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Predicting evolution remains difficult. We study the evolution of cryptic body coloration 15	

and pattern in a stick insect using 25 years of field data, experiments, and genomics. We 16	

find that evolution is more difficult to predict when it involves a balance between multiple 17	

selective factors and uncertainty in environmental conditions than when it involves 18	

feedback loops that cause consistent back and forth fluctuations. Specifically, changes in 19	

color morph frequencies are modestly predictable through time (r
2
 = 0.14), and driven by 20	

complex selective regimes and yearly fluctuations in climate. In contrast, temporal changes 21	

in pattern morph frequencies are highly predictable due to negative frequency-dependent 22	

selection (r
2
 = 0.86). For both traits, however, natural selection drives evolution around a 23	

dynamic equilibrium, providing some predictability to the process. 24	

 25	

Introduction: 26	

 27	

Evolutionary biology is often portrayed as a descriptive rather than predictive science (1, 2). 28	

Nonetheless, the extent to which past evolution predicts future evolution can be quantified by 29	

testing how well early subsets of a time series predict subsequent changes. However, 30	

predictability in the form of such temporal autocorrelation does not consider the underlying 31	
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mechanisms driving evolutionary change, and thus can be inherently low. Considering the 1	

mechanisms of evolution can lead to increased understanding of evolutionary change and its 2	

predictability, and we study such mechanisms here. 3	

 4	

Evolutionary predictability is mediated by several factors. First, evolution can be unpredictable 5	

because of random processes, such as genetic drift (3). Second, even when evolution occurs by 6	

deterministic natural selection, predictive power can be diminished if multiple, complex forms of 7	

selection act simultaneously and by uncertainties in how the ecological conditions that affect 8	

selection change through time (1, 2, 4-7). For example, negative frequency-dependent selection 9	

(NFDS) favoring rare alleles can enhance predictability by causing increases in allele frequency 10	

to be followed predictably by decreases (and vice-versa)(8, 9). However, the extent of 11	

predictability will depend on how NFDS interacts with other evolutionary processes (e.g., 12	

directional selection stemming from climate change), and on whether the ecological conditions 13	

that affect these other processes can themselves be predicted. Third, the interaction of genes 14	

within their genomic context (i.e., dominance and epistasis) and with the environment (i.e., 15	

plasticity) may affect the anticipated trajectory of evolution (10-12). For example, directional 16	

selection is expected to produce a predictable evolutionary response only if the traits affected are 17	

reasonably heritable, and even then responses can be complex and nuanced (4-7, 10). 18	

 19	

Studying the predictability of evolution across different timescales is particularly challenging (1, 20	

2). For example, the immediate impact of natural selection can be readily measured in short-term 21	

field studies or experiments. Such studies suggest that strong selection is not uncommon at the 22	

scale of one or a few generations (13, 14), especially when new environments are colonized (15-23	

17). However, short-term changes need not translate into long-term directional trends. Rather, 24	

evolution across geologic and phylogenetic time scales may be characterized by periods of 25	

relative stasis interspersed between occasional bursts of sustained directional change, consistent 26	

with Simpson’s fossil-record inspired model of ‘adaptive zones’ (18, 19). Indeed, strong but 27	

fluctuating selection can generate a pattern of little change when averaged over longer time 28	

periods (14). Field studies that measure patterns of evolution over many years or decades are 29	

somewhat intermediate between immediate and geologic time scales and thus have the potential 30	

to illuminate how short-term selection relates to longer-term patterns of evolution (1, 20-22). 31	
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Such studies are rare because they require long-term temporal monitoring that cannot be sped up 1	

with more effort. We here analyze the predictability of evolution in a long-term study of the stick 2	

insect Timema cristinae (Fig. 1), and bolster our inferences using manipulative experiments and 3	

genomic analyses. 4	

 5	

Polymorphism in stick insects 6	

 7	

T. cristinae is a univoltine, wingless, plant-feeding stick insect that exhibits three morphs that are 8	

cryptic on different plant species or tissues (Figs. 1, 2)(23-27). A green morph bearing a white 9	

dorsal stripe is cryptic on the leaves of Adenostoma fasciculatum, a green and unstriped morph is 10	

cryptic on the leaves of Ceanothus spinosus, and a melanistic (i.e., brownish/grey and unstriped) 11	

morph is cryptic on the stems of both hosts (but is conspicuous on leaves). Accordingly, the 12	

striped morph is common on Adenostoma, the unstriped morph is common on Ceanothus, and 13	

the melanistic morph is found at ~10% frequency on both hosts. We refer to the variation 14	

between green (striped plus unstriped) and melanistic individuals as ‘color polymorphism’ and 15	

that between green-striped and green-unstriped individuals as ‘pattern polymorphism’ (i.e., color 16	

and pattern are different ‘traits’). These polymorphisms are highly heritable with strong genetic 17	

dominance (melanistic body coloration is recessive to green and stripe pattern is recessive to 18	

unstriped; details below)(23, 24). 19	

 20	

Several processes maintain color and pattern polymorphism (23-27). A balance between 21	

divergent selection and gene flow between populations on Adenostoma versus Ceanothus helps 22	

maintain pattern polymorphism (26, 27). However, other factors likely contribute because even 23	

areas dominated by one host rarely fix for a single pattern morph (26, 27). The frequency of 24	

melanism does not vary markedly among populations such that variation in color is maintained 25	

by balancing selection within populations, potentially involving heterozygote advantage and 26	

selection that varies with microhabitat (stems versus leaves)(23, 24). Spatial and host-related 27	

aspects of evolution for these morphs are thus reasonably well understood. In contrast, whether 28	

and how morph frequencies change through time, and if they do so predictably, is unknown.  29	

We studied temporal dynamics in T. cristinae using 25 years of field data from the mountains 30	

around Santa Barbara, California (545 locality-by-host-by-year estimates of morph frequency on 31	
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the basis of 34,383 individuals collected from 1990 to 2017, mean n per locality-by-host-by-year 1	

= 63, s.d. = 141, Database S1). We focus our autocorrelation analyses of predictability (28) on 2	

the locality HV (an acronym for Hidden Valley), where we collected data over a continuous 18-3	

year period, with no years of missing data (total n = 3470, mean yearly n = 193, s.d. = 268).  4	

Results: 5	

Temporal change in allele frequencies 6	

 7	

We tested the hypothesis that temporal change in allele frequencies at the genetic region 8	

underlying the morphs is due, in part, to natural selection. Although past studies support 9	

selection on the morphs (23-27), these results do not mean that all temporal changes are due to 10	

selection, because selection and drift are not mutually exclusive (29, 30). Genomic data from 11	

different time points provide a means to test for selection, because strongly selected regions are 12	

expected to show greater change through time than the more neutral genomic background (29, 13	

31). Genomic data are further required in our specific instance because genetic dominance and 14	

heterozygote excess complicate inference of allele frequency change using phenotypic data alone 15	

(23, 24). 16	

 17	

We used de novo genome sequencing of a melanistic and green morph, with Dovetail hi-rise 18	

scaffolding of Illumina reads (N50 = ~16 and 8 megabases, respectively)(32), linkage mapping 19	

(25), and genome-wide association (GWA) mapping to explicitly delimit a single, contiguous 20	

genomic region (~10.5 megabases in size) associated with color and pattern variation (Figs. 2, 21	

S1-2). Consistent with a similar study with a more fragmented reference genome, this region 22	

exhibits three core haplotypes (i.e., alleles), one corresponding to each morph, designated s, u, 23	

and m for green-striped, green-unstriped, and melanistic, respectively (i.e., in terms of diploid 24	

genotypes and phenotypes: uu, us and um = green-unstriped; ss and sm = green-striped; mm = 25	

melanistic)(23). We refer to this region as the Mel-Stripe locus hereafter.  26	

 27	

We quantified allele frequency changes at Mel-Stripe over time within three published data sets: 28	

(1) genotyping-by-sequencing (GBS) data collected in a natural population on Adenostoma 29	

(FHA, acronym for locality Far Hill on Adenostoma) in 2011 and 2013 (30, 33), (2) re-sequenced 30	
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whole genomes from individuals collected in FHA and used in an eight-day (i.e., within-1	

generation) release and recapture field experiment (30), and (3) GBS data in a between-year (i.e., 2	

between-generation) field transplant experiment (25).  3	

 4	

In each case, we contrasted change through time at Mel-Stripe to that of the remainder of the 5	

genome (to all genomic scaffolds, i.e., loci, that harbored as many single nucleotide 6	

polymorphisms as Mel-Stripe, which was 40, 16, and 39 loci, respectively, for the data sets noted 7	

above). Due to our explicit interest in Mel-Stripe we did not attempt to delimit other loci under 8	

selection. If such loci exist they could upwardly bias our estimates of genome-wide change 9	

relative to a case of neutrality, making our results for Mel-Stripe conservative. 10	

 11	

We found that Mel-Stripe showed the greatest temporal allele frequency change of all genomic 12	

regions, in all three data sets (FHA, change = 0.0273, P = 0.024; within-generation experiment, 13	

change = 0.0340, P = 0.059; between-generation experiment, change = 0.0988, P = 0.025; exact 14	

probabilities; Fisher’s combined probability test across data sets: X
2
 = 20.50, d.f. = 6, P = 0.0023, 15	

