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Abstract 

 
Purpose: Systematic review of the literature evaluating clinical use of respiratory-gated (4D) Fluorine-

18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) 

compared to non-gated (3D) PET/CT for radiotherapy planning in lung cancer.  

 

Methods: A search of MEDLINE, Cochrane, Web of Science, SCOPUS and clinicaltrials.gov databases 

was undertaken for articles comparing 3D and 4D PET/CT tumour volume or 4D PET/CT for 

radiotherapy planning. PRISMA guidelines were followed.  

 

Results: Thirteen studies compared tumour volumes at 3D and 4D PET/CT; 8 reported significantly 

smaller volumes (6.9% - 44.5%), 3 reported significantly larger volumes at 4D PET/CT (16%-50%), 1 

reported no significant difference, and 1 reported mixed findings. Six studies, including 2 which 

reported differences in tumour volumes, compared target volumes or studied geographic misses. 4D 

PET/CT target volumes were significantly larger (19%-40%) when compared to 3D PET/CT in all but 

one study where they were smaller (3.8%). One study reported no significance in 4D PET/CT target 

volumes when compared to 4D CT, whereas another study reported significantly larger volumes 

(38.7%).  

 

Conclusion: The use of 4D PET/CT leads to differences in target volume delineation compared with 3D 

PET/CT.  These differences vary depending upon technique and the clinical impact currently remains 

uncertain. Correlation of pre-treatment target volumes generated at 3D and 4D PET/CT with post-

surgical histology would be ideal but technically challenging. Evaluation of patient outcome based on 

3D versus 4D PET/CT derived treatment volumes warrant further investigation. 

 

Keywords: Lung cancer; radiation therapy; respiratory gating; FDG PET/CT; systematic review



Introduction 

18Fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography 

(PET/CT) provides key functional and anatomical information for the staging and management of 

patients with lung carcinoma, with its role in radiotherapy planning becoming more widely accepted 

[1ʹ3]. One of the main limitations of thoracic PET/CT is the susceptibility to movement artefact from 

respiration as, unlike conventional CT imaging, it cannot be acquired in a single breath hold. This can 

cause blurring of the apparent tumour edge and inaccuracies in measurement of standardised uptake 

values (SUV) [4]. This may then lead to geographical misalignment of the contoured radiotherapy 

target volume with the actual tumour position, with the potential for excess normal tissue to be 

unintentionally irradiated or for geographical misses of the tumour. There is also the theoretical risk 

ƚŚĂƚ ŝĨ ƚŚĞ ƉĂƚŝĞŶƚ͛Ɛ ďƌĞĂƚŚŝŶŐ ƉĂƚƚĞƌŶƐ ĂƌĞ ĚŝĨĨĞƌĞŶƚ ďĞƚǁĞĞŶ ĨŽůůŽǁ ƵƉ ƐĐĂŶƐ͕ ƚŚĞ ŵĞĂƐƵƌĞĚ ĐŚĂŶŐĞ 

in SUV may be inaccurate and adversely influence the interpretation of treatment response.  

 

Four dimentional (4D) CT is currently the standard-of-care for radiotherapy planning of lung 

malignancy [5].  Similar methodology has more recently been applied to the use of PET/CT with several 

methods for gating and contouring of tumours being presented [6]. Studies can be gated by dividing 

the patient͛s respiratory cycle and reconstructing the data for either specified amplitude ranges 

(amplitude-based gating) or specific phase ranges of the respiratory cycle (phase-based gating) [7]. 

One of the issues currently faced is defining the percentage of the raw data which is included in the 

recontruction. Too small a percentage of the data will lead to insufficient counts, whereas too great a 

percentage of the data included predisposes the study to more movement artefact which would 

nullify the purpose of respiratory gating. This becomes increasingly more difficult when trying to 

accommodate for irregular breathing patterns [8]. Also, the misalignment of the gated PET and CT 

data has the potential for inaccuracies in SUV measurement [4][9]. The use of 4D CT for attenuation 

correction aids in minimising this artefact, however this does increase the radiation dose to the patient 
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[10]. Another method to aid in registration of respiratory-gated PET and CT is to use a deformation 

matrix to register all the PET data with respiration, such as a motion freeze technique [11].   

