming 100% CO trapping within
comets and no grain surface chemistry), in the cases where comets formed
outside (darker gray) or inside (lighter gray) the CO ice line within the
protoplanetary disk.
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top of the cascade (A. Bonsor et al. 2017, in preparation).
These less energetic collisions, which are not taken into
account in our model, can expose trapped volatiles as well
as fresh surface ice that can then be rapidly lost through
sublimation or photodesorption. This would produce
more gas mass than predicted through catastrophic-only
planetesimal collisions, meaning that our model would be
overestimating the cometary CO+CO2 ice mass fraction.
If resurfacing collisions are the main driver for gas release,
we expect most of this release to happen early in the
lifetime of the belt, since it requires the big planetesimals
(holding most of the CO mass) to only have been
resurfaced rather than destroyed. However, we note that
these large bodies may also be large enough to retain the
released gas through an atmosphere, or they could lose dust
as well as gas through drag (as observed in solar system
comets). Overall, it remains to be established whether gas
released through resurfacing collisions can dominate the
released mass, though such a study is beyond the scope of
this paper.

4.5. Possible Origins for This Similarity and Comparison to a
Simple ISM Inheritance Model

We find that CO+CO2 mass fractions in exocomets are
similar to each other and are of the same order (within about an
order of magnitude) as observed for solar system comets
(Le Roy et al. 2015 and references therein). As shown in
Figure 6, this similarity appears to apply around host stars of a
range of ages and spectral types. In terms of distance to the host
star, exocometary gas is observed at 50–220 au around an 8.7 Le
star (β Pic, Matrà et al. 2017), ∼81 au around a 3.3 Le star (HD
181327, Marino et al. 2016), and ∼135 au around a 16.6 Le star
(this work, stellar luminosity from SED fit in Kennedy & Wyatt
2014). Assuming blackbody-like bodies, the equilibrium temp-
erature in these belts would be equivalent to distances of 17–75,
45, and 33 au from the Sun in the solar system, meaning that
the temperature of these exocomets should be of the same
order as observed for the solar system’s comet reservoir in the
Kuiper Belt (30–50 au; e.g., Stern & Colwell 1997). Then,
similar compositions and temperature environments for comets
may indicate similar comet-formation conditions in younger
protoplanetary disks, including the solar nebula.

Another aspect to consider is whether these cometary
fractions of mass locked in CO and CO2 are globally
representative of the chemical heritage from the ISM (see
Pontoppidan et al. 2014 for an extensive discussion of such
inheritance). In the ISM, we know that the [CO/H2] abundance
ratio in the gas is of order 10−4, where H2 dominates the gas
mass, and the gas/dust ratio is of order ∼100. This yields a
M M 14%CO gas,ISM total,solids,ISM ~ . On the other hand, the
CO abundance in ISM ices is in the range [CO/H2O]ice,ISM
∼ 9%–36% compared to H2O (Mumma & Charnley 2011, and
references therein). The CO2 content is dominated by its ice
phase (e.g., van Dishoeck et al. 1996), with a [CO2/H2O]ice,ISM
abundance of ∼15%–44% (again, see Mumma & Charn-
ley 2011 and references therein). This means that ISM material
that is accreted in the outer regions of the protoplanetary disk
will contain CO+CO2 already in the ice form, with
M M 0.51 1.64CO CO ice,ISM H O ice,ISM2 2 ~+ – , and CO in the gas
form, with M M 0.14CO gas,ISM total,solids,ISM ~ .

Given their present location, we assume that cometary belts
formed in protoplanetary disks outside the H2O and CO2 ice
lines. This means that without significant vertical and outward
radial mixing, H2O and CO2 remained locked on the grains
with ISM abundances, producing cometary CO2/H2O abun-
dances representative of the ISM. For the CO content, however,
we consider two possible scenarios, where comets formed
either outside or inside the CO ice line. Outside the CO ice line,
the freeze-out of CO from ISM gas will enhance the ice-phase
CO+CO2 abundance compared to the ISM value. This simple
scenario would yield a total CO+CO2 mass fraction in the
comets given by

M

M

M M

M
3CO CO ,ice

total,solids comet

CO CO ,ice ISM CO,gas ISM

total,solids comet

2 2=
++ +⎛

⎝⎜
⎞
⎠⎟

( ) ( )
( )

