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Contribution 

This paper investigates how currents on a low voltage network can be estimated when not all 

the advanced metering infrastructure (AMI) / smart meters are reporting their values in real-time.  

This is done by combining real-time monitoring at the distribution substation with historical 

readings from the meters.  Accurate knowledge of the currents is a key element of Advanced 

Distribution Management Systems.  It is found that the k-nearest neighbors weighted average 

approach performs best.   

Abstract 

Knowledge of the currents is a key foundation for smart grid applications.  However, knowledge 

of low voltage currents is generally poor.  The new information streams from advanced metering 

infrastructure (AMI) / smart meters and the monitoring of distribution substations offer the 

opportunity of rectifying this.  Unfortunately, often not all the smart meter readings will be 

available in real-time.  For example, this situation will arise when older (non-compliant) smart 

meters do not have real-time reporting capabilities.  This paper investigates how knowledge of 

the substation currents can be combined with the available real-time AMI / smart meter readings 

and the historical readings from the non-real-time meters, to estimate these missing values.  It 

is found that the k-nearest neighbor weighted average approach performs best but that the 

gains over using simpler methods are relatively modest.   

Keywords: load allocation, smart grids, nearest neighbors, low voltage networks 

1. Introduction 

The smart grid technology of information gathering, control technology and distributed 

resources is driving the development of Advanced Distribution Management Systems for the 

improved operation of electricity networks (Fan and Borlase 2009, Arritt and Dugan 2011).  

Most of the focus has concentrated on the higher voltage levels.  However, the potential impact 

of the technology on low voltage networks is very considerable due to their large size, the lack 

of previous monitoring and the current limited amount of active network management.  For 

example, it is estimated that of all the energy supplied by the UK’s electricity distribution 
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networks (that is 132kV and below), 4% is lost on the low voltage network, while only 3% is lost 

on the rest of the network combined (Sohn Associates 2009). 

A key base module in these Advanced Distribution Management Systems is load estimation / 

load allocation, i.e. estimating the currents around the network.  However, accurately estimating 

the real-time low voltage currents is a problem as usually the monitoring of currents has only 

been carried out higher up the network.  For example, in the United Kingdom normally the 

nearest monitoring point to the low voltage network has been at the 33kV to 11kV substation.  

This is changing as cost reductions and technological advances mean that real-time monitoring 

of distribution substations is becoming a reality.  Additionally, the completion of the roll out of 

advanced metering infrastructure (AMI) / smart meters in the UK in 2025 will potentially provide 

the Distribution Network Operators (DNOs) with a far more comprehensive view of the low 

voltage currents.  However, readings from the older smart meters will not be available in real-

time, i.e. the readings will be available as a batch every few weeks or months.  While this is not 

a problem for the modelling of longer term distribution problems using smart meter data such as 

the fair allocation of costs (Klonari et al. 2016), it is an issue for the more active management of 

the low voltage network (Leão et al. 2011).   

This paper investigates how to estimate these missing values so as to provide a full picture of 

the low voltage currents. It assumes that the currents at the distribution substation are being 

monitored, that the historical smart meter readings are available but that the most recent 

readings are not available for some of the smart meters.  The performance of a number of 

estimation approaches are assessed on how well they estimate the total currents measured by 

different sized groups of smart meters.  This corresponds to estimating the currents downstream 

of a tee junction where the real-time readings from some meters are missing from both 

branches.  If the two groups of non-real-time meters are denoted by A and B, then the problem 

is: 

Given the combined current from the groups of non-real-time meters A and B, along with 

the historical currents from each of A and B, then what are the best estimates of the 

present currents for groups A and B?  

The analysis found that the performance of the k-nearest neighbor weighted average approach 

was best.  However, the performance of the much simpler approach of using the most recent 

matching times was sufficiently close to it to mean that this is likely to be the preferred approach 

in practice.  The ability of these two approaches to estimate individual meter values was then 

assessed.   

Note that the smart meters are assumed to relay the voltage as well as the load, and so the 

problems of load estimation and current estimation are modelled as being interchangeable.  
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2. Background 

Knowing the magnitude of the currents is fundamental to many network management 

applications (Fan and Borlase 2009).  The large size of the low voltage network makes it an 

important area for improving network efficiency, e.g. low voltage networks in the UK comprise 

48% of the total length of the distribution and transmission networks (EurElectric 2013).  Leão et 

al. (2011) note that it is essential to be able to exchange information about the demands and 

available generation on low voltage networks “to maintain balance and overall power quality”.  