 

The rationale for these methods is to negate respiratory motion, improving accuracy of tumour 

volume delineation and quantification of lesional tracer activity, potentially enabling more precise 

metabolillic active tumour targeting [12].  The aim of this article is to systematically appraise the 

literature and determine whether 4D PET/CT is an effective tool for radiotherapy treatment planning 

of lung tumours. 

 

Methods 

A literature search of MEDLINE/PubMed, Cochrane, Web of Science, Scopus and clinicaltrials.gov 

databases was performed, searching for articles on the use of 4D PET/CT in lung carcinoma. The search 

strategy included three ŵĂũŽƌ ŽƉĞƌĂƚŽƌ ĐƌŝƚĞƌŝĂ ǁŚŝĐŚ ǁĞƌĞ ůŝŶŬĞĚ ǁŝƚŚ ƚŚĞ ͞AND͟ ĨƵŶĐƚŝŽŶ͘ TŚĞ ĨŝƌƐƚ 

ĐƌŝƚĞƌŝĂ ĐŽŶƐŝƐƚĞĚ ŽĨ ͞ƌĞƐƉŝƌĂƚŽƌǇ-ŐĂƚĞĚ͟ or ͞4D͟, the second ĐƌŝƚĞƌŝĂ ĐŽŶƐŝƐƚĞĚ ŽĨ ͞PETͬCT͟ Žƌ 

͞ƉŽƐŝƚƌŽŶ ĞŵŝƐƐŝŽŶ ƚŽŵŽŐƌĂƉŚǇ͟ ĂŶĚ ƚŚĞ ƚŚŝƌĚ ĐƌŝƚĞƌŝĂ ĐŽŶƐŝƐƚĞĚ ŽĨ ͞ ůƵŶŐ͕͟ ͞ ƚŚŽƌĂǆ͟ Žƌ ͞ ƌĂĚŝŽƚŚĞƌĂƉǇ͘͟ 

Case studies, articles not published in English, phantom studies and studies with less than 5 subjects 

were excluded (to minimise publication bias). After duplications were excluded, studies were screened 

for eligibility based on title, abstract and subsequently on full text by two authors independently (RF, 

AS). The results were stored in a bibliographic management software. Preferred Reporting Items for 

Systematic Reviews and Meta-Analysis (PRISMA) criteria were adhered to [13]. P values of <0.05 were 

considered statistically significant. 
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Results 

Results are current to January 2017. The MEDLINE/PubMed, Cochrane, Web of Science, Scopus and 

clinicaltrials.gov database search strings yielded a total of 1583 results (Figure 1). After selection based 

on review of abstract, the remainding studies underwent full-text assessment. This resulted in 17 

articles meeting the inclusion criteria, study characteristics are shown in Table 1. 

 

 

Figure 1: Flow diagram illustrating the methodology for study selection for the systematic 

review of 4D PET/CT in radiotherapy planning. 
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Target volumes: 3D PET/CT versus 4D PET/CT 

Tradionally when planning radiotherapy, a clinical target volume (CTV) is generated to encompass the 

gross tumour volume (GTV) and potential areas of adjacent microscopic disease extension.  An internal 

target volume (ITV) can then be created to account for movement of the GTV/CTV within the patient 

(e.g. due to breathing). In stereotactic ablative radiotherapy (SABR) a CTV is not defined but a 

composite GTV is drawn on a maximum intensity projection (MIP) then expanded to an ITV directly. A 

further margin is added to the ITV to account for set-up variability and uncertainties in treatment 

delivery to create a planning target volume (PTV) [30,31]. By looking at the differences in volumes 

reported, when using non-gated (3D) PET/CT and 4D PET/CT, it may be possible to determine if firstly, 

there is a significant difference in the reported tumour volumes between the two methods and 

secondly if the difference affects the PTV used.   

 

i) Impact on GTV 

Thirteen studies out of the 17 included within the literature review assessed the effect of respiratory-

gated PET/CT on the GTV when compared to non-gated PET/CT, with mixed results being reported 

(Table 2). Most studies indicate that there is a decrease in measured tumour volume when 

respiratory-gating is used, but not all of them demonstrated this difference to be significant.  