Fig. 2). Dispersal alone is unlikely to drive these observed patterns because FHA was sampled 16	

over an area that is larger (>10,000 m
2
) than the dispersal capacity of T. cristinae (i.e., one to a 17	

few dozen meters per generation)(30, 33, 34). Furthermore, field surveys detected essentially no 18	

dispersal off experimental bushes in the recapture study (30), and selection on pattern has been 19	

previously observed in the presence, but not the absence of predation (with dispersal possible in 20	

both treatments)(35, 36). Thus, selection likely contributed to the genetic change we observed at 21	

the Mel-Stripe locus. We thus next turned to whether such selection was associated with weakly 22	

or strongly predictable patterns of evolution. 23	

 24	

Predictability of the evolution of body color and complex selection regimes 25	

 26	

We quantified the predictability of evolution using autoregressive moving average models, 27	

ARMA (28). This analysis revealed that that color morphs at Hidden Valley (HV) exhibited 28	

subtle and only moderately predictable changes through time (median predictive r
2
 = 0.14, 29	

ARMA, Fig. 3, Table S1). This was associated with support for multiple, complex, and 30	

counteracting sources of selection (Fig. 4). Across the 25-year study period, the frequency of 31	
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melanistic morphs increased in years where spring temperatures were warmer (overall effect of 1	

temperature = 0.187, 95% equal-tail probability intervals = 0.063-0.309; correlation between 2	

observed and predicted frequency from cross-validation = 0.16, 95% CI = 0.04-0.28, P = 0.0102, 3	

Bayesian hierarchical linear model, Fig. 4, Table S2). However, lab experiments indicate that 4	

melanistic individuals have weaker heat tolerance, relative to green individuals (B = 3.57, 95% 5	

CIs = 1.34-9.51, P = 0.0111, Cox proportional hazards regression model using exact likelihood). 6	

These results imply that selection for crypsis on dry, brownish plants in warmer years may favor 7	

dark colors, but that thermoregulatory selection acts in an opposing direction. However, further 8	

work is required to test this hypothesis directly, and to establish how well the laboratory 9	

experiments match field conditions. Notably, melanistic individuals exhibit fewer fungal 10	

infections and greater mating success than other morphs, further suggesting that selection is 11	

multi-faceted (24). 12	

 13	

Given selection appears complex, we used our genomic data to estimate selection coefficients 14	

explicitly (for all six diploid genotypes underlying the morphs, with three alleles: s, m, and u). 15	

This analysis revealed that viability selection on Adenostoma during late life-history stages (i.e., 16	

in the within-generation experiment) favored the s/s homozygote (posterior probability that 17	

fitness of s/s > than the following genotypes: m/u = 0.93, u/u = 0.81, m/m = 0.82, m/s = 0.84, u/s 18	

= 0.91). In contrast, the most-fit genotype between years at the FHA locality (also on 19	

Adenostoma)  was the s/m heterozygote (posterior probability that fitness of s/m > than the 20	

following genotypes: m/u = 0.90, s/s = 0.97, u/u = 0.81, m/m = 0.92, u/s = 0.94). Both s/s and s/m 21	

are green-striped in terms of phenotype, and cryptic on Adenostoma. Thus, a fluctuating balance 22	

between many factors, potentially including heterozygote advantage (23), may explain why 23	

evolution involving the deterministic process of selection was not more highly predictable. 24	

 25	

Predictability of the evolution of pattern 26	

 27	

Our findings for color raise the question of whether evolution is ever highly predictable? We 28	

address this issue by re-analyzing the data from Hidden Valley (HV) considering striped versus 29	

unstriped individuals (i.e., pattern, rather than color, polymorphism). This demonstrates that 30	

striped morph frequencies at HV exhibited consistent increases followed by decreases (i.e., up 31	
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and down fluctuations) across 18 consecutive years (Binomial sampling probability < 0.0001, 1	

Fig. 3). Thus, the evolution of pattern was highly predictable (median predictive r
2
 = 0.86, 2	

ARMA). In fact, predictive power at the scale of three to five years was near perfect (>0.95), and 3	

remained high even after a decade (>0.80). The observed pattern of predictable of up and down 4	

fluctuations could reflect a case where predators have specific search images for common prey, 5	

resulting in NFDS selection favoring rare prey phenotypes.  6	

 7	

Morph frequency and selection 8	

 9	

To test the NFDS hypothesis, we transplanted green-striped and green-unstriped T. cristinae to 10	

Adenostoma in either 1:4 or 4:1 ratios (n = 1000 individuals, 10 replicates per treatment, Fig. 5). 11	

The NFDS hypothesis predicts that the striped morph, cryptic on Adenostoma, would exhibit a 12	

stronger survival advantage when rare. Supporting this prediction, the striped morph experienced 13	

strong selection when initially rare (selection coefficient, s = 0.70), and increased in frequency in 14	

all 10 experimental replicates (posterior probability that change > 0 was >0.999). In contrast, the 15	

striped morph showed idiosyncratic changes when initially common (s = -0.04, posterior 16	

probability that change > 0 = 0.43). Although our results differ from NFDS where the sign of 17	

selection reverses very strongly, they are consistent with the strength of selection being 18	

dependent on frequency (i.e., directional selection that weakens with increasing allele frequency 19	

is akin to frequency-dependent selection). It is possible that selection against the striped morph 20	

would be more strongly negative if ratios were manipulated more extremely (e.g., to 10:1).  21	

Conclusions:  22	

 23	

We observed complex and fluctuating sources of selection. Together with gene flow (26), these 24	

selection pressures likely contribute to relative stability in the difference between hosts in morph 25	

frequency over the 25-year study period (Fig. 5). Complex and fluctuating selection may thus 26	

help maintain polymorphism, but prevent divergence of sufficient magnitude to strongly drive 27	

speciation (24). NFDS in particular may cause evolutionary systems to exhibit resilience, as 28	

reported in other complex ecological, social, and physical systems (37-39). Such resilience 29	

increases predictability of short-term evolution, because a system returns to its former state 30	

following perturbation. However, it can make long-term predictions difficult because substantial 31	
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evolution only happens when the system reaches a tipping point that pushes it more permanently 1	

to a very different state. 2	

Finally, our results suggest that the predictability of evolution can depend on the nature of 3	

selection, and our understanding of it. Thus, we predicted evolution more accurately for pattern, 4	

where selection appears to be strongly associated with frequency, than for color, where a myriad 5	

of factors, some poorly understood, affect fitness. As further illustration of this point, 6	

predictability in the form of temporal autocorrelation is modest to weak in other well-known 7	

studies of contemporary evolution: beak and body size changes in Darwin’s finches and morph 8	

frequency changes in the scarlet tiger and peppered moth(21, 40, 41)(median predictive power 9	

per study system, r
2
, in 3-10 year forecasting analyses 0.03-0.18, ARMA, Figs 6, S3-S6, Table 10	

S1). Adding climatic (i.e., rainfall) data to the Geospiza finch case, where climate is known to 11	

affect seed distributions, improves predictive power in Geospiza fortis (e.g., mean r
2
 increase 12	

relative to a model without rainfall = 0.08, ARMA; Table S3). Nonetheless, predictive power 13	

even considering rainfall is modest and increased only in one of the two finch species examined 14	

(Table S3). It is possible that predictability remains limited because seed size itself was not 15	

modeled, because the relationship between evolution and rainfall is complex such that only 16	

extreme droughts have strong effects, and because some extreme climatic events precede the ten-17	

year period that our forecasting is based upon.  18	

 19	

In conclusion, our constrained understanding of selection and environmental variation (i.e., 20	

limits on data and analysis), rather than inherent randomness, can thus limit ability to predict 21	

evolution. In turn, these limitations may affect our understanding of ecological processes, 22	

because to the extent that evolution can be predicted, perhaps so can its ecological consequences 23	

for population dynamics, community structure, and ecosystem functioning (42-44). 24	

 25	
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 15	

Figure 1. Drawings of the three morphs of T. cristinae. 16	

 17	

Figure 2. Genomic change through time at the Mel-Stripe locus. (a) Manhattan plots showing 18	

results for genome-wide association mapping of color. The y-axes show P-values, with red 19	

denoting genome-wide significance. The left-land plot shows results genome wide (LG = linkage 20	

group). The right-hand plot is zoomed in on LG8, which shows the bulk of association, and here 21	

numbers below the x-axis delimit different genomic scaffolds. The Mel-Stripe locus is evident by 22	

the block of strong association spanning scaffolds 702.1 and 128. (b) Allele-frequency change 23	

through time in the natural population FHA (2011 versus 2013). (c) Allele-frequency change 24	

through time in the within-generation experiment. (d) Allele-frequency change through time in 25	

the between-generation experiment. In panels b-d the vertical red line shows change at the Mel-26	

Stripe locus and the histogram shows the distribution of change across other similar-sized 27	

scaffolds in the genome (i.e., the genomic background). 28	

 29	

Figure 3. Predicting evolution in Timema cristinae stick insects. (a) Schematic of analytical 30	

approach for predicting evolution using temporal autocorrelation. Black points represent 31	
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observed values in a time series. Some number of these observed points are removed (in this case 1	

the six right-hand most points) and the missing values for them are predicted using the remainder 2	

of observed points. Predictive power is the strength of association between observed and 3	

predicted values. (b) Color morph frequencies through time. (c) Pattern morph frequencies 4	

through time. (d) Change in color morph frequencies. (e) Change in pattern morph frequencies. 5	

(f) Predicting change in color morph frequencies (r
2
). (g) Predicting change in pattern morph 6	

frequencies (r
2
). (h) Predicting change in color morph frequencies (r). The difference from panel 7	