( )

where

M

M

1

1

1

1

4

M

M
M

M

CO CO ,ice ISM

total,solids comet
comet

ISM

1
2

dust

ice

CO CO2,ice

H2O,ice

=
+ +

+
-

+( )( )
( )
( )

( )

and

M

M

1

1
. 5

M

M

CO,gas ISM

total,solids comet

ISM

1
CO,gas

total,solids

=
+

-( )
( )

( )
( )

Given CO gas and CO+CO2 ice abundances in the ISM,
assuming a range of dust-to-ice ratios between the 1s values
measured in comet 67P, we obtain an expected CO+CO2

cometary mass fraction of ∼17%–33% (darker shaded region
in Figure 6). The growth of grains to comet-sized bodies allows
CO ice originally on grain mantles to become trapped in other
ices and refractories; this ensures that CO (and thus the CO
+CO2 mass fraction derived) can be retained once the
protoplanetary disk is dispersed and the CO ice line moves
farther out than the cometary belt location.
In the second formation scenario, where the cometary belt

formed inside the CO ice line in the protoplanetary disk, no
extra CO from ISM-like gas would be incorporated in the ice
phase; this would imply a CO+CO2 cometary mass fraction of
∼5%–21% (lighter shaded region in Figure 6). As well as
assuming that all of the CO can remain trapped within other
ices or refractories inside its ice line, this simplified
evolutionary model ignores any grain surface chemistry, which
is likely ongoing through the ISM, protoplanetary, and
cometary phases of evolution. We expect that such chemistry
will act to deplete the CO and CO2 ice abundances, creating not
only more complex volatiles (which are not dominant in
cometary ice), but also organic refractories. Strictly speaking,
we should therefore consider these ranges as upper limits to the
CO+CO2 cometary mass fractions derived in this ISM
inheritance model.
While the large error bars in the solar system and

exocometary measurements do not allow us to draw significant
conclusions with regard to enhancement or depletion compared
to ISM-inherited abundances, we show that such a comparison
should be possible with increasingly accurate observations. For
example, measuring the depletion of CO+CO2 abundance with
respect to ISM-inherited values would allow us to estimate the
amount of CO or CO2 that has been lost either due to
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sublimation during or immediately after dispersal of the
protoplanetary disk (due to consequent outward movement of
the CO ice line location) or due to grain surface chemistry and
production of more complex organics. As well as achieving
more accurate measurements over a larger sample of exo- and
solar system comets, pinpointing the formation location of
cometary belts within the protoplanetary disk with respect to
the CO ice line will be crucial in allowing us to distinguish
between the two possible ranges of ISM-inherited abundances
discussed above.

4.6. Pericenter/Apocenter Glow of CO Released
from a Steady-state Collisional Cascade

In Section 3.5 we presented tentative evidence of an
enhancement in CO emission near the planetesimal belt’s
pericenter. Here, we examine its possible physical origin in the
framework of our steady-state model described in Section 4.3.
Once again, we assume that the CO gas produced is a fraction
of the solid mass lost as part of a steady-state collisional
cascade, giving us access to the CO+CO2 ice abundance. The
total solid mass loss rate M D˙ ( ) is calculated by multiplying the
mass M Dsolid ( ) in any given size bin with the collision rate
R Dcol ( ) of bodies in that size bin.
In Appendix A, we quantify how this mass loss rate within

an eccentric cometary belt depends on the true anomaly f, for
two possible regimes of grain sizes releasing CO. For the small
grains, under the condition D Dmin< ( 0.5 v Qrel

2
D

1 3) , we find
that the collision rate is independent of the true anomaly; this in
turn means that the mass loss rate should be enhanced at the
apocenter due to the expected enhancement in solid mass at this
location (due to particles spending more time there). For larger
grains (D Dmin> ( 0.5 v Qrel

2
D

1 3) ), the azimuthal dependence
of the mass loss rate is set by six parameters, namely the slope
of the size distribution in the collisional cascade q, the mean
proper eccentricity of material orbiting within the belt ep, the
stellar mass M, the belt semimajor axis a, the forced
eccentricity of the belt efrc, and the specific incident energy
required for a catastrophic collision, QD