However, knowledge of the low voltage currents has generally been extremely limited.   

2.1 Historical methods for low voltage current estimation 

In the UK, usually the lowest load monitoring point on the distribution network has been of the 

11kV feeders at 33kV substations.  Below this the main information that has been available has 

been the approximately yearly consumption (billing) totals from the individual low voltage 

customers, and the maximum currents recorded at distribution substations have been available.   

The main approach to low voltage current estimation has centred on estimating the peak 

currents for use in the design and extension of low voltage networks.  Two approaches have 

been widely employed in the UK for estimating these: 

 After Diversity Maximum Demand (McQueen et al. 2004) – The maximum demand for a 

customer of a particular type is specified.  The maximum demand from a number of 

these customers is then taken to be this individual maximum demand times a diversity 

factor that is a function of the number of customers in the group.   

 Customer demand curves (Carson and Cornfield 1973, McQueen et al. 2004, Vélez et 

al. 2014) – allowing customers with peaks at different times to be modelled.  

When planning a network extension, both approaches assign a type to each existing customer 

and then the expected demands from each customer are adjusted in line with their annual 

consumptions.  However, the focus of the approaches is on the maximum currents that might be 

experienced by the network, rather than predicting the currents at the hourly or half-hourly level 

that form the basis of Advanced Distribution Management Systems.  Consequently, the 

question this paper investigates is how the estimation of the customer demands at any time of 

the day and year, can be improved by using data from distribution substation monitoring along 

with either annual consumptions or smart meter data.  The problem comes down to splitting a 

measured demand (i.e. at the substation) between individual customers, or between groups of 

customers on different downstream branches.  Several approaches were investigated in 

Kersting and Philips (2008) and Arritt et al. (2012) for splitting the substation demand between 

the customers using the maximum rating of the customer, e.g. “Transformer kVA Allocation” 

using the kVA rating of the service transformer, “Monthly Usage Allocation” using the 
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customer’s kWh bill or “Class Loadshape Allocation” where these are combined with the 

customer load shapes.  The billing approach was found to be much closer to the actual values 

“compared to other traditional methods” Arritt et al. (2012).  This paper considers how smart 

meter data can be used to improve on these methods, how great is the improvement in the 

accuracy of the estimates, and how effective simple approaches based on smart meter data 

are.  The situation investigated is where not all the smart meters are reporting their values in 

real-time.   

2.2 Spatial data statistics 

Central to the approach is that for “similar times and situations” the ratios of the loads on 

different branches of a low voltage network are likely to be similar.  For example, the split of the 

currents across the network exactly a week ago is likely to be a good estimate of the split now.  

Hence a methodology is needed for identifying these “similar times and situations”, and then 

using the ratios on these occasions, to estimate the present ratio.  A similar situation arises in 

spatial statistics, as often a point’s value is closer to the values of geographically nearby points 

than to the values of more distant points (Oliver & Webster 1990, Hofstra et al. 2008).  

Consequently, a number of approaches have been developed for predicting the value at a point 

using spatial correlation.  The central steps in these approaches are (i) defining the separation 

measure, (ii) how the data is restricted to nearby points and (iii) the estimation calculation.   

In geographic settings, the definition of the separation measure (stage i) is often straightforward, 

e.g. using Euclidean distance.  However, where a non-geographic element such as time is 

included in the separation, then the weighting between the elements needs to be specified (e.g. 

Wu et al. 2014).   

In stage (ii), the data is usually restricted to nearby points.  This is normally done by selecting 

the k-nearest neighbors (Ledolter 2013) as the alternative of choosing all points within a certain 

distance of the point of interest, can cause problems if the density of the points varies 

(Fotheringham et al. 2002).  The value of k is usually set as the value that gives the best results 

on the training set (e.g. Eskelson et al. 2009).   

In stage (iii), the separations need to be converted into weights.  Fotheringham et al. (2002) 

looked at using Gaussian and bi-square kernels.  They reported that “the results … are 

relatively insensitive to the choice of the weighting function but they are sensitive to the 

bandwidth chosen” (page 44).  Other investigators have often chosen the inverse of the 

separation distance (e.g. Räty and Kangas 2012).  Choosing a weight of one for all the k-

nearest neighbors corresponds to a standard regression model.   