(f) is that r-values are not squared such that their sign is evident. Shaded areas are 95% 8	

confidence intervals. (i) Predicting change in pattern morph frequencies (r). The difference from 9	

panel (g) is that r-values are not squared such that their sign is evident. Shaded areas are 95% 10	

confidence intervals. 11	

 12	

Figure 4. Complex patterns of natural selection. (a) Associations between the frequency of 13	

melanistic morphs and yearly spring temperature. Positive effects indicate increases in melanistic 14	

frequency with increased temperature. Significant effects are shown in red. The left-most data 15	

point represents the average effect across populations, and the remaining points are for individual 16	

populations. Note that among-population variation is high, but that all significant effects are 17	

positive. (b) Morph-specific survival time in thermoregulatory (i.e., heat tolerance) lab 18	

experiments. (c) Genotype specific fitness in the within-generation experiment on the host 19	

Adenostoma (s/s is most fit). Shown are the posterior probabilities from estimates of genotype-20	

specific fitness. (d) Genotype specific fitness in the natural population FHA on Adenostoma (s/m 21	

is most fit). Shown are the posterior probabilities from estimates of genotype-specific fitness. 22	

 23	

Figure 5. Evidence for negative-frequency dependent selection on pattern, and resulting stability 24	

in morph frequency differences between hosts. (a) Posterior probability estimates of the selection 25	

coefficient in each treatment. Positive values on the x-axis represent selection favoring striped 26	

individuals. (b) Changes in the frequency of striped morphs in releases at 20% of the population 27	

and 80% of the population during the course of the experiment. (c) Posterior probability 28	

distributions of change in the frequency of striped morph per treatment. (d) Yearly differences 29	

between host plant species in natural populations in the frequency of striped morphs (lines 30	

denote posterior medians and shaded regions given the 95% equal-tail probability intervals). 31	
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 1	

Figure 6. Predicting evolution in different systems. (a) Predicting evolution for evolutionary 2	

time series in (left to right) Geospiza fortis body size, Geospiza fortis beak morphology 3	

(principle components 1 and 2), G. scandens body size, G. scandens beak morphology (principle 4	

components 1 and 2), Panaxia dominula and Biston betularia morph frequencies, and T. 5	

cristinae color and pattern morph frequencies. Boxplots show the distribution of r
2
 between true 6	

and predicted evolutionary change across 3 to 10 year model-based forecasts. (b) Predicting 7	

evolution in studies (r). The difference from panel (a) is that r-values are not squared such that 8	

their sign is evident. 9	

 10	
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Materials and Methods 1	

	2	

Approach for delimiting the genetic region affecting color and color-pattern 3	

	4	

Previous work showed that each morph in T. cristinae is a chromosomal form underlain by 5	
a haplotype on a single linkage group (LG8), with restricted recombination between 6	

chromosomal forms (23, 24). However, it relied on a fragmented reference genome such that it 7	
could not delimit a single, contiguous region (i.e., locus) underlying each morph. We here 8	

delimit the locus underlying the morphs and quantify its change through time relative to the rest 9	
of the genome. 10	

 11	
To do so, we generated higher-quality reference genomes for a melanistic and a green 12	

morph of T. cristinae using Dovetail hi-rise scaffolding of Illumina reads (N50 = ~16, 8 13	
megabases, respectively)(32). Comparison of the reference genomes, linkage mapping (25), and 14	

genome-wide association (GWA) mapping allowed us to explicitly delimit a single, contiguous 15	
genomic region associated with color and pattern variation (Figure 2, S1, S2). Accordingly, this 16	

region exhibits three core haplotypes (i.e., alleles), one corresponding to each morph (with 17	
melanistic recessive to green body coloration and stripe recessive to unstriped pattern), and we 18	

refer to it as the Mel-Stripe locus hereafter. Details are contained below. 19	

	20	

Reference genome with Dovetail 21	

	22	

We generated reference genomes for a melanistic and a green morph using Dovetail 23	
technology (32). For the melanistic morph we used two sequencing runs. The first run (short 24	

reads + Chicago library) was done on a melanistic female from FHA caught in 2015 (id: 25	
15_0190). The second run (Chicago library only) was done using another melanistic female 26	

caught in 2016 in FHA (id 16_0359). For the green reference (short reads + Chicago libraries), a 27	
green unstriped female from population PRC caught in 2015 was used (id 15_0802). The 2015 28	

samples were flash frozen in liquid nitrogen, shipped to Sheffield and stored in a -80°C freezer. 29	
It was de-gutted prior to shipping to Dovetail. The 2016 sample was caught and degutted ‘fresh’ 30	

in California and sent directly to Dovetail. 31	
 32	

The Dovetail assembly method relies on building a conventional reference assembly using 33	
Meraculous with paired-end Illumina reads and then using Chicago libraries for scaffolding 34	

using the HiRise pipeline (32). Chicago libraries are produced by reconstituting chromatin in 35	
vitro with chaperones and histones, followed by crosslinking (i.e. DNA stabilization by creating 36	

covalent bonds among the histones), digestion with restriction enzymes, and ligation. This 37	
process results in many chimeric fragments composed from physically distant regions, but 38	

ensures they come from the same stabilized large fragment. In theory, the read pairs produced 39	
can have separations up to the maximum fragment size of the DNA. A model of insert 40	

distribution derived from the distances among the original fragments is then used for scaffolding.  41	

	42	

The assembly based on melanistic females (draft 1.3) had a 63.0x sequencing depth with a 43	
total length of 953.3 Mb (73.3% of the estimated genome size by flow cytometry)(25). It 44	

comprised 4068 scaffolds (N50=16.4 Mb, N90=1.1 Mb, L50=16, L90=135), a significant 45	
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improvement relative to the previous draft 0.3 (14,221 scaffolds, N50=312.5 Kb, N90=52 Kb, 1	
L50=788, L90=3869; DDBJ/ENA/GenBank accession MSSY00000000.3)(33). We clustered 2	

scaffolds in major linkage groups as described in detail below in the section on delimitation of 3	
the Mel-Stripe locus, resulting in draft 1.3c2. This Whole Genome Shotgun project was 4	

deposited at DDBJ/ENA/GenBank under the accession PGFK00000000. The version described 5	
in this paper is version PGFK01000000. The assembly based on the green female had a 42.7x 6	

sequencing depth with a total length of 932.1Mb (71.1% of the estimated size). This assembly 7	
was poorer than the 1.3, but still significantly better than the previous 0.3 (5653 scaffolds, 8	

N50=8.2 Mb, N90=503.2 Kb, L50=22, L90=222). This assembly was labeled as draft 2.1. This 9	
Whole Genome Shotgun project was deposited at DDBJ/ENA/GenBank under the accession 10	

PGTA00000000. The version described in this paper is version PGTA01000000. 11	

	12	

Genome-wide association (GWA) mapping  13	

	14	
We mapped color and pattern variation using previously published GBS data (33) aligned to 15	

the new reference genome 1.3b2. We aligned 96.1% (789,388,267) of reads from 602 individuals 16	
using BOWTIE 2.2.9 (45) with the '--very-sensitive-local' preset. We used SAMTOOLS 1.3.1 (46) 17	

to sort and index the alignments. We used aligned reads with a mapping quality score of at least 18	
20 to call single nucleotide polymorphisms (SNPs) with SAMTOOLS mpileup and BCFTOOLS 19	

1.3.1 (46), using the original consensus caller (-c) with a P-value threshold of 0.05. From the 20	
1,369,070 variants called, we excluded those with quality score of less than 20, sampling 21	

coverage of less than 50%, maximum depth more than 10 times the number of total, minor-allele 22	
frequency (MAF) equal or less than 0.01, and more than two alleles. The number of phenotyped 23	

individuals was different for color (590) and pattern (536) and we subsequently subset variants 24	
and applied filters relative to the respective number of samples. Thus, we retained 418,209 bi-25	

allelic variants for color and 416,405 variants for pattern. Both datasets were very similar, 26	
showing the same mean coverage depth per SNP per individual of 5.1x (95%: 0-15; per SNP 27	

average: 5.1x, 95%: 1.0-9.5; per individual average: 5.1, 95%: 2.2-7.9). We used custom Perl 28	
scripts along with a custom C++ program (alleleEst 0.1b) to co-estimate allele frequencies and 29	

genotypes using a Bayesian model (47). Genotype estimates were stored in BIMBAM format as 30	
values ranging from 0 to 2 representing minor allele dosage. 31	

 32	
Following past work (24) , we used GENABEL v1.8.0 (48) to perform single locus GWA 33	

mapping analyses. Briefly, we recoded genotype probabilities into genotype values accepted by 34	
GENABEL using a custom Perl script as follows: [0-0.5]=homozygote for major allele, [0.5-35	

1.5]=heterozygote, [1.5-2]=homozygote for minor allele. Transformed genetic probabilities were 36	
filtered using GENABEL quality control function. SNPs with MAF inferior or equal to 1%, if any, 37	

were excluded from analysis. Individuals with extreme heterozygosity at a false discovery rate 38	
<1% and too high an identity by state (hereafter IBS >=0.95, calculated on a subset of 2000 39	

SNPs), if any, were discarded from analysis.  40	
 41	

Analyses were run controlling for population structure using the GENABEL egscore function 42	
(49). This function extracts principal components of a kinship matrix (here IBS indices) 43	

calculated using a subset of 2000 SNPs. The principal components are then used as covariates in 44	
the GWA linear models. The kinship matrix was computed excluding markers on linkage group 45	

8 (to avoid over-correcting for genome-wide population structure by including causal variants), 46	
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and excluding markers that were not assigned to linkage groups. We display results in the form 1	
of Manhattan plots. These graphics shows the association score (expressed as –log10(pvalue)) of 2	

every SNP tested along their physical position on the genome. Gaps between scaffolds are not 3	
represented on these graphics. SNP with a significant P-value after Bonferroni correction 4	