. For the case of the
Fomalhaut belt, we have observational constraints on q 1.83~
(Ricci et al. 2012, where we assume it to be independent of true
anomaly), M 1.92 ~ Me (Mamajek 2012), a 136.3 au~ , and
e 0.12frc ~ (MacGregor et al. 2017), meaning that our only free
parameters are the mean proper eccentricity ep and the specific
strength QD

 of the planetesimals. We can then quantify
the fractional difference in mass loss rate at pericenter with
respect to apocenter ( M f M f1 180 0- =  = ˙ ( ) ˙ ( )) using
Equations (12) and (13) in Appendix A, shown for a wide
range of ep and QD

 values in Figure 7.
As expected, for low proper eccentricities and high

planetesimal strengths, the effect of a higher mass at apocenter
dominates over the effect of easier collisional disruption at
pericenter. Vice versa, for high proper eccentricities and low
planetesimal strengths, we see a pericenter enhancement in the
mass loss rate due to the effect of easier collisional disruption at
pericenter dominating over the effect of having a higher mass at
apocenter. The upper and lower horizontal asymptotes of the
curves correspond to the limits e 0p  and ep  ¥ as
calculated by setting e 0.12frc = in Equations (14) and (15)
(Appendix A) and are independent of both ep and QD

. This
implies a ∼15% maximum pericenter-to-apocenter enhance-
ment in the mass loss rate of the Fomalhaut belt. For the 1s
range of proper eccentricities derived from continuum imaging

(MacGregor et al. 2017) and QD
 values in the range

10–10,000 J kg−1, expected for weak ice grains of a wide
range of sizes within the collisional cascade (Wyatt & Dent
2002; assuming the results of Benz & Asphaug 1999), we
predict the fractional difference in mass loss rate between
pericenter and apocenter in the range −9% to 12%. Then, given
that the CO photodissociation rate is independent of true
anomaly, and assuming that the CO+CO2 ice fraction is too,
the steady-state mass loss rate enhancement at pericenter
directly translates into a CO mass enhancement.
Whether a CO mass enhancement translates into a CO flux

enhancement at pericenter/apocenter, or in other words CO
pericenter/apocenter glow, also depends on the excitation of
the CO molecule (see Section 3.4), and particularly on the
radial dependence of the gas kinetic temperature and electron
density. This is because for example in Fomalhaut, CO emitted
at the ring’s pericenter will be closer to the star than the CO at
apocenter, by a factor of e e1 1 1.27+ - ~( ) ( ) . Making the
simple assumption of a β Pic-like environment for CO
excitation, with an electron density varying with radius as

R300 100 au 1~ -( ) cm−3 (Matrà et al. 2017), the expected flux
at pericenter would be 2.5%–6.1% larger than that at apocenter,
making the CO flux enhancement even larger than expected
from a mass enhancement only. Therefore, we expect
excitation effects to favor a CO flux enhancement at pericenter.
We cautiously note that such a contribution from CO excitation
will depend on the gaseous environment of the Fomalhaut belt;
this may significantly differ from that of β Pic, though it may
be characterized in the future using optically thin line ratio
observations.
Finally, we need to take into account projection effects

due to the viewing geometry; in particular, the observed
pericenter-to-apocenter ratio will depend on the combined
effect of the ring’s vertical thickness, its inclination to the line
of sight, and the on-sky angular distance between the ring’s
pericenter and the nearest ansa. This is because the azimuthal
intensity distribution for a significantly inclined ring with a

Figure 7. Solid mass loss rate (and hence CO mass) enhancement predicted at
pericenter with respect to apocenter in the Fomalhaut ring, for CO released by
small grains of sizes D Dmin< ( 0.5 v Qrel

2
D

1 3) (purple dashed line), or by
larger grains of sizes D Dmin> ( 0.5 v Qrel

2
D

1 3) (colored solid lines). In the
larger size regime, given the observationally constrained M q a e, , , frc (see
text), the enhancement is only a function of the unknown proper eccentricity ep

of the planetesimals and of their threshold specific strength needed for
catastrophic collisions QD

. The shaded region represents a wide range of QD
 as

explored by Wyatt & Dent (2002) and the 1s interval of ep obtained from
fitting the ALMA dust image (MacGregor et al. 2017).
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nonnegligible vertical thickness should present two enhance-
ments at the location of the two ansae (see Marino et al. 2016
for the dependence of the azimuthal intensity distribution on a
ring’s scale height). To fully take this effect into account and
demonstrate its impact on the measured pericenter or apocenter
glow, we produce a simple model of CO in the Fomalhaut
ring and produce a sky-projected model image using the
RADMC-3D15 radiative transfer code. In doing this, we first
construct an eccentric CO ring model with radial mass
distribution, inclination to the line of sight, position angle,
forced eccentricity, and argument of pericenter equal to those
of the dust ring. Then, we introduce the dependence of the CO
surface density on the true anomaly as described above and
derived in Appendix A. We assume the maximum possible
pericenter versus apocenter CO mass enhancement for the best-
fit e 0.06p ~ from the continuum observations, corresponding
to ∼12% (for a QD

 of 10 J kg−1). Furthermore, we make the
simple assumptions that the gas kinetic temperature is equal to
the blackbody temperature of the planetesimals and that the
electron density follows the same radial dependence as found in
β Pictoris.