These different choices mean that several different approaches to producing the estimated 

value at the target point have been reported.  Li et al. (2012) used a k-nearest neighbor 
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weighted regression approach, while Fotheringham et al. (2002) used “geographically weighted 

regression” – this is similar but has some minor differences such as the bandwidth is adjusted 

rather than having a fixed k when selecting the data points.  Wu et al. (2014) used the simple 

and weighted averages of the k selected points, but most people have just used the weighted 

average of the k selected points (e.g. Maleika 2015, Suominen et al. 2013).  

3. The data 

Two new sources of load information on the UK’s low voltage networks will become more widely 

available in the next few years: 

 Real-time monitoring of the feeder phase currents at the distribution substation with the 

potential for monitoring at one second intervals (Lees 2014).   

 AMI / smart meter data – The United Kingdom’s £12 billion programme for all domestic 

customers to have smart meters is due for completion in 2025.  These smart meters will 

store and transmit half hourly consumptions and maximum demands (Lees 2014), but 

will have the capability to move to a shorter time interval at a future time.  The values will 

be available to the Distribution Network Operator (DNO).  However, the smart meter 

data will be aggregated together in groups to protect privacy (DECC 2012), the data will 

not identify the phase the meter is on, and the readings from a significant proportion of 

(the older) meters will only be available periodically (i.e. every few weeks or months 

rather than within 2 minutes of the half hour ending for the newer meters).   

The goal is to use these two data sources to provide an estimate of the low voltage currents.  

The modelled scenario assumes that the currents at the substation are available in real-time but 

that some of the smart meter readings are not available for the most recent 24 hours.  In 

practice, most of the smart meters will provide readings in real-time – the scenario corresponds 

to deleting these real-time current measurements from the substation current to just leave the 

current from the non-real-time meters. 

Note that this scenario also matches the situation where the currents at the distribution 

transformer have been predicted for a future time, e.g. tomorrow, but knowledge of the low 

voltage currents is restricted to current and historical smart meter values.  It is now required to 

predict the corresponding low voltage network currents for the future time.  This case stems 

from it being easier to accurately predict the substation currents (e.g. as described in Huang et 

al. 2014) than the customer currents due to diversity.  An interesting and very pertinent 

approach to substation current prediction using smart meter readings is described by Mirowski 

et al. (2014).   

3.1 Data used 

Two sets of smart meter data were used in the analysis: 
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Richardson & Thomson (2010)  

The data comprised domestic (residential) electricity consumption data measured over 

approximately 12 months. The analysis was restricted to 18 of the 24 customer profiles 

as the others had substantial gaps in their data over the 12 month period.  Figure 1 

shows the values for first 4 load curves in this data set for Wednesday the 19th of March 

2008. 

CLNR (2017) 

The data comprised readings from 200 domestic (residential) customers with time of use 

tariffs for a period of 3 months at the start of 2014 in the North East of England.  Figure 2 

shows the values of the first 4 load curves in this data set for Wednesday the 19th of 

March 2014.  Figure 3 shows the values for the same curves a week later.  Although 

some aspects of the load curves match between the two figures, there is a considerable 

difference between the two sets of curves.  Corresponding maximum daily temperatures 

were obtained from WeatherOnline (2017). 

Both data sets are available for free public download from their respective websites. 

The number of meters in the first data set is low when compared with the 300 customers 

typically connected to a ground mounted distribution transformer in the UK.  However, these 

300 customers will be split across 4 feeders, and the percentage of the smart meters that 

cannot communicate their readings in real-time to the distribution network operator, is expected 

to be only in the region of 10% to 20%.  Hence the number of non-real-time smart meters on a 

feeder is likely to be up to about 20.  Therefore, the number of unknown meter readings being 

estimated from the unmatched part of the substation reading (i.e. after the known real-time 

meter readings have been removed from the feeder total) is likely to be not that much greater 

than the Richardson & Thomson data set size.  Consequently, although the first data is small, it 

is likely that the number of missing readings will be of the same order of magnitude as it, and so 

it allows the relative accuracy of the approaches to be evaluated.  

The Richardson and Thomson data set was used to analyse the performance of the different 

approaches when estimating the split of currents downstream of a tee junction.  For each 

analysis, the customer profiles were randomly split into two groups A and B.  These groups 

modelled the non-real-time meters on the two downstream branches. 