 Of the studies which reported a significant decrease in tumour volume, Grootjans et al. studied 83 

lesions in 66 patients using an optimal respiratory gated (ORG) method [20]. The ORG algorithm 

determines the amplitude range needed to include a specified proportion of the raw data. The lesions 

demonstrated a decrease in volume when compared to 3D PET/CT, which was significant in the 20% 

and 35% duty cycles. When dividing the lesions by location within the thorax there was a significant 

decrease in volume in the upper lobe and hila lesions in the 20% data cycles and significant decrease 

in size in the 20% and 35% data cycles in the middle and lower lobe lesions. This suggests that the 
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amount of tumour motion, which is most prevalent in the lower lobes, accounts for most of the 

difference between 3D and 4D PET and that using 50% of the data when gating negates the effects. 

Chang et al. studied a novel way of amplitude gating by performing a CT study under free breathing 

whilst monitoring the breathing cycle and then only including PET data from that specific amplitude 

for final image reconstruction [18]. The concept is that the process could be performed on a majority 

of commercial scanners and the CT and PET should automatically be aligned.  They studied 21 lesions 

and found that the respiratory gated lesions were significantly smaller with average percentage 

difference being 37.1%.  Wijsman et al. also demonstrated significantly smaller GTVs when using 

amplitude based respiratory gating [29].  

 

Werner et al. studied a phase based method for respiratory gating in 23 lesions [28]. They too found 

that the GTVs were significantly smaller for the gated PET/CT studies compared to the non-gated 

study, with the mean tumour volume at 3D PET/CT being 69.0 cm3 compared to 47.8 cm3 on 4D 

PET/CT. Nehmeh et al. also demonstrated smaller GTVs when using a phase based system [24]. 

Salavati et al. compared 3D and 4D PET/CT in 106 lesions, with the gated study being reconstructed in 

4 different phases of the respiratory cycle [25]. Unlike the previously described studies they 

demonstrated no significant difference in GTVs between the non-gated and any of the phases of the 

respiratory-gated studies. However, as the paper mentions, the data may have been affected by 

irregularities in patient breathing. 

 

As demonstrated in Table 2 there are differences in approaches to contouring GTVs between groups. 

Aritophanous et al., who used a phase-gated approach to 4D PET/CT, studied 3 different methods for 

calculating tumour volume [14]. They evaluated 2 automated contouring protocols, based on >2.5 and 

GMM (Gaussian Mixture Models), and one manual-based protocol using 40% SUVmax, in 22 lesions 
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including lymph nodes [14]. The difference in volume for all 3 methods was statistically larger on 4D 

PET/CT. There was a larger percentage difference in GTVs in lesions which moved more than 3mm 

(54%) compared to those moving less than 3mm (14%). Callahan et al. also demonstrated larger 

tumour volumes when comparing a 3D and a 4D PET/CT MIP with 4D PET/CT tumour volumes being 

on average 50% (range 2-446%) larger than the 3D PET/CT (p < 0.01) [16]. 

 

Van Elmpt et al. compared a phased-gated and an optimal-gated amplitude-based system, using 35% 

of the 4D PET/CT data, to study the use of the different gating methods on the volume and SUV of 

lesions in 26 lung cancer patients [27]. There were mixed results reported with the phased-based 4D 

PET showing significantly smaller volumes and higher average SUV when compared to the 3D PET 

using a 40% threshold of SUVmax to delineate tumour size (P=0.007) but no significant difference 

when using a 2.5 SUV threshold to determine volume. There was no significant difference in the 

volume between the optimal-gating and 3D, and no significant difference between the optimal-gated 

4D PET and the phased-gated 4D PET. It should be noted that their sample size was smaller (n = 26) 

than Grootjans et al. (n=83) who used ORG and demonstrated that there was no significant difference 

in upper and central tumours when using 35% of the data, therefore if a higher percentage of tumours 

were taken from these areas this may affect the results [20].  

 

The use of a deformation matrix tries to overcome the balance of how much PET data should be 

included in the gated study to get the best signal to noise ratio. Huang et al. looked at 6 patients using 

3D and 4D PET/CT applying a motion freeze technique of reconstruction [11]. Five of the lesions were 

situated within the lower lobes of the lungs and one within the upper lobe. They reported smaller 

tumour volumes on 4D PET/CT than at 3D PET/CT but with motion freeze demonstrating significantly 

smaller volumes than both 3D and 4D PET/CT.   
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Suzawa et al. studied the use of respiratory gated time of flight (TOF) PET/CT in the analysis of lung 

lesions [26]. The principle of TOF PET/CT is that instead of traditional PET/CT where the annihilated 

positron can be located to a line of response the location can be more accurately located along this 

line due to calculating the times of arrival of the two 511KeV photons. This in theory allows more 

accurate imaging requiring fewer counts. Lesions were significantly smaller when compared to the 

non-gated studies with the percentage difference being greater in lesions which were < 3 cm in size.  