In our model (see the spectrally integrated image in Figure 8),
we assume a radially constant CO vertical aspect ratio equal to
the average proper eccentricity of the planetesimals (h 0.06~ ),
but we also consider extreme cases of a very small aspect ratio
(h 0.0001~ ) and a larger one (h 0.14~ , corresponding to the
3σ upper limit found for the HD 181327 ring; Marino
et al. 2016). We find that in the infinitesimally vertically thin
limit we recover the pericenter enhancement with respect to
apocenter expected from our CO steady-state model from both

mass (12%) and excitation (∼2.5%) effects. In the vertically
thick cases, the value of this ratio is slightly reduced due to the
additional “background” effect of the ansae enhancement.
Their absolute flux difference, however, remains unchanged,
due to the projection effect being axisymmetric with respect to
the ring’s geometric center.
To conclude, the upper-limit pericenter versus apocenter

enhancement predicted by our model (14.5%) is marginally
consistent with our measurement from the current data set
(88± 25%; see Section 3.5) at the 2.9σ level. If confirmed at
high significance, this discrepancy would indicate the inability
of our steady-state model to explain this asymmetry. In turn,
this may favor a stochastic event such as the destruction of a
large icy body near the belt’s pericenter (as discussed in
Section 4.2). Similarly, a recent impact was previously invoked
to explain the observed CO asymmetry in the β Pictoris system
(Dent et al. 2014), though this was recently ruled out through
higher-resolution observations (Matrà et al. 2017).
Either way, a conclusive detection of this enhancement

would allow us to determine the direction of orbital motion of
the belt, and in turn whether its east or west side is nearest to
Earth. This is because the finite lifetime of CO (∼120 years in
such an optically thin environment) would cause either a tail in
the direction of motion (in case of a stochastic event; see, e.g.,
Dent et al. 2014) or a ∼19° offset of the peak location (with
respect to pericenter/apocenter, also in the direction of motion)
due to CO pericenter/apocenter glow. Therefore, future, deeper
ALMA observations of pericenter and apocenter are warranted
to confirm this tentative evidence for asymmetry.

5. Conclusions

This work presented observations of CO J=2-1 230 GHz
emission in the Fomalhaut ring. Through spectrospatial filtering
of the ALMA data cube, we detected line emission with an
integrated line flux of 68±16 mJy km s−1 at a radial velocity
consistent with that of the star. We report the following
findings:

1. The spectrospatial filtering method shows that the ring’s
sky-projected rotation axis matches that of the star
(Le Bouquin et al. 2009), with the material at the SE
ansa moving toward us. This however remains insuffi-
cient to determine the sense of rotation and in turn
whether the NE side of the ring (observed to be brighter
in HST scattered light imaging; Kalas et al. 2005) is in
front of or behind the sky plane.

2. The radial location of the emission is consistent with that
of the millimeter dust ring (as presented in MacGregor
et al. 2017), indicating that both the observed CO and
dust originate from the cometary belt at a distance of
∼136 au from the star.

3. CO J=2-1 emission is optically thin and originates from
a total CO gas mass of M0.65 42 10 7´ -

Å( – ) . This is
consistent with the previous ALMA nondetection of
the J=3-2 transition (Matrà et al. 2015) and is in line
with the CO excitation conditions observed in the β
Pictoris disk.