(calculated as 0.05/number of tested SNPs) are displayed in red in the Manhattan plots. 5	

	6	

Defining the Mel-Stripe locus 7	

	8	
We combined results from GWA mapping of color and pattern with whole genome 9	

comparative alignments and recombination rate estimates from crosses to define approximate 10	
boundaries for the main locus responsible for color and pattern variation in T. cristinae (Figures 11	

S1, S2). We focused on scaffolds 702 and 128 from the melanistic genome, which contained the 12	
overwhelming majority of SNPs significantly associated with color (96%) and pattern 13	

(73%)(numbers refer to significance following a strict Bonferroni correction, i.e., P < 0.05/(no. 14	
of tests)). Our approach included the following steps, which we detail below: (i) generate a 15	

linkage map with the genome scaffolds, (ii) split one key scaffold (702) based on inconsistencies 16	
in the linkage map, (iii) align the green and melanistic morph genomes to each other, (iv) delimit 17	

the Mel-Stripe locus based on the total evidence from the mapping results and comparative 18	
alignment. These boundaries are meant to serve as a working hypothesis for the region 19	

controlling color and pattern (which can then be usefully contrasted to the genomic background), 20	
and not as the precise boundaries of the functional variant(s). 21	

	22	
Linkage map- We used the LepMap2 software (50) and previously published data from 23	

three F1 crosses to construct a linkage map for the T. cristinae melanistic morph genome 24	
sequence scaffolds (the data, comprising 158 million ~100 base pair, bp, genotyping-by-25	

sequencing reads, are fully described in (25)(NCBI BioProject PRJNA356911). Families 26	
consisted of 114 (female melanistic by male green), 48 (female green by male melanistic), and 27	

24 (female green striped by male melanistic) full-sib offspring. However, note that the GWA 28	
described above used a draft (1.3c2) based on only the largest family. Sequence data for the 29	

parents and offspring were aligned to the melanistic morph genome using bwa aln and samse 30	
(version 0.7.10-r789)(51) with a maximum of 4 miss-matches, and not more than 2 miss-matches 31	

in a 20 bp seed. We then compressed, sorted and indexed the alignments using SAMTOOLS 32	
(1.2)(46), and identified variable nucleotides using the call variant caller in BCFTOOLS (version 33	

1.3)(46). We only considered alignments with a mapping quality of 10 or more and bases with a 34	
base quality of 15 or more, and we applied a population prior with theta set to 0.001 when calling 35	

variants and only considered a SNP if the probability of the data assuming the locus was 36	
invariant was less than 0.01. We then applied a variant filter using vcfutils varFilter to retain only 37	

those SNPs with a total read depth of 464 and that were more than 5 bp from the nearest gaps 38	
(insertion-deletions). 39	

 40	
We then generated the genotype input data for the mapping program, LepMap2. In doing so, 41	

we used custom Perl scripts to select the subset of SNPs that were recombination informative for 42	
each parent, and then estimated offspring genotype posterior probabilities using the genotype 43	

likelihood from BCFTOOLS (46)(from the vcf file) with a prior given by Mendelian inheritance 44	
expectation. We then only retained genotypes when the posterior probability of the most 45	

probable genotype was 0.95 or greater (in other cases the genotype estimate was converted to 46	



	 21

missing data). From this, we retained 17,478 SNPs (across all three families) for linkage map 1	
construction. As a first step with LepMap2, we further filtered the data for each family to retain 2	

only markers with missing data from fewer than 10 individuals, and with a P-value for 3	
segregation distortion greater than 0.005 (i.e., to remove loci with substantial deviations from 4	

Mendelian expectations). We allowed for a data error rate of 0.01. This resulted in a total of 4312 5	
maternally informative SNPs and 5989 paternally informative SNPs.  6	

 7	
We next used the LepMap2 SeparateChromosomes algorithm with a LOD minimum of 4 8	

and with a minimum linkage group size of 50 SNPs for initial assignment of SNPs to LGs. This 9	
resulted in 6873 SNPs being assigned to 12 linkage groups (i.e., autosomes, T. cristinae has 13 10	

chromosomes, see below for consideration of the sex chromosome). The JoinSingles algorithm 11	
was then used to assign additional SNPs to these linkage groups at the lower LOD threshold of 3, 12	

if the difference in support between their best and next best possible linkage group differed by 2 13	
LOD units. Next we used a custom Perl script and approach to assign entire scaffolds to linkage 14	

groups based on the SNP assignments. Specifically, for a scaffold to be assigned to a linkage 15	
group (and thus all of its SNPs to be assigned to a linkage groups) required at least two SNPs 16	

(and 10% of all SNPs on a scaffold) to have been assigned to that linkage group, and for fewer 17	
than half as many SNPs to have been assigned to the next best linkage group. Based on this, we 18	

were able to assign 237 scaffolds (which accounted for 89% of all SNPs) to linkage groups. 19	
Finally, the OrderMarkers algorithm in LepMap2 was used to estimate marker/SNP order on 20	

each linkage group. We took the median position in cM for all markers on a scaffold as the 21	
position for each scaffold in each cross. 22	

 23	
As one of the filters applied with LepMap2 was to remove markers with non-Mendelian 24	

patterns of inheritance, we expected to miss the sex (i.e., X) chromosome, and thus to find 12 of 25	
the 13 chromosomes, as we did. We thus employed a complementary approach to identify the X-26	

linked scaffolds (in T. cristinae males are XO and females are XX)(52). Using SAMTOOLS 27	
DEPTH (version 1.2)(51) and custom Perl scripts, we extracted the coverage data from a 28	

previously published GBS data set that was used for genome-wide association mapping and 29	
comprised 395 female and 197 male T. cristinae (data from (24), but aligned to the current 30	

genome as described above; we lacked data on offspring sex in the mapping families so used this 31	
data instead). We then identified scaffolds where the ratio of read depth for males to females was 32	

less than the expected 1:1 ratio expected for autosomal markers (specifically less than 0.75). 33	
Twenty-nine scaffolds met this requirement, and also were not assigned to the 12 autosomal 34	

scaffolds described above. These included 380 recombination informative markers. Seventeen of 35	
these scaffolds were joined into a single linkage group (presumably the X chromosome) using 36	

the SeparateChromosomes algorithm in LepMap2 with a LOD limit of 1.5 and a minimum size 37	
of 50 SNPs. The 17 scaffolds included 93.4% of the SNPs on the 29 scaffolds we identified as 38	

possibly being X-linked based on the coverage ratio. We used OrderMarkers to order these 39	
markers as described for the X-chromosome. 40	

 41	
Splitting and re-mapping scaffold 702- Scaffold 702 from the melanistic morph genome 42	

showed a strong association with color and pattern in GWA analyses, but was not originally 43	
assigned to a linkage group. Upon examining this further we noted that one large chunk (SNPs 44	

up to position 14,171,514) of this scaffold was assigned to linkage group 8 (the linkage group 45	
where another scaffold, 128, showed a strong association with color and pattern and where we 46	
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had previously seen associations with these traits) whereas a second large chunk (SNPs after 1	
position 14,757,049) was assigned to linkage group 5 (preventing placement of this scaffold). 2	

The portion assigned to linkage group 8 showed an association with color and pattern, whereas 3	
the other half of the scaffold did not. Based on this evidence we inferred that this scaffold was 4	

over-assembled and thus we split scaffold 702 into three new scaffolds: 702.1 (positions 1-5	
14,171,514), 702.2 (starting at position 14,757,049) and 702.3 (the middle ambiguous section 6	

lacking an informative SNP from 14,171,414-14,757,049). The new scaffolds 702.1 and 702.2 7	
were added to their respective linkage groups and the OrderMarkers algorithm in LepMap2 was 8	

re-run for these linkage groups. 9	
 10	

Whole genome comparative alignment and defining Mel-Stripe- We aligned the melanistic 11	
and green morph genomes to each other using Mugsy (v1r2.3)(53). Our goal was twofold: (i) to 12	

refine the orientation of scaffolds 702.1 and 128 (the two scaffolds with the greatest association 13	
with color and pattern) based on overlap between these and scaffolds from the green morph 14	

genome, and (ii) to identify possible structural variants associated with the GWA color and 15	
pattern signal. Scaffold 702.1 (from the melanistic genome) partially aligned to green scaffold 16	

1575; green scaffold 1575 also aligned to melanistic scaffold 2963 (which was ‘left’ of scaffold 17	
702.1). Melanistic scaffold 2963 showed a negative correlation between SNP map position and 18	

physical position, suggesting it was in a reverse orientation. This combined with the overlap of 19	
both melanistic scaffolds 2963 and 702.1 with green scaffold 1575 allowed us to also specify 20	