 

TŚĞƌĞ ŝƐ ĂůƐŽ ǀĂƌŝĂƚŝŽŶ ŝŶ ƚŚĞ ŵĞƚŚŽĚƐ ƵƐĞĚ ĨŽƌ ĚĞƚĞƌŵŝŶŝŶŐ ƚŚĞ ƉĂƚŝĞŶƚ͛Ɛ ƌĞƐƉŝƌĂƚŽƌǇ ĐǇĐůĞ ǁŚŝĐŚ ŵĂǇ 

play a part in the differences in reported volumes. Büther et al. explored two different methods of 

determining the respiratory cycle when gating a cohort of 74 patients with 164 lesions (upper 

abdominal and thoracic lesions) [15]. Their first method involved using a conventional external 

pressure sensor whereas the second used information from PET/CT to determine range of movement 

during the respiratory cycle.  There was no significant difference between the volumes of lesions when 

comparing the two gating methods, but the gated studies produced significantly smaller volumes than 

the non-gated 100% and 35% data sets. The 2nd (data-driven) method allows gating without additional 

hardware, is operator independant and produces similar results. Kesner et al. also compared 

hardware and software gating to non-gated PET/CT [23]. They reported no significant difference 

between volumes calculated using hardware and software gating methods however in their study 

both methods produced significantly larger tumour volumes when compared to non-gated PET/CT. 

 

One of the main limitations of the majority of these studies is the relatively small numbers of patients 

leading to inconsistent results and although PET imaging provides excellent image contrast between 

malignant and normal tissues, the tumour edge is blurred by a combination of limited spatial 
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resolution and partial volume effects. Phantom studies validate the idea that lesions can be larger or 

smaller than the true lesion when using respiratory-gating [32]. This may be due to the respiratory 

cycle of the patient, the size of the lesion (as partial voluming cannot be completely removed by 

gating) and the amount of data used when constructing the 4D PET/CT, all of which have been shown 

to under or over-estimate the lesion size [22,32]. In addition, the studies present a variety of methods 

of tumour segmentation and attenuation correction mapping. There is an extensive literature 

examining differing methods of segmentation with no clear consensus for the optimal methodology 

[33].  Therefore, the differing segmentation methods used in Table 1 inevitably impact upon the 

eventual evaluation of tumour volume. MIP reformatting and >2.5 SUV thresholding are generaly 

more likely to be associated with larger volumes when compared to other techniques. Also, the 

distribution and the size of the lesions within the different studies will impact the average volumes. 

As a small lesion within the periphery of the lung may not demonstrate tracer acitivty due to the 

confounding partial voluming and motion artefact on the 3D PET/CT but may be demonstrated when 

the motion artefact is accounted for. This would result in an increase of volume of 100% which could 

impact on the reported data. A recent systematic review by Sindoni et al. on 4D PET/CT in radiotherapy 

planning for lung carcinoma discussed the affect of 4D PET/CT on tumour volumes however it did not 

go into the same depth as our paper or include as many papers in their analysis. 

 

A prospective study evaluating patients who undergo 3D and 4D PET/CT prior to surgical resection has 

not been performed but would clarify how 4D PET/CT volumes compare to pathological tumour size, 

similar to the work by Schaefer et al. who compared histological specimens to non-gated PET/CT [34]. 

This would aid in the validation of 4D PET/CT in radiotherapy planning as there would be more 

confidence in the volumes provided.  
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ii) Impact on ITV and PTVs  

Although the differences in GTV described above may impact upon radiotherapy planning, it is 

necessary to consider the  ITVs and PTVs; if these target volumes  are not significantly different then 

these reported variations are unlikely to be clinically significant.  Respiratory gated CT MIP is currently 

the technique used to define ITVs and PTVs for radiotherapy planning, and  therefore studies 

examining 4D PET/CT have used  these techniques for comparision (Table 3).   