4. At an age of 440Myr, Fomalhaut hosts the oldest debris
belt where gas emission colocated with dust emission has
been detected to date. The amount of CO and the
potential high amounts of H2 (more typical of primordial
protoplanetary disks) are insufficient to shield CO and

Figure 8. Model image for the maximum CO J=2-1 flux enhancement
expected at pericenter with respect to apocenter through steady-state CO
production in the Fomalhaut ring. The model predicts a flux density
enhancement of ∼14.5% at the pericenter ( 22 . 5w =  ) with respect to the
apocenter location. However, this is for an infinitesimally short CO lifetime,
much shorter than an orbital timescale; for the finite expected CO lifetime of
120 years, the peak is shifted by ∼19° in the direction of motion, which we
here assumed to be clockwise. This shifts the peak to a true anomaly of
f 3 . 5~  , or very close to the SE ansa. This model example assumes the best-fit
orbital elements and ring width from the dust continuum fit, β Pictoris-like
electron densities, a gas temperature equal to the blackbody temperature of
∼50K at the ring’s distance to the star, a planetesimal strength Q 10D

 = , and a
radially constant vertical aspect ratio of 0.06.

15 http://www.ita.uni-heidelberg.de/dullemond/software/radmc-3d
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allow it to survive over the system’s lifetime. This
implies that the observed CO is of secondary origin and
originates from exocometary ices within the belt.

5. We evaluate the possibility of CO being produced from
either stochastic destruction of a large icy body or steady-
state release through the collisional cascade. We deem a
stochastic collision possible but reasonably likely only for
high total belt masses. On the other hand, in the steady-
state scenario (as first described in Matrà et al. 2015), we
combine the mass loss rate from the collisional cascade
(producing CO) with the known CO photodissociation
rate (destroying CO) to infer a CO+CO2 exocometary
mass fraction of 4.6%–76%. This is consistent with the
other two debris belts where gas has been confirmed to be
of exocometary origin, β Pictoris (Matrà et al. 2017) and
HD 181327 (Marino et al. 2016).

6. As well as being similar to one another, exocometary CO
+CO2 mass fractions are consistent with observations of
solar system comets, where this may be explained by
similar blackbody temperatures and may indicate similar
formation conditions in the original protoplanetary disk.
We present a simple ISM inheritance model, showing that
the CO+CO2 mass fractions in exo- and solar system
comets are consistent with all of the CO+CO2 having
been directly inherited from the ISM’s CO+CO2 ice and
CO gas content. Increasingly accurate cometary abun-
dance measurements are needed to distinguish between
comet formation scenarios and to estimate the amount of
CO+CO2 that was lost through grain surface chemistry
forming more complex organics or through gas release
during the main-sequence phase of evolution, as
observed here.

7. We report tentative evidence that most of the detected CO
emission (49± 27)% originates near the ring’s pericenter
location derived by ALMA and HST high-resolution dust
imaging. This may be due to a recent impact event that
took place near pericenter, or to CO pericenter glow
caused by the combined effect of (A) a steady-state mass
loss rate enhancement at pericenter for an eccentric ring
(for sufficiently high values of proper eccentricities ep or
sufficiently low planetesimal strengths QD

) and (B)
molecular excitation effects due to the pericenter being
closer to the central star.

8. We presented a model of CO pericenter or apocenter
glow expected for exocometary CO released in eccentric
belts. For a well-characterized dust belt such as
Fomalhaut, the expected CO mass ratio at apocenter
with respect to pericenter is only a function of the
planetesimal strength QD

 and the mean proper eccen-
tricity ep. The model presented is general and indicates
that we should expect asymmetric exocometary emission
in eccentric gas-bearing debris disks, a prediction that
may be tested by future ALMA observations. The highest
possible CO flux enhancement at pericenter versus
apocenter predicted in the Fomalhaut belt (∼14.5%) is
at the limit of being marginally consistent with our
observations; if confirmed, a pericenter enhancement
much higher than this prediction would rule out a steady-
state scenario, proving instead that the observed CO must
have originated from a recent impact between very large
comets.
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Appendix A
Dependence of Mass Loss Rate on the True Anomaly in a

Steady-state Collisional Cascade

Here, we aim to derive the dependence of the solid mass loss
rate M D f M D f R D f, , ,col=˙ ( ) ( ) ( ) on the true anomaly f in an
element of length along the ring ds and in a size bin between D
and D+dD. Following Wyatt & Dent (2002), and explicitly
marking the dependence of parameters on the true anomaly f,
the collision rate of planetesimals of sizes in the range Dim to
Dim + dDim on a planetesimal of size D is