(flip) the orientation of 702.1. Melanistic scaffold 128 was in the correct orientation based on the 21	
correlation (positive) between SNP physical and cM positions. Many small green morph 22	

scaffolds with uncertain orientations span the right side of the re-orientated melanistic scaffold 23	
702.1 and melanistic scaffold 128 (> 15 small scaffolds). No green scaffold was found that 24	

aligned the portion of melanistic scaffold 128 from approximately 5 to 6.4 mbps. This region 25	
also exhibits lower sequence coverage in green individuals, suggesting it might be a large 26	

insertion-deletion polymorphism.  27	
 28	

Given this information and the GWA mapping signal, we defined the bounds of a putative 29	
Mel-Stripe color and pattern locus as comprising melanistic scaffold 702.1 starting from the edge 30	

of the alignment with green scaffold 1575 (702.1 4,139,489 bp) to the edge of 702.1 (bp 1, given 31	
the reverse orientation) along with the neighboring melanistic scaffold 128 from bp 1 to right 32	

edge of the putative insertion-deletion polymorphism (bp 6,414,835). This specific region (that 33	
is, the Mel-Stripe locus) contains 70% and 31% of SNPs associated with color and pattern, 34	

respectively (59% of color or pattern-associated SNPs). As a comparison, this region only 35	
contains about 1% of the sequenced SNPs. Thus there is a 61 and 31-fold enrichment of color 36	

and pattern associated SNPs, respectively, in the Mel-Stripe locus. As emphasized above, our 37	
main goal was to delimit a Mel-Stripe locus that could be contrasted to the genomic background, 38	

and not to precisely identify causal functional variants affecting color and pattern. A schematic 39	
summary of the delimitation of Mel-Stripe can be found in Figure S1. 40	

 41	
Genomic change at the Mel-Stripe locus 42	

	43	
We quantified changes at Mel-Stripe between time periods using three published data sets: 44	

(1) genotyping-by-sequencing (GBS) data from 1102 individuals collected in a natural 45	
population on Adenostoma (FHA) in 2011 and 2013 (n = 500 and 602, respectively)(30, 33), (2) 46	
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491 re-sequenced whole genomes from an eight-day (i.e., within-generation) release and 1	
recapture field experiment (30), and (3) GBS data from 451 individuals in a between-year (i.e., 2	

between-generation) field transplant experiment (25). The within-generation experiment 3	
involved releasing 500 T. cristinae in a paired-block design and recapturing the survivors (30). 4	

We obtained whole genome sequence data from 491 of these individuals (33), allowing us to 5	
compare allele frequency changes between release and recapture. As described previously (25), 6	

the between-generation experiment involved transplanting 2000 stick insects from a single 7	
variable population (OGA) onto 10 host plant bushes in a block design (five blocks each with 8	

one Adenostoma bush and one Ceanothus bush per block; 200 T. cristinae were released on each 9	
bush). 421 F1 descendants of these individuals were then captured the following year (2011). We 10	

compared 30 individuals representative of the founders (collected in 2010) to the 421 F1s. 11	
Phenotypic change (proportion at time period two minus proportion at time period one) for each 12	

of these three data sets was as follows: FHA, stripe change = 0.06, unstriped change = -0.11, 13	
melanistic change = 0.05; within-generation experiment, stripe change = 0.05, unstriped change 14	

= -0.04, melanistic change = 0.01; between-generation experiment, stripe change = -0.24, 15	
unstriped change = 0.32, melanistic change = -0.07). 16	

 17	
The GBS data were aligned to the T. cristinae reference genome with bwa (version 07.10-18	

r789)(51) using the aln and samse algorithms. We allowed 5 miss-matches, 2 miss-matches in an 19	
initial 20 bp seed, trimmed bases with phred-scaled quality scores lower than 10, and only placed 20	

reads with a single best match. We then used SAMTOOLS (version 1.2)(46) and the BCFTOOLS 21	
call algorithm (version 1.3)(46) to identify SNPs and calculate genotype likelihoods. We used 22	

the recommended mapping quality adjustment (-C 50), skipped alignments with a mapping 23	
quality less than 20 and bases with a base quality less than 30, and used the multi-allelic SNP 24	

caller with θ set to 0.001 and a posterior probability of 0.01 or less for the homozygous reference 25	
genotype given the data to consider a SNP variable. We then filtered the initial set of SNPs to 26	

retain only those with a mean coverage of  >= 2X (per individual), total coverage (across all 27	
individuals) less then three standard deviations above the mean across all loci, at least 10 reads 28	

of the non-reference allele, a mapping quality of 30, sequence data for at least 80% of the 29	
individuals, a minimum minor allele frequency of 0.01, less then 1% of reads in the reverse 30	

orientation (with our GBS method all reads should be in the same orientation), and separated by 31	
at least 5 bps. Filtering was done using custom Perl scripts. Following filtering, we retained 32	

178,141 SNPs for the natural FHA population and 249,074 SNPs for the between-generation 33	
experiment. 34	

 35	
We aligned the whole genome re-sequence data from the within-generation experiment to 36	

our reference genome using the bwa (version 07.10-r789)(51) mem algorithm with a band width 37	
of 100, a 20 bp seed length and a minimum score for output of 30. We then used SAMTOOLS (46) 38	

to compress, sort and index the alignments, and Picard Tools to mark and remove PCR 39	
duplicates (version 2.1.1)(https://broadinstitute.github.io/picard/). We then used the GATK 40	

HaplotypeCaller and GenotypeGVCFs modules (version 3.7)(54) to call variants and calculate 41	
genotype likelihoods. We used a minimum base quality score of 30 for consideration in 42	

calculations, a prior probability of heterozygosity of 0.001, and called variants with a minimum 43	
phred-scaled confidence of 50. The following filters were then applied using custom Perl scripts: 44	

minimum coverage of 1x per individual, a minimum value of the base quality rank sum test of -45	
8, a minimum value of the mapping quality rank sum test of -12.5, a minimum value of the read 46	
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position rank sum test of -8, a minimum ratio of variant confidence to non-reference read depth 1	
of 2, a minimum mapping quality of 40, a maximum phred-scaled P-value of Fisher's exact test 2	

for strand bias of 60, and a minimum minor allele frequency of 0.01. The resulting 6,175,495 3	
SNPs were used for downstream analyses. 4	

 5	
We obtained maximum likelihood estimates of allele frequencies for all populations / 6	

experimental samples using an expectation-maximization (EM) algorithm, as described in (55). 7	
For this, we used a convergence tolerance of 0.001 and allowed for a maximum of 20 EM 8	

iterations.  9	
  10	

Population genomic parameters were then calculated based on the Mel-Stripe locus and 11	
additional reference loci based on the maximum likelihood allele frequency estimates. Additional 12	

loci were defined for all genome scaffolds placed on linkage groups that contained as many 13	
SNPs as Mel-Stripe and were defined by selecting (at random) a contiguous block of SNPs of the 14	

same number as Mel-Stripe (FHA: 780 SNPs, 40 reference loci; between-generation experiment: 15	
1180 SNPs, 39 reference loci; within-generation experiment: 47,305 SNPs, 16 reference loci).  16	

 17	
We analyzed genomic change based on raw allele frequency changes, allele frequency 18	

changes controlling for underlying genetic diversity (i.e., residual change), and using Wright’s 19	
Fixation Index (FST). Specifically, we calculated nucleotide diversity (π) within the 2011 FHA 20	

sample or the founders of each experiment, allele frequency change between these samples and 21	
the 2013 FHA sample (natural FHA population) or recaptured stick insects (both experiments), 22	

the residuals from regressing change on diversity, and FST = Σ(πtotal - πsubpop)/Σ(πtotal). In all cases, 23	
Mel-Stripe showed the most extreme change (more than any other locus). Detailed results are as 24	

follows. For FHA, raw change was = 0.0273, residual change was = 0.00516, and FST was = 25	
0.0051 (P = 0.024, Exact probability). For the within-generation experiment, raw change was = 26	

0.0340, residual change was = 0.00212, and FST was = 0.0030 (P = 0.059). For the between-27	
generation experiment, raw change was = 0.0988, residual change was = 0.0595, and FST was = 28	

0.0540 (P = 0.025; Fisher’s combined probability test across data sets: X
2
 = 20.50, d.f. = 6, P = 29	

0.0023). 30	

	31	
Autoregressive-moving-average models fit to different long-term evolutionary data sets 32	

	33	

We fit Bayesian autoregressive-moving-average (ARMA) models to 10 evolutionary time-34	
series data sets (details of each data set are given below; two are from T. cristinae and the others 35	

from published data in other systems). This approach uses past observations as covariates in a 36	
model. There are two specific types of terms in these models, autoregressive terms (AR) and 37	

moving-average terms (MA). AR terms use the data values from prior years as covariates 38	
whereas the MA terms use residuals from prior years as covariates. Different numbers of prior 39	

years (i.e., different order models) can be considered. 40	
 41	

Specifics of the models are as follows. We first considered models with order 0, 1 or 2 for 42	
the auto-regressive and moving-average components of the model; a null model with a constant 43	

expectation was included for comparison. As an example, ARMA (1,2) denotes a model with 44	
order 1 for the autoregressive component and order 2 for the moving-average component, 45	

meaning that information from the last year is used for the autoregressive component and that 46	
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information from the last two years is used for the moving-average component. The general form 1	
of the model is yt ~ Normal(µt , τ) and µt = c + Σi θi y(t-i) + Σj φj ε(t-1), where y(t-i) is the data value i 2	

years in the past, ε(t-1) is the error term from j years, and the sums are over the order of the 3	
autoregressive and moving-average components of the model. We assumed a weakly stationary 4	

model and thus applied the re-parameterization and Beta prior scheme proposed by (56, 57). We 5	
placed a normal prior on the grand mean, c ~ Normal (mean = 0, precision = 0.01), and gamma 6	

prior on the precision for the sampling distribution, τ ~ gamma (0.01, 0.001). 7	
 8	

Each model was fit for each data set and the best model was selected based on deviance 9	
information criterion (DIC; the model with the lowest DIC was chosen). When the null model 10	

was best, the next best model was used for downstream analyses (the null model would not 11	
provide meaningful results for cross-validation or forecasting as the expectation would be the 12	

same for each year). Two estimates of DIC were obtained for each model (to verify consistency), 13	
each based on 10 Markov chain Monte Carlo (MCMC) chains each with 100,000 iterations, a 14	