 

Chirindel et al. demonstrated that 4D PET/CT ITVs were significantly larger compared to 4D CT and 3D 

PET derived ITVs, mean 8.6 cm3 compared to 6.2 cm3 for 11 peripherally based lesions [19]. However, 

all the 4D PET/CT PTVs for the peripheral lesions were incorporated into the PTVs derived from CT. 

There was no significant difference in the size of central lesions (n=10) between the different 

techniques, mean volume 44.2 cm3 compared to 42.1 cm3 for 4D and 3D PET/CT respectively, however 

in 2 lesions the PTVs extended further than the PTVs defined on CT and therefore highlights the 

potential for geographical misses. The difficulty of using CT to define ITV and PTV for central lesions, 

if IV contrast is not used, is defining the extent of the tumour and therefore the use of respiratory 

gated PET/CT may have added value in this circumstance. Guerra et al. studied differences between 

4D PET/CT, 4D CT and 3D CT in 13 patients with solitary lesions [21].  They found no significant 

difference between 4D PET/CT and 4D CT.  

 

Callahan et al. studied geographic misses in radiotherapy planning in 29 patients when comparing 3D 

and a 4D PET/CT MIP [16]. Four different PTVs were created by adding different margins around the 

volume: 5 mm, 10 mm, 15 mm and anisotropically 10 mm (laterally) by 15 mm (superiorly-inferiorly). 

Results were analysed by splitting geographic misses into three types: type 1, any part of the 4D 

tumour volume outside the 3D target volume; type 2, any part of the 4D target volume outside the 3D 
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target volume; and type 3, any part of the 4D tumour volume receiving < 95% of the prescribed dose 

based on the 3D target volume. The number of type 1 misses increased as the PTV margins were 

decreased with the proportion of type 1 misses also increasing with tumour motion. All PTVs had a 

type 2 miss.  25/29 cases in the 5, 10, and 15 mm PTV margin groups had a type 3 miss and the 

asymmetrical margin had one additional miss. There was a significant correlation between lesion 

motion and percentage of 4D PTV compared to 3D PET/CT with a stronger correlation when the 

motion to lesion size ratio was used. If there was > 20 mm of movement it was more likely to result in 

a significant miss (< 90% of the 4D PTV receiving 95% prescribed dose) whereas if there was < 5mm of 

motion any miss was minor (< 5% of the 4D PTV receiving 95% prescribed dose) and unlikely to be 

clinically significant. The study concluded that using 3D PET/CT without motion suppression with a 

PTV margin which is 15 mm or less is proneto more geographic misses especially in lesions with a 

greater magnitude of motion.  A further study by Callahan et al. also demonstrated larger ITVs on 4D 

PET MIP when compared to 3D PET/CT [17].  

 

Wijsman et al. also studied the difference between PTVs derived from 3D and 4D PET/CT [29]. They 

looked at 22 lesions using a 40% SUV threshold for contouring GTVs for which a 10 mm circumference 

was added to determine the CTV, organs at risk were subtracted from the CTV, and then a further 

5mm circumference was added to determine the PTV. The treatment plan was based on 66 Gy in 33 

fractions using a volumetric modulated arc therapy technique with a dose coverage of 99% for the 

95% iso-dose coverage. They demonstrated significantly smaller GTVs, CTVs and PTVs at 4D PET/CT 

when compared to 3D PET/CT. The volume of lung, including the GTV, receiving at least 35 Gy was 

significantly smaller with 4D PET/CT treatment planning (median difference 5.7cm3) otherwise there 

was no significant reduction in the non GTV containing lung or other organs at risk.  
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Again there is slight variance in the results presented. Jani et al. also looked at different methods of 

gating PET to determine if there was a significant difference in measurement between phase- and 

amplitude-gated studies when comparing ITVs [22]. They studied 12 lesions and 9 lymph nodes with 

PET data which was gated into 8 equal amplitude-based bins (A1), equal counts amplitude-based bins 

(A2) and two temporal-based gating with the windows centred half a phase out from each other. The 

results showed that amplitude-based methods produced significantly larger ITVs compared to 

temporal methods with the A1 method producing more accurate volumes in their phantom model 

correlation.  