The ability of the two best methods to estimate individual meter values was then assessed 

using the CLNR data set.   
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4. Estimation approaches 

The underlying idea is to split the unmatched current monitored at the substation between the 

groups A and B of non-real-time meters, or between the individual non-real-time meters 

according to the most appropriate historical ratio.  

4.1 Defining similar historical situations 

When using similar historical situations to estimate a current value, the factors used to define 

the similarity between the current and historical situations need to be specified.  Following this,  

Stage i: The similarity measure needs to be decided upon  

Stage ii: Any restriction on the number of neighbors specified  

Stage iii: The similarity factor needs to be converted to a weight (Fotheringham et al. 

2002).   

The factors that were used were: 

 Day of the week – Behavior patterns are likely to differ between different days, e.g. 

load curves on Mondays are very different from load curves on Sundays, while 

Tuesdays are more similar to Wednesdays than they are to Sundays. 

 Bank holiday – Bank holidays are likely to have profiles more similar to weekends 

than to weekdays.  

 Half hour in the day – Neighboring half hours are likely to have more similar load 

characteristics than those separated by several hours.  For example, some 

customers use relatively more energy in the evening than in the morning than others.   

 Week in the year – Load characteristics are likely to alter over the year due to 

changes in temperatures and the hours of daylight. 

 Substation load – This acts as a proxy for other variables such as temperature that 

affect the demand. 

Other factors could have been used but they were not present in the data set, in particular: 

 Year – Data from several years ago will generally be less helpful than data from last 

year or earlier this year as customers and / or appliances may have changed.     

 Half hourly temperatures – As the level of electric heating load is likely to vary 

between customers, knowing the temperature might improve the accuracy of the 

estimation.  However, the customer load profiles in the two data sets used did not 

contain the temperature for each time period.   

An approximation to knowing the half hourly temperatures, is to use the daily 
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maximum temperature.  The benefit of including this information in the modelling is 

investigated in Section 6.3.   

The separation between the estimation time and a preceding time was defined to be the 

product:  

Separation = Dd × Hh × Ww × Ss 

where d, h, w and s are weighting parameters and  

 D is the separation between the day types.  If they are the same day type, then the value 

is 1.  If they are different weekdays, then the value is 2.  If they are different weekend 

days, then the value is 2.  In all other cases, including bank holidays, the value is 4.   

 H is the separation between the half hours.  Each half hour in the day is given a value 

from 1 to 48 and how many half hours apart they are is determined in the range 0 to 24. 

 W is how far apart the week numbers in the year are for the two situations.  It takes a 

value in the range 0 to 26.   

 S is the difference between the loads in kW at the substation for the two situations. 

When converting the separation to a weight, the basic principle was that the more similar the 

situations were, i.e. those with lower separation scores, then the higher the weight should be.  

The three conversion functions that were considered were: 

 The reciprocal of the separation – used in many studies including Wu et al. (2014). 

 The normal distribution probability density function.  The standard deviation was chosen 

so that the largest separation of the k-nearest neighbors corresponds to 3 standard 

deviations from the mean.  This function is analogous to the Gaussian kernel used in 

Fotheringham et al. (2002). 

 The reciprocal of the square root of the product of the separation and the ranking of the 

separations.  This was considered as it reduces the dominance of the closest point when 

there is only one very close point. 

4.2 The approaches 

The case where the non-real-time smart meters were split into two groups was analysed using 

the Richardson and Thomson data set.  The approaches investigated were based on those 

described in Section 2 that have been applied in analogous situations.   

Although approach 3 was the best performing approach, the closeness of the simpler and 

computationally less demanding approach 7, meant that this could well be the choice of network 

operators in practice.  Therefore, the approaches investigated for estimating individual meter 
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values using the CLNR data set concentrated on approaches 3 and 7 along with simple 

extensions to approach 7.   

4.2.1 Estimating the currents for two groups of non-real-time smart meters 

The approaches that were considered were all based on producing an initial estimate of the 

demands for groups A and B.  These demands were then scaled by the unmatched substation 

load divided by the sum of the initial estimates of the A and B demands, to get the final 

estimated demands at A and B.  This normalises the estimates for A and B so that they sum to 

the unmatched substation load.  Hence the difference between the approaches is in the initial 

estimation of the demands.   