50,000 step burn-in and a thinning interval of 50. MCMC analyses were conducted using the 15	
rjags JAGS interface.  16	

 17	
We then quantified the predictability of each evolutionary time series using the best ARMA 18	

model. We used two complementary approaches: leave-one-out cross-validation and forecasting. 19	
For leave-one-out cross-validation, we fit the relevant ARMA model for each data set, but with 20	

one year of the data set removed (this was done with each year in turn). The missing year's data 21	
value (evolutionary change) was then predicted from the ARMA model. We used these estimates 22	

to assess the relationship (based on a simple linear model) between the true and predicted 23	
evolutionary change. 24	

 25	
For forecasting, we dropped the most recent n years of data, where n was (3, 4, ..., 9, 10), 26	

and fit the relevant ARMA model to predict the data values for the dropped data. We then 27	
calculated the Pearson correlation coefficient and coefficient of determination between the 28	

observed and predicted (forecast) change for the dropped years for each value of n. This is 29	
conceptually analogous to predicting/forecasting future (as of yet unobserved) evolutionary 30	

change. Cross-validation and forecasting results were also based on average of results from two 31	
independent MCMC model fits, each comprising 10 chains with 100,000 iterations, a 50,000 32	

iteration burn-in and a thinning interval of 50. 33	
 34	

The data analyzed include evolutionary time series for discrete trait frequencies, and in the 35	
case of Darwin’s finches, quantitative traits (mean value). In both cases, we first obtained point 36	

estimates of the value (mean or frequency) for each generation and then converted these into 37	
evolutionary change data sets (i.e., the data point for year i was the value [mean or frequency] in 38	

year i+1 minus the value in year i). The nature and source of each data set are described below. 39	
Results are provided in the main text, Database S1, and Figures S3-S6. 40	

	41	
Long-term field studies in T. cristinae 42	

	43	

We compiled data on morph frequencies in T. cristinae using samples collected in the 44	
spring using sweep nets between 1990 and 2017. All individual were scored as ‘striped’, 45	

‘unstriped’, or ‘melanistic’, or occasionally when it was difficult to distinguish between the first 46	
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two categories as ‘intermediate-striped’. These classifications have been found to be highly 1	
repeatable in past work (26, 35, 36, 58). Samples from 1990 to 1999 were taken and scored by 2	

Cristina Sandoval, who then trained PN in 2000. PN collected and scored most samples from 3	
2000 to 2017. 4	

 5	
GPS coordinates of all localities were taken at and then used to estimate elevation using 6	

‘point sampling tool’ on QGIS 2.16.2 (59). The elevation values were extracted from 1/3 arc-sec 7	
Digital Elevation Models (DEM) at the location of the populations’ coordinates. All DEMs were 8	

obtained from United States Geological Survey Dataset (USGS), available at National Map 9	
Viewer (https://viewer.nationalmap.gov/). Host-plant collected on (Ceanothus or Adenostoma) 10	

was recorded for all individuals. We estimated the proportion of individuals in a sample that 11	
were striped (% striped) using all striped and unstriped individuals (excluding melanistic 12	

individuals). We estimated the proportion of individuals in a sample that were melanistic (% 13	
melanistic) using all individuals. Detailed information on these localities (i.e., GPS coordinates 14	

and elevations), morph frequencies, sample sizes, etc. is provided in Database S1. 15	
 16	

We observed consistent year-to-year increases and then decreases in the frequency of 17	
striped morphs at HV (see main text). We thus computed the binomial probability of the 18	

observed stripe time series alternating between an increase and decrease in stripe frequency 19	
every other year. Specifically, conditional on the first year, we calculated the probability that 20	

every other year showed a reversal in the direction of evolution as 0.5
17

 = 7.6e
-6

 (the full time 21	
series includes 18 years, the null probability that evolution reverses direction was assumed to be 22	

0.5, and thus the probability of not changing direction was also 0.5).  23	

	24	

Climatic data and analyses 25	

	26	
We collated data on mean springtime statewide temperature in California using publicly 27	

available records (National Centers for Environmental Information, 28	
https://www.ncdc.noaa.gov/cag/time-series/us/4/0/tavg/3/4/1990-29	

2016?base_prd=true&firstbaseyear=1901&lastbaseyear=2000). We focused on temperature 30	
averages across March, April, and May as these are the three months that T. cristinae is by far 31	

most active (most of the rest of the year is spent in egg diapause)(26, 34, 58). Nonetheless, we 32	
present results from different combinations of spring months below. 33	

 34	
We fit a hierarchical Bayesian model for the full T. cristinae color data set, using data from 35	

all populations (i.e., not just HV) collected from 1990 to 2017. We did so to: (i) test for an 36	
association between climate and the melanistic morph frequency, and (ii) determine how well 37	

climate predicts color morph frequency across space and time. 38	
 39	

We assumed a binomial sampling distribution for the observed number of melanistic 40	
morphs for a site and year (yij) given the number of T. cristinae sampled (nij) and the true 41	

melanistic morph frequency (pij). We connected this to a linear model with the logit link 42	
function, such that logit(pij) = αi + βi xtemperature + θ xyear + εij, where αi is a population (site) 43	

specific intercept, βi denotes the effect of climate (temperature, see details below) on melanistic 44	
morph frequency for population i, θ is an overall effect of year (allowing for a general increase 45	

or decrease in melanistic morph frequency), and εij is an error term that accounts for over-46	
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dispersion relative to binomial sampling. We gave the ε values a normal prior with mean of 0 and 1	
precision parameter τ ~ gamma(0.1, 0.01) (we imposed a sum-to-zero constraint on the ε values). 2	

We then defined linear models at the next level of the hierarchy for the population specific α and 3	
β coefficients (for the intercept and effect of temperature, respectively), such that, 4	

 5	
αi = a1 + b1 xelevation + c1 xhost + d1 xmountain 6	

 7	
βi = a2 + b2 xelevation + c2 xhost + d2 xmountain 8	

 9	
Here,  xelevation is the elevation at a location, xhost is a binary indicator variable for host plant 10	

(Adenostoma = 0, Ceanothus = 1), xmountain is a binary indicator variable denoting the mountain 11	
range (0 = Highway 154; 1 = Refugio), and a1, a2, b1, b2, c1, c2, d1 and d2 are regression 12	

coefficients (all given Normal priors with mean 0 and precision 0.0001). 13	
  14	

We fit this model with three different temperature variables: (i) mean temperature for 15	
March, April and May (when T. cristinae are most active), (ii) mean temperature for February, 16	

March, April and May, and (iii) mean temperature for February, March and April. We used the 17	
rjags interface with JAGS to obtain Markov chain Monte Carlo (MCMC) parameter estimates 18	

for the model parameters. In each case, we ran three chains, each with a 10,000 iteration burn-in, 19	
25,000 post burn-in iterations and a thinning interval of 10. We used four-fold cross-validation to 20	

determine the predictive power of the models. Specifically, we split the data set into four random 21	
subsets (only considering cases where the sample size was 25 or greater) and used three subsets 22	

to fit the model and validated the model by predicting morph frequencies for the other subset 23	
(MCMC options identical to those for the main models were used). 24	

 25	
Temperature was generally associated with a higher frequency of melanistic T. cristinae (a2 26	

was positive), but less so at Ceanothus sites (c2 was negative) (Table S2; estimates of the effect 27	
of temperature for each site and year are shown in the main text). Melanistic morphs were less 28	

common at higher elevations and on Refugio independent of temperature. Cross-validation 29	
results showed that the models had significant but modest predictive power. For example, with 30	

the March, April, May temperature model, the Pearson correlation between observed and 31	
predicted melanistic morph frequencies was r = 0.16 (95% CIs = 0.040-0.28, P = 0.0102, r

2
 from 32	

a linear model = 0.027). The other temperature variables gave similar results: February, March, 33	
April, May temperature, r = 0.15 (95% CIs = 0.025-0.27, P = 0.0188, r

2
 from a linear model = 34	

0.022); February, March, April temperature, r = 0.19 (95% CIs = 0.069-0.31, P = 0.0024, r
2
 from 35	

a linear model = 0.037). 36	

 37	

Thermoregulatory experiments 38	

	39	

We conducted lab thermoregulatory experiments testing the desiccation / heat tolerance of 40	
green versus melanistic T. cristinae. Heat stemmed from a desk lamp (K-mart model ksn: 0-41	

02546202-9), raised 4.5 inches above two petri dishes that were stacked on top of each other and 42	
pushed to touch the base of the lamp. A third petri dish containing an individual T. cristinae was 43	

placed on top of the other two. The bulb used a Sylvania A19 halogen 100-watt replacement that 44	
used 72-watts. A total of four such lamp set-ups were used, allowing simultaneous assays of four 45	