 

Recent Developments in Respiratory-Gating Technology 

Data-driven or software respiratory gating techniques have recently been developed and are now 

available on the latest generation PET/CT scanners. These eliminate the need for external hardware 

to track respiratory motion and involve direct mathematical modelling of the motion of tissues or 

lesions based on PET acquisition data and have been shown to have equivalent accuracy [15,35]. These 

recent advances in respiratory gating facilitate automated, operator independent data processing but 

require standardisation and validation in a multi-centre trial setting before clinical translation. To the 

best of our knowledge there is no published data on the use of data-driven 4D PET/CT in radiotherapy 

planning. 

 

Key Recommendations 

Key recommodations for further evaluation of 4D PET/CT in radiotherapy planning in lung carcinoma 

are as follows: 
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 Focussed study to validate the most appropriate gating methods. The use of software gating 

should reduce the complexity of data acquisition and allow standardisation of technique 

ahead of a multi-centre trial(s) 

 A prospective study correlating histological tumour volume with tumour volumes delineated 

on 4D PET/CT and 3D PET/CT would be valuable but may be technically challenging due to a 

combination of factors including patient preference for non-surgical treatment hampering 

recruitment and difficulties in accurately comparing metabolic and histological tumour 

volumes 

 A  randomised multi-centre trial powered to evaluate clinically relevant efficacy endpoints 

between a standard 4D-CT radiotherapy planning control arm and 4D PET/CT guided 

radiotherapy arm using standardised methodology for data acquisition, segmentation and 

target delineation  

 

These recommendations provide a basis for future translational research in 4D PET/CT guided 

radiotherapy planning in lung cancer with a greater likelihood of practice changing results. 

 

Conclusion  

Due to heterogeneous methodology in the published literature it remains unclear whether 4D PET/CT 

guides more accurate target volume delineation compared to 3D PET/CT or 4D CT alone in patients 

with lung cancer. A number of factors have to be considered including spatial resolution of PET, degree 

of tumour motion, the quantity of data used to reconstruct gated imaging and lesion size. Correlation 

of pre-treatment target volumes generated at 3D and 4D PET/CT with post-surgical histology would 

help in design of a future multi-centre trial but may be technically challenging. New data-driven gating 

methods provide a more realistic technique to implement in evaluation of patient outcomes based on 
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3D versus 4D PET/CT derived treatment volumes, ideally in the context of prospective randomised 

study.  
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Authors Year Number 
of lesions 

Brief Summary 

Aristophanous et al. 
[14] 

2012 22* 4D PET/CT GTVs were significantly larger when compared to 3D 
PET/CT volumes using different thresholds for contouring 
 

Büther et al. [15] 2016 164** 4D PET/CT GTVs were significantly smaller compared to 3D 
PET/CT volumes when using data-driven or belt driven gating 
 

Callahan et al. [16] 2014 29 Using the standard 3D PET/CT 15mm PTV without motion 
suppression results in more geographic misses 
 

Callahan et al. [17]  2013 9 4D PET MIP GTVs were significantly larger when compared to 3D 
PET 
 

Chang et al. [18] 2010 21 4D PET/CT GTVs were significantly smaller when compared to 3D 
PET/CT 
 

Chirindel et al. [19] 2015 21 4D PET/CT ITVs were significantly larger when compared to 4D 
CT 
 

Grootjans et al. [20] 2014 83 Optimal gated 4D PET/CT GTVs were significantly smaller when 
compared to 3D PET/CT however, significance depended on the 
location of lesion and the amount of data used for reconstruction 
 

Guerra et al. [21] 2014 13 4D PET/CT PTVs were larger but this did not reach significance 
 

Huang et al. [11] 2014 6 4D PET/CT GTVs were significantly smaller when compared to 3D 
PET/CT when using data driven gating 
 

Jani et al. [22] 2013 21*  ITVs using amplitude based 4D gating were significantly larger than 
those delineated when using phase based gating  
 

Kesner et al. [23] 2016 116*** Both data driven and hardware driven 4D gated PET/CT resulted in 
significantly larger GTVs when compared to 3D PET/CT 
 

Nehmeh et al.[24] 2002 5 Smaller GTVs with 4D PET/CT when compared to 3D PET/CT 
 

Salavati et al. [25] 2014 106 No significance between 4D PET/CT and 3D PET/CT volumes 

Suzawa et al. [26] 2016 50 4D PET/CT GTVs were significantly smaller than 3D PET/CT 
volumes 
 