The approaches considered were:  

1. The maximum demands recorded by the smart meters.  The estimated load at A was the 

maximum demand at A multiplied by the unmatched substation load, and then divided by 

the sum of the maximum demand at A and the maximum demand at B.  This is similar to 

the maximum transformer rating approach of Arritt et al. (2012) but with the maximum 

demand replacing the rating of the service transformer.   

2. The total consumptions recorded by the smart meters.  The estimated load at A was the 

billed consumption at A multiplied by the unmatched substation load, and then divided 

by the sum of the billed consumptions at A and B.  This is analogous to the customer 

consumption approach of Arritt et al. (2012).   

3. The k-nearest neighbors weighted average of previous similar situations.  The fraction of 

the unmatched substation load due to the load at A, was found for each historical time 

period.  The weighted average of these fractions was calculated for the k situations 

nearest to the present situation.  This value was multiplied by the present substation 

load to estimate the present load at A.  This is similar to the approaches applied in other 

fields such as traffic flow prediction (Wu et al. 2014).   

4. The k-nearest neighbors weighted regression of previous similar situations.  The 

explanatory variables were the differences between the training and prediction situations 

for the day of the week, the week in the year, and the half hour in the day, plus the 

substation demand for the training case.  The response variable was the ratio of the 

meter point load at A divided by the unmatched substation load.  The weight for an 

observation was taken to be the same as the weight in the k-nearest neighbors weighted 

average approach, i.e. approach 3.  Hence a separate regression was run for each 

prediction point.  The k-nearest neighbors weighted regression was advocated for 

estimating traffic flows in Li et al. (2012). 
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5. The k-nearest neighbors linear regression of previous similar situations.  This approach 

is the same as approach 4 except for the fact that all the weights were set at one.  It was 

motivated by the weights often being taken as one when using k-nearest neighbors e.g. 

in Wu et al. (2014).   

6. Using the most recently available matching day i.e. if the current day is a Tuesday, then 

the most recent Tuesday for which the non-real-time meter values are available.  This 

corresponds with an approach that is likely to be widely used in practice as it is a natural 

approach that is straightforward to implement.   

7. Average of the same day and time over the preceding 6 weeks.   This is the same as 

approach 6 except for averaging over 6 weeks.  6 weeks was chosen as it allows the 

values for any day in March to be estimated when using the 3-month January to March 

period of the CLNR data set without having a problem with the Christmas – New Year 

break.  In general, including more preceding weeks in the average gave more accurate 

estimates of the meter values, but the benefit of using 6 preceding weeks rather than 5 

was relatively small.   

Forming a weighted average with the weeks further away from the target time having 

less weight than those that are closer, was investigated but gave very similar results to 

the non-weighted average.  Therefore, only the non-weighted average case is reported.   

The first two approaches are similar to the (installed) kVA and customer billing kWh approaches 

considered in Arritt et al. (2012).  As no account is taken of the load curve shapes, the ratio of 

the loads between groups A and B is always the same.  The remaining approaches are based 

around finding situations in the past that are similar to the present one, e.g. same year, day of 

the week, time of day, substation demand, etc.  The load ratio between groups A and B is then 

assumed to be similar to the load ratios in these previous similar situations.   

4.2.2 Estimating individual meter values 

The approaches considered were approaches 3 and 7, along with 3 approaches that augment 

approach 7 with temperature and substation load information.  Instead of averaging the 

historical ratios as in approach 7, approaches 8 to 10 use regression to model these ratios as 

depending on the temperature or substation load:  

8. Simple regression using the maximum daily temperature.  For each non-real-time 

meter, the response values are the ratios of the meter reading to the unmatched 

substation reading for the same day and time of the 6 preceding weeks.  The 

explanatory variable is the maximum daily temperature.   

9. Simple regression using the unmatched substation value.  For each non-real-time 

meter, the response values are the ratios of the meter reading to the unmatched 
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substation reading for the same day and time of the 6 preceding weeks.  The 

explanatory variable is the unmatched substation reading. 

10. Multiple regression using the maximum daily temperature and the unmatched 

substation value.  For each non-real-time meter, the response values are the ratios of 

the meter reading to the unmatched substation reading for the same day and time of 

the 6 preceding weeks.  The explanatory variables are the maximum daily temperature 

and the unmatched substation reading.  

4.3 Setting the parameters 

The approaches in Section 4.2.1 involve several parameters.  To set their values, the customers 

were split into two groups of size 9.  Each group was modelled as having one collective meter 

value which was the sum of the 9 individual meters making up the group.  One hundred times 

were randomly selected from the period covered by the data set  

 For each of these times, the non-real-time smart meter data was restricted to no more 

recent than 48 hours before this time.   