T. cristinae (always two green and two melanistic, assigned randomly to one of the four lamps at 46	
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the initiation of an assay, and then randomly re-assigned to one of the four after each weighing 1	
census, see below). Details of the procedure were as follows. Each individual was weighed. Each 2	

lamp was then turned on for ten minutes. Placing test animals underneath the lamps then started 3	
the trials. Every twenty minutes all four individuals were removed simultaneously and weighed 4	

in a random order, and scored as dead or alive. They were then assigned randomly back to one of 5	
the four test lamps. This procedure was repeated until 180 minutes had passed. A total of eight 6	

sets of such trials were run (total n = 32). 7	
 8	

We fit a Cox proportional hazards model to the survival data to test for an effect of morph 9	
(green versus melanistic) on survival (60). For this, we used the survival package in R (61). We 10	

used the exact partial likelihood method, which is advantageous relative to the more common 11	
Efron method when time is measured in discrete intervals and tied times of death are thus more 12	

likely. We detected a significant effect of morph on survival time (exp(B) = 3.57, 95% CIs = 13	
1.34-9.51, P = 0.0111). Note that exp(B) > 1 indicates melanistic morphs died from desiccation 14	

more rapidly than green morphs. 15	

	16	

Estimating genotype-specific fitness using genomic data 17	

	18	
We estimated selection coefficients/relative fitnesses for different genotypes at the Mel-19	

Stripe locus based on the within-generation release-recapture experiment and based on patterns 20	
of evolutionary change between the 2013 and 2011 FHA samples. Similar to (23) we used PCA 21	

and k-means clustering to assign individuals one of six Mel-Stripe genotypes: homozygous for 22	
the stripe haplotype/allele (s/s), homozygous for the green unstriped haplotype (u/u), 23	

homozygous for the melanistic haplotype (m/m), or one of the three possible heterozygotes (s/u, 24	
s/m or u/m)(Fig. S2). We conducted a PCA on the individual genotype matrix for each of the two 25	

data sets. This was done for all individuals and the 780 SNPs comprising the Mel-Stripe locus. 26	
We then clustered T. cristinae based on the first two genetic PCs with k-means clustering; this 27	

was done with the R kmeans function with six centers, 100 starts and a maximum of 200 28	
iterations. An initial round of clustering was performed to define cluster centers. For this round 29	

an equal number of green, striped and melanistic individuals were used (42 of each, which was 30	
the number of green individuals). We then used those centers to cluster all individuals with a 31	

second round of k-means clustering (this included individuals with no phenotypic data). 32	
Assignments from k-means clustering corresponded well with groups of individuals with the 33	

same color/pattern (i.e., stripe) phenotype, and were the basis for designating genotypes. 34	
 35	

For the within-generation experimental data, we fit a Bayesian beta-binomial model to infer 36	
fitness values. Here, we inferred the survival probability of individuals with each genotype using 37	

a binomial sampling distribution for the number of recaptures given the probability of survival 38	
and recapture (pgenotype) and the number of individuals released with that genotype (ngenotype). We 39	

assigned an uninformative (Jeffery's) beta prior for each survival probability. Posterior samples 40	
(N = 5000 each) were obtained from the closed form solution for the posterior using R (62), and 41	

were then used to calculate the relative fitness of each genotype by dividing the survival 42	
probability by the survival probability with the highest fitness (based on the point estimate; s/s).  43	

 44	
An alternative model was required for the FHA data, which was based on change over two 45	

generations (2011 versus 2013). During this time haplotype frequencies went from m = 0.316, s 46	
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= 0.602, and u = 0.082 to m = 0.360, s = 0.570, and u = 0.071. Perhaps more importantly, in both 1	
years, we detected an excess of the s/m heterozygotes (0.514 in 2011 and 0.502 in 2013) relative 2	

to Hardy-Weinberg expectations (0.380 and 0.410, respectively). For this analysis, we assumed 3	
the following relative fitness values: s/m = 1 (based on observed patterns of change this genotype 4	

appeared to have the highest fitness), m/m = 1 + s1, s/s = 1 + s2, u/u = 1 + s2 + s3, s/u = 1 + s2 + 5	
s3 * s4, and m/u = 1 + s1 + s3 * s4.  Thus, s1 and s2 define the fitness value of the m/m and s/s 6	

homozygote in a way that allows for any form of dominance. In turn, s3 defines the fitness of u/u 7	
relative to s/s (i.e., after adding s2). The s/u heterozygote is 1 + s2 + s3 * s4, thus s4 is the 8	

heterozygous effect. This is similar for m/u. We took an approximate Bayesian computation 9	
(ABC) approach to estimating the selection coefficients. We first sampled selection coefficients 10	

from their priors, U(-0.5, 0.5) for s1, s2, and s3, and U(0,1) for s4. We then simulated evolution 11	
forward in time for two generations according to a Wright-Fisher model with the observed 12	

starting genotype frequencies, and dynamics governed by drift and the sampled the selection 13	
coefficients (assuming viability selection). We assumed a variance effective population size of 14	

110.3, which was inferred from patterns of change across 178,141 SNPs (following general 15	
procedures outlined in (63)). We ran 1,000,000 ABC simulations. We then used the ridge 16	

regression adjustment method in the R abc package to obtain samples form the posterior 17	
distribution from the simulation output. We retained the top 0.5% of simulations with the 18	

smallest distance between the simulated and observed genotype frequencies in the 2013 sample. 19	
We then converted the estimates of selection coefficients to relative fitnesses. 20	

	21	

Field experiment testing for NFDS 22	

	23	

We implemented a field transplant experiment testing for NFDS. A total of 1000 individuals 24	
were transplanted, collected from March 21-24, 2017 from populations PRNC (latitude 34.53, 25	

longitude -119.85), OUTA (latitude 34.53, longitude -119.84), HVC (latitude 34.49, longitude -26	
119.79), and HVA (latitude 34.49, longitude -119.79). Numbers were as follows: green-unstriped 27	

morphs, PRCN 220, OUTA 50, HVC 140, HVA 90; green-striped morphs, PRCN 30, OUTA 28	
100, HVA 280, HVC 90. Individuals were kept in groups of 10 and each group was randomly 29	

assigned to one of two treatments: striped individuals common (40 striped and 10 unstriped 30	
individuals) versus striped individuals rare (10 striped and 40 unstriped individuals). Each of 31	

these groups of 50 individuals was then randomly assigned to one of 20 experimental bushes (in 32	
the general area of latitude 34.51 and longitude 119.80). Each bush was cleared of existing T. 33	

cristinae (the only Timema species occurring in this area) by sampling it each day March 21-24. 34	
Past work demonstrates that this clears bushes of the overwhelming majority of Timema (25, 26, 35	

58). Nonetheless, as an additional measure for ensuring accurate identification of experimental 36	
animals, each transplanted individual was marked with fine tip sharpie on the underbelly. This 37	

mark allowed us to distinguish experimental animals from any remaining residents, and the 38	
marks are not visible when Timema are resting on leaves. Individuals were released on March 39	

26
th

 between 9am and 3pm. Each individual was released with tweezers onto an experimental 40	
plant and checked to cling well to their transplanted host. Individuals were recaptured using 41	

visual surveys and sweep nets on March 31
st
, as in past work (25, 26, 30, 35, 36, 58), and scored 42	

as striped or unstriped. 43	

 44	
We fit a Bayesian beta-binomial model to assess the effect of initial stripe frequency on the 45	

recapture stripe frequency. We assumed that the recapture stripe count for bush i was yi ~ 46	
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binomial(pi, ni), where pi is the true stripe recapture rate for a given initial release stripe 1	
frequency. We then placed independent, uninformative beta priors on pi for each treatment. 2	

MCMC (via rjags) was then used to draw samples from posterior distribution. Stripe frequencies 3	
clearly increased when stripe was initially rare (recapture frequency = 0.46, 95% CIs - 0.37-0.55; 4	

change in stripe frequency = 0.26, 95% CIs = 0.17-0.35; posterior probability that stripe 5	
increased > 0.99). In contrast, we found no clear, consistent pattern of change when stripe was 6	

initially common (change in stripe frequency = -0.006, 95% CIs = -0.093-0.063; posterior 7	
probability that stripe increased > 0.43). We inferred selection coefficients for each treatment 8	

(20% vs. 80% initial stripe frequency) based on the estimated posterior distribution for the true 9	
stripe recapture rate. We defined relative fitnesses for striped and green stick insects as wstripe = 1 10	

and wgreen = 1 - s, respectively. Here s is the selection coefficient. We then estimated wgreen based 11	
on  the difference between release and recapture frequencies of the striped morph, such that pi = 12	

(p0 wstripe)/(p0 * wstripe + (1-p0) * wgreen), which can be rearranged as wgreen = (p0 * pi - p0)/((p0-1) * 13	
pi). Here p0 is the stripe release frequency (0.2 or 0.8). 14	

	15	

Estimation of differences between hosts 16	

	17	

We fit a hierarchical Bayesian model to quantify the overall difference in stripe frequency 18	
between hosts across years. A key aspect of this model was that it allowed us to account for the 19	

heterogeneity in sampling, including the fact that a subset of sites was sampled each year. We 20	
used all samples from the main mountain, Highway 154. This included 21,067 data points (T. 21	

cristinae scored as striped versus unstriped, we excluded melanistic morphs) from 274 22	
collections (site by year combinations; 29 sites with a mean of 9.4 visits per site) spanning 27 23	

years (1990 to 2017).  24	
 25	

We specified generalized linear models for the stripe frequency at each location (site) for 26	
each year (nearby or inter-digitated samples from different hosts were considered different sites). 27	

We included effects for site and year, and modeled each of these hierarchically by placing a 28	
normal prior on them with parameter values estimated from the data (except the means for the 29	

year effects, which were fixed at 0 to ensure the model parameters were identifiable). We placed 30	
uninformative priors on the site means, normal with mean 0 and precision 1e

-6
, and on the 31	

precision parameters, gamma(0.01, 0.001). We used Markov chain Monte Carlo to generate 32	
samples from the posterior distribution and used these samples to compute several key derived 33	

parameters: the yearly mean stripe frequency for each host and the yearly mean difference in 34	
stripe frequency between hosts. Inferences were based on three MCMC chains, each with a 35	