R D D f F D D f v f, , , , 6col im im rels=( ) ( ) ( ) ( ) ( )

where fs ( ) is the cross-sectional area per unit volume of
planetesimals of all sizes, v frel ( ) is the relative velocity of the
impactor and the target, and F D D, im( ) is the collisional cross
section of impactors of size Dim on the target of size D.
Neglecting gravitational focusing, which in Fomalhaut
becomes important only for bodies that are too large to
participate in the collisional cascade (Wyatt & Dent 2002), the
latter is expressed as

F D D D
D

D
, 1 , 7im im

im

2

s= +
⎛
⎝⎜

⎞
⎠⎟( ) ¯ ( ) ( )

where D D D dD
D

D
im im

min

max

òs s s=¯ ( ) ( ) ( ) is the normalized

cross section of the impactor, with Dmin and Dmax being the
minimum and maximum size of solids participating in the
collisional cascade.
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The catastrophic collision rate for a planetesimal of size D
from impactors of all sizes is then

R D f f v f

F D D dD

,

, , 8
D f D D

D

col rel
max , ,

im im

cc min

max

òs=

´

( ) ( ) ( )

( ) ( )
{ ( ) }

where D f D,cc ( ) is the minimum impactor size for a collision
to be catastrophic:

D f D D Q v f, 2 , 9cc D rel
2 1 3=( ) ( ( )) ( )

where QD
 is the specific incident energy required for a

catastrophic collision, that is, one where the largest collisional
fragment has half the mass of the original target planetesimal.

We here assume that the relative velocity of planetesimals
can be expressed as v f v f e I1.25rel Kep p

2 2= +( ) ( ) (e.g.,
Lissauer & Stewart 1993), and that the mean planetesimal
inclinations I ep» , where ep is the mean proper eccentricity of
planetesimals in the belt. This differs from the forced
eccentricity efrc in that the forced component can be seen as
that imposed on all particle orbits through secular interaction
with an unseen perturber, whereas the proper component can be
interpreted as the “intrinsic” eccentricity of the particle and
defines the width of the torus formed by particles orbiting the
star with the same semimajor axis (see, e.g., Figure 2 in Wyatt
et al. 1999). Therefore, while the mean proper eccentricity ep
determines the extent of orbit crossing and changes the relative
velocity of collisions equally at any true anomaly, it is the
forced eccentricity efrc that introduces a dependence on the true
anomaly on the Keplerian velocity, and hence on the relative
velocity of collisions (see Equation (13)).

Following Pan et al. (2016), the linear number density, and
hence the cross-sectional area density fs ( ) and the mass
M D f,( ) in an element of length ds, depend on the inverse of
the Keplerian velocity f v f1 Keps µ( ) ( ). This means that the
product f v frels ( ) ( ) in Equation (8) is independent of the
Keplerian velocity vKep and hence of the true anomaly f.
However, the collision rate R Dcol ( ) remains dependent on f
through the minimum size D f D,cc ( ) of impactors causing a
catastrophic collision, which depends on the relative collision
velocities v frel ( ).

As shown in Wyatt et al. (1999), assuming that the steady-
state size distribution follows the expression n D D q2 3µ -( )
from Dmin to Dmax (Dohnanyi 1969), the integral in
Equation (8) can be solved to obtain

F D D dD
X f D

D

q

q X f

q

q X f

,

1
6 10

3 4

3 5

3 3
, 10

D f D D

D q

max , ,
im im

min

5 3

2

cc min

max

ò =

´ +
-

-
+

-
-

-⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

( ) ( )

( ) ( ) ( ) ( )
( )

{ ( ) }

where X f D f D D Q v e f, 2 ,cc D rel
2

p
1 3= =( ) ( ) ( ( )) for Dcc

f D D, min>( ) and X f D Dmin=( ) for D f D D, .cc min<( )
One can immediately notice that for sizes where all impactors
above the minimum size always cause a catastrophic collision
D f D D, ,cc min<( ( ) ) the integral becomes simply the expres-
sion in the square brackets above, and its dependence on the
true anomaly is lost. This has implications for the smallest
particles in the size distribution, which we will come back to
later. For (larger) sizes where D f D D, ,cc min>( ) assuming that
the smallest and largest sizes Dmin and Dmax as well as the

slope of the collisional cascade parameterized by q are
independent of the true anomaly, the azimuthal dependence
of the collision rate can be expressed through vrel as

R D f v f
q

Q q

v f
q

Q q
v f

, 1
6 10

2 3 4
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Since the dependence on the true anomaly enters the expression
through the Keplerian velocity vKep, we can rewrite the above
expression in terms of v fKep ( ). Then, we assume a Dohnanyi