 Values were assigned to the weighting parameters d, h, w and s, and the number of 

nearest neighbors, k. 

 For each of the historical times, i.e. the times 48 hours or more before the time whose 

demand was being estimated, the weights from the 3 conversion functions of Section 4.1 

were calculated, e.g. the reciprocal of the separation. 

 For each of the conversion functions, the sum of the squared differences between the 

loads estimated by approach 3 and the actual loads was calculated. 

The sums of the squared differences between the estimated and actual collective meter values 

for the 100 estimation times, were added together to given an overall error score for each of the 

conversion functions.  Finally, the steps were repeated with different values of d, h, w and s, 

and the values that gave the lowest overall error for each conversion function were found.   

This process was repeated for five values of k, namely 10, 15, 20, 30 and 50.  The resulting 

means of the overall error scores are given in Table 1.  The performance of the weight 

conversion functions was similar.  As the reciprocal of the separation is the simplest of these 

functions, this was used in all the subsequent analyses.  Table 1 also shows that k=20 gave the 

best or close to the best predictions for approach 3.  The best values for d, h, w and s for k=20 

were 0.07, 0.14, 0.05 and 0.10 respectively.  These were the values used in the rest of the 

analyses.  However, it should be noted that if a different data set of load curves was used, then 

these values would be likely to change.   
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5. Comparing the nearest neighbor approaches 

The customers were partitioned so that there were two groups of nine non-real-time meters and 

as before, one hundred times were randomly selected from the period covered by the data set.  

The three nearest neighbor approaches (i.e. approaches 3, 4 and 5) were then used to estimate 

the load from group A at these times for different values of k.  Each setting was repeated 80 

times and the mean values for the squared differences between the estimated and the observed 

loads from group A, are given in Table 2 and plotted in Figure 4.   

The k-nearest neighbor weighted average approach gives poorer predictions as the number of 

nearest neighbors increases.  It seems that the key information is in a small number of the most 

similar situations.  Conversely, the nearest neighbor regression approaches improve as the 

number of nearest neighbors increases (as the robustness of the regression coefficient 

calculations improve with the data set size). 

Therefore, the only nearest neighbor approach used in the following analyses was the weighted 

average approach (approach 3) with k taking the value 20.   

6. Selecting the best approach 

The performances of approaches 1, 2 and 3 were also compared using one hundred times 

randomly selected from the period covered by the data set.  For the modelling, the non-real-time 

meter values were not available for the 48 hours preceding each estimation time.  The results 

are shown in Table 3.  The k-nearest neighbors weighted average has the lowest error in this 

table while the two non-load shape approaches performed similarly to each other.   

Carrying out a t test to assess whether the errors from the k-nearest neighbors weighted 

average (approach 3) were lower than those from the ratio of the annual consumptions 

(approach 2), gave a p value below 10-5.  This can be interpreted as there is a less than a 10-5 

probability of the observed error values from approach 3 being this much lower than those from 

approach 2 if approach 3 was actually no better than approach 2.  Hence, the conclusion is that 

the k-nearest neighbors weighted average approach gives better predictions than the non-smart 

meter data approaches.   

6.1 Altering the group size 

As data from smart meters in the UK will be aggregated together so as to protect customer 

privacy (DECC 2012), an important issue is how the accuracy of the predictions alters with the 

size of the group being predicted.  Figure 5 shows the Mean Absolute Percentage Error (MAPE) 

for 100 randomly selected prediction times for different sizes of group A when the total number 

of customers was 18 (i.e. groups A and B combined had 18 customers).  MAPE was used 

rather than a squared error term as the group currents being predicted increase in size as the 

number of customers in the group increases.   
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For approach 6, the performance using each of the previous 10 weeks was analysed.  The 

regression model with the number of customers in A and the number of the previous week (i.e. 

1 to 10) as the explanatory variables, and MAPE as the response variable, gave the coefficient 

of the previous week variable as 0.80 with a standard error of 0.24.  Consequently, how many 

weeks earlier the approach is based on, does not have a huge effect on the accuracy of the 

prediction.  Therefore, to reduce the noise in a single week’s observation, the average of the 

same day in the preceding 6 weeks was used, i.e. approach 7.   