10,000 iteration burn-in, 20,000 sampling iterations and a thinning interval of 5 (MCMC 36	
analyses were conducted with rjags). Point estimates (posterior medians) for the difference 37	

between hosts (stripe frequency on Adenostoma minus Ceanothus) ranged from 0.30 to 0.64 38	
(mean = 0.56), and for all but one year (2011) the 95% CIs for the difference in stripe frequency 39	

excluded 0 (i.e., they were significantly positive). 40	

	41	

Estimating predictability in finches and moths 42	

	43	

The data analyzed were obtained as follows. We obtained data on Geospiza fortis and 44	
Geospiza scandens body size and beak size from (21). The data are from Daphne Major from 45	

1973 to 2012. Three measurements were included: principal components (PC) 1 body size, PC1 46	
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beak size and PC2 beak size. We obtained data on Panaxia dominula medionigra allele 1	
frequency from (40). We used the data from 1940-1978, as there were no gaps in sampling 2	

during this time interval. We obtained data on Biston betularia peppered moth morph frequency 3	
from (41). We used the data from Leeds, which was most complete, and restricted analysis to 4	

years 1967 to 1995 because there were several years after 1995 with very low sample sizes. 5	
ARMA Models were fit to the data as described for T. cristinae above. 6	

 7	
We then asked whether and to what extent including rainfall data on Daphne Major (also 8	

from 1973 to 2012) improved the fit of the Geospiza time series data sets. We focused on rainfall 9	
as it is thought to be a strong determinant of seed size, which is a key source of selection on 10	

these finches (1, 21). We obtained the rainfall data from (21). We fit Bayesian ARMA models of 11	
order 0, 1, or 2 with respect to the AR and MA components (as described previously) that also 12	

included rainfall (MCMC details were identical to those described above). We placed an 13	
uninformative prior, Normal(mean = 0, precision = 1e-5), on the coefficient for rainfall. We then 14	

used the best ARMA model that included rainfall (based on DIC) for predictive cross-validation 15	
and forecasting as described above for the pure ARMA models (without rainfall). We then 16	

compared the predictive performance of the best ARMA models with and without rainfall. 17	
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 1	

2	
Fig. S1. Schematic illustrating the delimitation of the Mel-Stripe locus using two reference 3	
genomes. See text of supplementary materials for details. 4	

  5	
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	1	
Fig. S2. Principal Components Analysis (PCA) ordination of 1102 T. cristinae from FHA 2	

based on genetic data from the Mel-Stripe locus. Points (left panel) and numbers (right 3	
panel) denote individuals, and are colored based on color and pattern phenotypes (we did 4	

not have phenotypic data for some individuals). In the right panel, numbers denote 5	
cluster/group assignments from k-means clustering with k=6. Cluster assignments were 6	

used to assign genotypes when estimating selection. 7	
 8	

	9	
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	1	
Fig. S3. Evolutionary time series for Geospiza fortis body size (a), beak PC1 (b), beak PC2 2	
(c), G. scandens body size (d), beak PC1 (e), beak PC2 (f), Panaxia dominula medionigra 3	

frequency (g), and Biston betularia "peppered" frequency. 4	
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	1	
Fig. S4. Change in mean trait values or morph/allele frequency for Geospiza fortis body size 2	
(a), beak PC1 (b), beak PC2 (c), G. scandens body size (d), beak PC1 (e), beak PC2 (f), 3	

Panaxia dominula medionigra frequency (g), and Biston betularia "peppered" frequency. 4	
Data points for each year denote that change observed from that year to the next year. 5	

	6	

	7	
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1	
Fig. S5. Predictive r

2
 from ARMA forecasting models for evolutionary time series in 2	

Geospiza fortis body size (a), beak PC1 (b), beak PC2 (c), G. scandens body size (d), beak 3	

PC1 (e), beak PC2 (f), Panaxia dominula medionigra frequency (g), and Biston betularia 4	
"peppered" frequency. r

2
 between the observed and predicted values of change are shown 5	

from models dropping (and predicting) the last three to 10 years (r
2
 was computed from a 6	

simple linear model). 7	

	8	
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	1	
Fig. S6. Predictive correlations from ARMA forecasting models for evolutionary time 2	
series in Geospiza fortis body size (a), beak PC1 (b), beak PC2 (c), G. scandens body size (d), 3	

beak PC1 (e), beak PC2 (f), Panaxia dominula medionigra frequency (g), and Biston 4	
betularia "peppered" frequency. Pearson correlations (solid line and points) and 95% 5	

confidence intervals (shaded polygons) between the observed and predicted values of 6	
change are shown from models dropping (and predicting) the last three to 10 years. 7	

8	
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Table S1. Summary of cross-validation and forecasting results (values for forecasting are 1	
medians from estimates based on 3 to 10 year forecasts). Bold font denotes cases where the 2	

ARMA model was preferred over a null model with a constant expectation. 3	

Data set Best model cross-

validation 

intercept 

cross-

validation 

slope 

cross-

validation 

r
2
 

forecasting r forecasting 

r
2
 

Timema stripe ARMA(1,2) -0.005463 0.938310 0.6974 0.9282905 0.8618326 

Timema color ARMA(1,2) 0.03373 -1.24295 0.1019 -0.2959806 0.1388707 

G. fortis body 

size 

ARMA(2,2) -0.07142 -1.89589 0.2581 0.2593157 0.2565920 

G. fortis beak 

size (PC1) 

ARMA(0,1) -0.1872 -6.0475 0.2769 -0.0460291 0.1405218 

G. fortis beak 

size (PC2) 

ARMA(0,1) 0.002860 0.462132 0.03286 0.06829066 0.05675793 

G. scandens 

body size 

ARMA(1,2) -0.005377 -0.159569 0.05488 0.6263869 0.3951535 

G. scandens 

beak size 

(PC1) 

ARMA(1,2) 0.02175 -0.22193 0.05206 0.2741161 0.1395220 

G. scandens 

beak size 

(PC2) 

ARMA(1,2) -0.002938 0.546308 0.05978 0.08118622 0.18602100 

P. dominula 

medionigra 

ARMA(1,1) -0.0005844 0.4419179 0.01698 0.000594893 0.180800958 

B. betularia 

peppered 

ARMA(1,0) -0.05174 -1.80925 0.6584 0.15945025 0.02692756 

	4	

	 	5	
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Table S2. Posterior median and 95% credible intervals for key model parameters from the 1	
March, April, May melanistic morph model. All continuous covariates were standardized. 2	

Parameter Median Lower bound 95% CI Upper bound 95% CI 

a1 -2.31 -2.44 -2.20 

a2 0.187 0.063 0.309 

b1 -0.163 -0.260 -0.061 

b2 -0.0060 -0.0151 0.0274 

c1 0.164 -0.001 0.341 

c2 -0.197 -0.362 -0.249 

d1 -0.500 -0.749 -0.249 

d2 -0.050 -0.323 0.219 

	3	

  4	
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Table S3. Summary of model fit for the Geospiza data when rainfall is included in the 1	
model (based on rainfall and trait measurements from 1973-2012). We report the r

2
 (mean 2	

across 3-10 years) for forecasting for the best ARMA model with rainfall, as well as the 3	
change in forecasting r

2
, r (unsquared), and the lower and upper bounds on of the 95% 4	

confidence interval on r (lb and ub, respectively)(all of these values are averages across 3-5	
10 year forecasts) obtained by including rainfall (positive values mean that rainfall 6	

improved the predictive forecast). 7	

Data_set	 Model	 r2	 Change	in	r2	 Change	in	r	 lb	 ub	

G.	fortis	 	 	 	 	 	 	

body	size	 ARMA(2,2)	 0.434	 0.178	 0.238	 0.192	 0.102	

beak	PC1	 ARMA(0,1)	 0.174	 0.034	 0.365	 0.027	 0.116	

beak	PC2	 ARMA(0,1)	 0.080	 0.023	 0.207	 0.078	 0.047	

	 	 	 	 	 	 	

G.	scandens	 	 	 	 	 	 	

body	size	 ARMA(2,1)	 0.059	 -0.337	 -0.632	 -0.421	 -0.206	

beak	PC1	 ARMA(1,2)	 0.249	 0.109	 -0.476	 0.014	 -0.210	

beak	PC2	 ARMA(1,2)	 0.121	 -0.065	 -0.054	 0.002	 0.100	

	 	8	

	 	9	
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Database S1. Raw population data. See attached .csv sheet. Variable names are as follows: 1	
location = population/locality, year = year collected, latitude = latitude, longitude = 2	

longitude, elevation = elevation in meters, host = host plant collected on (A = Adenostoma, 3	
C = Ceanothus), melanistic = number of melanistic individuals collected, striped = number 4	

of striped individuals collected, unstriped = number of unstriped individuals collected, 5	
intermediate = number of intermediately striped individuals collected, total = total number 6	

of individuals collected, proportion_melanistic = proportion of the sample that was 7	
melanistic, proportion_striped_no_mel = proportion of the sample that was striped 8	

(excluding melanistics), mean_FebMarApr_temp = mean temperature in Fahrenheit for 9	
February, March, and April, mean_MarAprMay_temp = mean temperature in Fahrenheit 10	

for March, April, and May, mean_FebMarAprMay_temp = mean temperature in 11	
Fahrenheit for February, March, April, and May, refugio_yn = Mountain collected on (1 = 12	

Refugio, 0 = Highway 154). 13	

	 	 	14	

 15	

 16	
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