(1969) size distribution (q 11 6= ) and include the vKep
1-

dependence of the mass M D f,( ) in the belt to obtain the
dependence of the mass loss rate on vKep:
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where the Keplerian velocity in the eccentric planetesimal belt
can be expressed as (following Pan et al. 2016)

v f
GM

a

e f e

e

1 2 cos

1
, 13Kep

frc frc
2

frc
2
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+ +

-
( ) ( )

where G is the gravitational constant, Må is the stellar mass,
and a is the semimajor axis of the belt.
Equations (12) and (13) have implications for the predicted

enhancement of pericenter with respect to apocenter (or vice
versa), which we express as M f M f1 180 0- =  = ˙ ( ) ˙ ( )
and show in Figure 7. In particular, it can be shown that
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meaning that a pericenter mass loss rate enhancement is
expected for high proper eccentricities (since the high relative
collision velocities at pericenter dominate over the mass
enhancement at apocenter), whereas an apocenter mass loss
rate enhancement is expected for low proper eccentricities
(since the mass enhancement at apocenter dominates over the
increase in collision velocities at pericenter). We note that in
the limit of small proper eccentricities (e 0p  ), the minimum
impactor size D f D,cc ( ) to cause a catastrophic collision on a
target D is much larger than the target itself (D f D D,cc ( ) ).
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This would create a collisional cascade where only the smallest
of two colliding bodies is destroyed, while neither is destroyed
if their sizes are similar.

It is also interesting to note that for small particles that can be
destroyed by impactors of all sizes down to the minimum size
(i.e., for particles where D f D D,cc min<( ) ) the collision rate
Rcol is independent of the true anomaly. This means that for
sufficiently small particles the dependence of the mass loss rate
on the true anomaly is driven purely by the azimuthal
distribution of mass, leading to M v fKep

1µ -˙ ( ) and causing
an apocenter enhancement even stronger than described by
Equation (14) in the e 0p  limit.

Appendix B
On the Mass Loss Rate of the Smallest Bodies in the

Collisional Cascade

The mass loss rate MDmin
˙ at which the smallest grains in the

collisional cascade are removed from the system can be
estimated through the collisional mass loss rate of grains just
above the minimum size Dmin in the cascade. As we will show
in this section, the latter is well constrained observationally and
can be calculated through their observed cross section ,Dmins
leading to their mass M ,Dmin multiplied by their collision
rate R Dcol min( ).

For a thin ring such as Fomalhaut, the total mass of the
smallest grains (in M⊕) can be expressed as a function of their
total cross-sectional area D totmins s~ (in au2, where we are
assuming that these grains dominate the total observed cross-
sectional area of the ring tots ) through

M D2.5 10 , 16D
9

tot minmin rs= ´ - ( )

assuming grains of mass density ρ in kg m−3, with Dmin in μm.
The total cross-sectional area can be expressed observationally
as R f4tot

2s p= , where for Fomalhaut we take R to be the
semimajor axis of the ring in au, and f L LIR = is the
fractional luminosity of the ring. Then, we can assume Dmin to
be the blow-out size for blackbody grains around a star of a
given luminosity and mass (in units of Le and Me), leading to
(e.g., Wyatt 2008)

M R fL M6.7 10 . 17D
5 2 1

min  = ´ - - ( )

Around Fomalhaut, given a stellar mass of 1.92Me (Mamajek
2012), a best-fit belt semimajor axis of 143.0 au (from ALMA
continuum observations, MacGregor et al. 2017), and a stellar
luminosity of 16.6 Le and fractional luminosity of 7.8 10 5´ -

(from SED fitting, Kennedy & Wyatt 2014), we obtain a mass
in small grains of M9.2 10 4´ -

Å, which is within a factor of 2
of other values quoted by Zuckerman & Song (2012) and Acke
et al. (2012).