As approach 3 was better than nearest neighbor approaches 4 and 5 in Figure 4, only 

approaches 1, 2, 3 and 7 were analysed.  The values for approach 1 for group sizes below 5 

were 812%, 364%, 141% and 124%.  These are not shown in Figure 5 so as to avoid 

compressing the vertical scale.   

The conclusions from Figure 5 are that  

 Approach 1 (maximum demand) gives inaccurate results, especially for small group 

sizes, e.g. below 8 customers. 

 The performance of the other approaches become similar as the group size becomes 

large, e.g. 8 customers or more. 

 Approach 3 (k-nearest neighbors) gives the best results but averaging over the same 

day in recent weeks (approach 7) is not that much worse. 

 As the group size increases, the percentage error between the predicted load value and 

the actual load value decreases.  This is in line with the general principle that the total 

load from a group of customers becomes less volatile as the group size increases 

because of diversity amongst the customers. 

6.2 Equal group sizes 

Figure 6 shows the results from 100 predictions when the sizes of groups A and B were the 

same, ranging from two groups of 1 individual each to two groups of 9 individuals each.  While 

there is more volatility in the values stemming from the reduced number of individuals being 

modelled, the results are broadly in line with Figure 5 in that approaches 3 (k-nearest 

neighbors) and 7 (average of the previous 6 weeks) seem to perform better than approach 2 

(total consumption).   

6.3 Estimating individual meter values 

The CLNR data set was used to assess the ability to estimate the values of individual meters.  

This data set had the advantage of a much larger number of load profiles than the Richardson 

and Thomson data set, but the monitoring period for the data used in the current analysis was 

much shorter at 3 months rather than the 12 months of the Richardson and Thomson data set.   
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The analysis using the Richardson and Thomson data set led to approaches 3 and 7 being 

selected for this analysis.  This stemmed from the overall performance of approach 3 in 

Sections 5, 6.1 and 6.2, and the good performance of approach 7 coupled with its 

straightforward nature.  A variant of approach 7 where the ratio of a meter’s value divided by the 

unmatched substation value is regressed against the daily maximum temperature for the 6 

preceding matching days, to give an estimated ratio on the target date, was also analysed.  The 

rationale for this approach was that the relative amount of electricity used by different customers 

was likely to vary with how hot or cold the day was, and so the ratio should be modelled as 

varying with the maximum daily temperature.   

As a similar conjecture can be put forward for the relative electricity usage at times of high and 

low substation loads, the individual ratios were also regressed against the unmatched 

substation value in approach 9, and both the unmatched substation value and the daily 

maximum temperature in approach 10.   

The analysis involved subsets of 10, 20, 30 and 40 meters.  These were randomly chosen from 

the 200 meters.  This random selection was repeated 40 times to give 40 sets of meters for 

each of the 10, 20, 30 and 40 meters cases.  The approaches were compared using the Mean 

Absolute Error between a meter’s estimated value and its actual value.   

The analysis was carried out for 7 days in March 2014 – each one being a different day of the 

week.  The days were spread out through the month so that any customer behavior over a 2 or 

3-day period, only affected one of these 7 days.  For each of the days, the meter values were 

estimated for the 5 times: 08:15, 11:15, 14:15, 17:15 and 20:15.  These were chosen as being 

equally spaced out during the main daily demand period.  The results are given in Table 4.  

Approach 3 performs slightly better than approach 7.  Figure 7 gives the histogram of the 

average absolute error for each meter where the averaging is over the 35 target times.   

Table 4 indicates that the extra information from using the daily maximum temperature and the 

substation value, provides little if any benefit in estimating individual meter values.  The 

histograms for approaches 8, 9 and 10 were very similar to Figure 7 except for slightly more 

meters being to the right of the 0.56 interval for approaches 8 and 10.  It is these meters that led 

to approaches 8 and 10 performing worse.   

6.4 Evaluating the approaches 

Besides the accuracy of the estimates, in practice it is desirable that an approach is 

a) Straightforward to implement  

b) Computationally inexpensive as the objective is to estimate the real-time power flows on 

the low voltage network. 
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Table 3 and Figures 5 and 6 show that approaches 1 and 2 give poor estimates compared with 

approach 3.  Overall approach 3 generally gives the best estimates but it is in the middle in 

terms of ease of implementation, computational expense, and data requirements.  It also has 

the problem that the weights d, h, w and s in Section 4.3 may need to be recalculated for 

different low voltage networks.  Approaches 4 and 5 are less attractive than approach 3 due to 

taking considerably longer to run.  Approaches 6 and 7 are straightforward to implement in a 

spreadsheet and evaluate quickly.  Although approach 7’s estimates are usually worse than 

those of approach 3 in Figures 5 and 6 and Table 4, they are close enough to mean that its 

simplicity makes it a good choice in practice.  Approaches 8, 9 and 10 seem to provide little if 

any benefit over approach 7. 