Van Elmpt et al.[27] 2011 26 4D PET/CT GTVs were only significantly smaller than 3D PET/CT 
when using phase based gating and 40% threshold contouring 
 

Werner et al. [28] 2009 23 Optimal gating 4D PET/CT produced significantly smaller GTVs 
when compared to 3D PET/CT 
 

Wijsman et al. [29] 2016 22 4D PET/CT GTVs were significantly smaller when compared to 3D 
PET/CT volumes 
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Table 1: Summary of studies included in the systematic review. Key: GTV = Gross tumour volume, ITV 

= Internal Target Volume, PTV = Planning Target Volume. *Includes lymph nodes, **includes 

abdominal lesions, ***Number of patients. 

  

 

 



Authors Number of 
lesions 

Type of gating Contouring Average volume of lesion on 
3D PET (cm3) 

Difference in average tumour volume 
(GTV) (4D PET/CT vs 3D PET/CT) 

Significance P-value 

Aristophanous et al. 
[14] 

9* Phase >2.5 SUV 26.1 21.8% larger Yes <0.05 

   GMM 19.8 19% larger Yes <0.05 

   MAN 40% 
SUV max 

9 13.5% larger Yes <0.05 

Callahan et al. [16] 29 Phase (MIP) MAN 15.7 50% larger Yes <0.01 

Chang et al. [18] 21 Amplitude 40% 
SUVmax 

11 37.1% smaller Yes <0.05 

Grootjans et al. [20] 83 Amplitude 20% 40% 
SUVmax 

18.7 11.3% smaller Yes <0.0001 

  35%  18.7 8.5% smaller Yes <0.0001 
  50%  18.7 6.9% smaller Yes 0.02 
        
Huang et al. [11] 6 MF 

 
42% 
SUVmax 

75.7 18.5% smaller Yes  

  Phase  80.5 13.4% smaller Yes  
Suzawa et al. [26] 50 Phase PET Edge 14.7 14.2% smaller Yes <0.001 
Van Elmpt et al.[27]  26 Phase >2.5 SUV 74.2 1.2% larger No  
  Phase 40% 

SUVmax 
32.2 5.3% smaller Yes <0.05 

  Amplitude >2.5 SUV 74.2 0.9% larger No  
  Amplitude 40% SUV 

max 
32.2 2.5% smaller No   

Werner et al. [28] 23 Phase 42% SUV 
max 

69 44.5% smaller Yes <0.05 

Wijsman et al. [29] 22 Amplitude 40% SUV 
max 

5.8 (median) 20.7% smaller Yes <0.05 
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Table 2: Percentage difference of average size of lesions evaluated in 3D PET/CT compared to 4D PET/CT reported by different studies. Automatic contouring 

was performed unless MAN is stated. Key: MAN = manual contouring, PET EDGE = software contouring using steepest change in intensity to determine 

contour, ACOT = adaptive contrast- oriented thresholding algorithm, MIP = maximum intensity projection, MF = motion freeze, NS = non-significant *Lymph 

nodes not included in result. Four studies not included due to missing methodology or data required to calculate percentage difference. 
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Table 3: Percentage difference of average size of PTV/ITV evaluated in 3D PET/CT or 4D CT compared to 4D PET/CT reported by different 

studies.  

 

 

 

 

Authors Number 
of lesions 

ITV/PTV Comparison with 
3D PET/CT or 4D 
CT  

Percentage 
difference 

Significance  P-value 

Callahan et al. [16] 29 PTV 5mm 3D PET/CT 40% larger Yes 0.0013 

  PTV 10mm 3D PET/CT 32% larger Yes 0.0001 

  PTV 15mm 3D PET/CT 31% larger Yes <0.0001 

  Asym 3D PET/CT 31% larger Yes <0.0001 

  PTV 
15x10mm 

3D PET/CT 19% larger Yes <0.0001 

Callahan et al. [17]  9 ITV 3D PET/CT 40% larger Yes 0.0006 

Chirindel et al. [19] 21 ITV 4D CT 38.7% larger Yes <0.05 

Guerra et al. [21] 13 PTV 4D CT 3.4% larger No 0.16 

Wijsman et al. [29] 22 PTV 3D PET/CT 3.8% smaller Yes 0.036 