The collision rate of grains of size Dmin can also be calculated
using Equations (8) and (10). These can be greatly simplified when
considering particles impacting the smallest grains of the cascade,
under the condition that D f D D, ,cc min min<( ) or, in other words,
collisions impacting the smallest grains (dominated by grains of
the same size, since these dominate the belt’s cross-sectional area)
are always catastrophic. Given the definition of D f D,cc ( )
(Equation (9)), this is the case for D f D D,cc min min =( )

Q v e2 1D rel
2

p
1 3

min

 <( ( )) , or Q v e 2D rel
2

pmin

 < ( ) . In the Fomal-
haut ring, given a best-fit mean proper eccentricity of 0.06

(MacGregor et al. 2017), v 0.31rel ~ km s−1, leading to a
condition Q 5 10D

4
min

  ´ J kg−1 for the smallest grains in the
cascade. Using the compilation ofQD

 versus size values in Krijt &
Kama (2014), we find that this is always the case for grains larger
than the blow-out size (7.2μm for compact SiO2 blackbody grains
and 18.7μm for pure water ice grains). This remains valid if the
smallest grains in the cascade are larger than the blow-out limit
(as argued in Krijt & Kama 2014).
Then, X f D Dmin=( ) with D Dmin= implies X f 1=( ) in

Equation (10). Estimating the cross section per unit volume of
grains (in au−1) of all sizes as Vtots s= where V is the
volume of the ring in au3, this reduces the expression for the
collision rate of the smallest grains (Equation (8), here in yr−1)
to

R D
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where vrel is in km s−1. We immediately note that the collision
rate of these grains is now independent of Q ,Dmin

 removing the
considerable amount of uncertainty introduced if calculating
this collision rate for the largest bodies in the cascade, as
previously worked out in Matrà et al. (2015) from the results of
Wyatt & Dent (2002), as well as other works (Kennedy et al.
2015; Marino et al. 2016; Kral et al. 2017; Matrà et al. 2017).
Expressing the cross-sectional area as a function of the belt’s
fractional luminosity, inserting the definition of vrel with the
assumption e Ip = , and taking the volume of the belt to be that
of a narrow ring with constant aspect ratio (V R RI4 2p= D ,
where RD is the width of the belt in au), we obtain the general
expression
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which for q 11 6= , as is the case for the Fomalhaut belt,
becomes

R D M fR R17.9 . 20col min
0.5 0.5 1
= D- -( ) ( )

This formula differs from Equation (25) in Wyatt et al.
(2007) and Equation (B4) in Zuckerman & Song (2012) by a
factor of ∼1.4. The difference lies in two simplifying
assumptions taken by those authors: (1) the relative
collision velocities are set only by the vertical motion of
particles in the disk, so that v v I Isinrel Kep ~ ~( ) rather than

v v e I I1.25 2.25rel Kep p
2 2= + ~ , as assumed here; (2)

particles of size Dmin collide only with particles of the same
size Dmin , so that the integral in Equation (10), corresponding
to the expression in square brackets in Equation (18), is
independent of the slope of the size distribution and equal to 4,
rather than 28/15 (for q 11 6= ). In the Fomalhaut belt, we find
that the smallest bodies will collide at a rate of 1.2 10 5´ - yr−1,
corresponding to a collision timescale of 8.5 10 years4´ . This
is similar to the timescale derived by Zuckerman & Song (2012),
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but almost two orders of magnitude longer than the timescale
derived by Acke et al. (2012). We divert the reader to Appendix
C in Zuckerman & Song (2012) for a detailed discussion of this
discrepancy.

Finally, combining the mass of small grains MDmin with their
collision rate R Dcol min( ) above, we obtain a simple expression
for the mass loss rate MDmin

˙ (inM⊕Myr−1) of grains at the
bottom of the cascade:

M R R f L M1.2 10 , 21D
3 1.5 1 2 0.5

min  = ´ D - -˙ ( )
which is well constrained observationally through SED fitting
(yielding stellar properties and the fractional luminosity) and
resolved imaging of the belt (yielding accurate values of the belt
radius and width). This allows us to derive a mass loss rate of the
smallest grains in the Fomalhaut belt of M1.1 10 2´ -

Å Myr−1,
or 2.1 1012´ g s−1. The latter value is very close to the mass
loss rate obtained from the modeling results of Wyatt & Dent
(2002) for grains∼10μm in size ( M0.01~ Å Myr−1), although it
differs substantially from the value of M0.1~ Å Myr−1 obtained
by Matrà et al. (2015) derived for the largest bodies participating
in the cascade. This unexpected difference in mass loss rate is
likely due to the fact that the Wyatt & Dent (2002) model
assumes a q 11 6= size distribution, typical of a collisional
cascade where the planetesimal strength QD

 is independent of
size, but then uses a QD

 varying with size to calculate collision
rates, leading to an inconsistency that causes the unexpected
result of a mass loss rate that varies with particle size.
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