7. Concluding remarks 

The problem investigated was estimating the loads around a low voltage network when some of 

the smart meters do not provide their readings in real-time.  It was found that the k-nearest 

neighbors weighted average approach (approach 3) gave the best results.  However, simply 

using the average for the same day over the most recently available weeks (approach 7), does 

not perform that much worse than approach 3.  It is also a very simple approach to implement.  

Hence it is the approach that seems the most suitable for use in practice.  Extra information 

such as the maximum daily temperatures seems of limited value when estimating the values of 

individual meters.   

An area where further work would be of benefit is in determining confidence intervals for 

estimates of the missing meter values.  For example, if the load from a non-real-time group of 

meters is estimated to be 10kW, what is the corresponding 95% confidence interval?  Sahlin et 

al. (2014) have suggested using the weighted average of the prediction error of each nearest 

neighbor, but how practical this is for the current situation is unclear. 
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Table 1: The mean error scores for the comparison of the functions for converting 
the separation to a weight 

 Number of nearest neighbors k 

 10 15 20 30 50 

reciprocal of 
the 
separation 

0.64 0.59 0.60 0.62 0.67 

normal 
distribution 
probability 
density 

0.65 0.62 0.60 0.63 0.65 

reciprocal of 
the square 
root of the 
separation 
times the 
rank 

0.67 0.65 0.62 0.63 0.66 

 

Table 2: How the error score varies with the number of nearest neighbors for the 
different approaches.  The values are the average of 80 runs. 

Number of nearest 
neighbors, k 

k-nearest neighbor 
weighted average 

(approach 3) 

k-nearest neighbor 
regression  

(approach 5) 

k-nearest neighbor 
weighted regression 

(approach 4) 

20 0.61 2.09 2.55 

40 0.65 1.42 1.48 

60 0.68 1.08 1.09 

80 0.71 1.01 1.02 

100 0.72 0.90 0.92 

140 0.75 0.82 0.82 

200 0.78 0.85 0.78 

300 0.78 0.87 0.75 
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Table 3: The performance of the different prediction approaches when the 
customers are split into two groups of size 9. 

 Squared difference between actual and predicted 
kW 

 Mean Standard error 

Ratio of the maximum demands 
(approach 1) 

1.07 0.10 

Ratio of the annual consumptions 
(approach 2) 

1.04 0.10 

k-nearest neighbor weighted average 
(approach 3) 

0.58 0.07 

 

 

Table 4: The mean absolute prediction error per meter in kW where the average is 
taken over the different samples of meters and the 35 target times for the CLNR data 
set 

 
Number of 

meters being 

estimated 

Approach 

3 7 8 9 10 

10 0.27 0.28 0.33 0.24 0.35 

20 0.33 0.35 0.39 0.36 0.43 

30 0.33 0.35 0.39 0.36 0.45 

40 0.34 0.37 0.41 0.38 0.45 
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Figure 1: Four load profiles from the middle of March 2008 from the Richardson & 
Thomson (2010) data set. 

 

Figure 2: Four load profiles from the middle of March 2014 from the CLNR (2017) 
data set. 
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Figure 3: The four load profiles shown in Figure 2 one week later. 

 

 

Figure 4: How the squared difference between the actual and the predicted loads 
from a group of nine customers varies with the number of nearest neighbors. 
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Figure 5: The variation in the predictive accuracy of the k-nearest neighbor weighted 
average approach as the prediction group size changes but the overall number of 
customers is fixed at 18.  The approaches are described in Section 4.2.   

 

 

Figure 6: The variation in the predictive accuracy as the prediction group size 
changes and the overall number of customers is twice the prediction group size.  The 
approaches are described in Section 4.2.  
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Figure 7: The mean percentage error for each meter for the 40 meters case using 
approach 7 (Section 6.3), where the average is over the 7 target days and 5 target 
times.  The frequencies come from repeating the analysis with the 40 samples of 40 
meters. 

 


