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The impact of the input parameterisation on the feasibility of MPC and

its parametric solution

J.A.Rossiter and S.S. Dughman

Abstract— Feasibility is an important issue in predictive
control, but the influence of many important parameters such as
the desired steady-state, or target, the current value of the input
are rarely discussed in the literature. This paper makes two
contributions. First it gives visibility to the issue that including
core parameters such as the target and the current input vastly
increases the dimension of the parametric space, with possible
consequences on the complexity of any parametric solutions.
Secondly, it is shown that a simple re-parameterisation of the
d.o.f. to take advantage of reference governor concepts can lead
to large increases in feasible volumes, with no increases in the
dimension of the required optimisation variables.

I. INTRODUCTION

A key selling point of predictive control [4],[12] is the

ability to handle constraints, systematically, in the design of

an optimum control strategy. This enables operators to push

systems closer to their limits and thus improve productivity

and/or quality. However, a little discussed consequence of

including constraints is the so called feasibility problem.

Hereafter, feasibility means that the class of predictions over

which an optimisation is being performed, includes at least

one which is able to satisfy all the constraints. Infeasibility

means the class of predictions does not include a selection

which satisfies all constraints, hence the predictive control

law is undefined with a number of undesirable consequences.

It is of interest to consider the extent to which infeasible

MPC optimisations can occur and also, what mitigating

action might be appropriate. This issue was recognised early

on in the literature and the simplest solutions provided

were so called reference governors [7], [1]. In these, a tacit

assumption is made that infeasibility is often caused by a fast

change of the set point and thus, feasibility can be retained

by slowing down set point changes. In the early literature, the

algorithms focussed on simple computations for determining

the required slow-down; optimality was not a main criteria.

An alternative approach in the standard MPC literature [16],

[11], [19], [15], [21], is to augment the degrees of freedom

with a target deviation term, that is, to allow the target to

deviate from its true value so that the associated predictions

are feasible. Of course, the downside of such an approach is

that one may end up optimising performance with respect to

the incorrect target, although in truth, such an issue seems

somewhat hypothetical if the true target is unreachable.

Typically, authors have used the standard parameterisation

of the degrees of freedom (d.o.f.), that is deviations to the
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first few control moves [22], [17]. More recently, a few

authors have looked at the potential of alternative parameteri-

sations such as those supported by Laguerre polynomials [8],

[20], as this embeds a form of slowing down of the transition

from one steady-state to another and thus enable fewer

d.o.f. to be utilised to capture a whole transient behaviour.

However, such approaches have not yet been extended to

consider scenarios with a permanent offset from the target

and thus extensions to this approach are deferred until later.

Another relatively recent development is the potential to

form parametric solutions [13], [2]. These can be advanta-

geous for systems which require fast sample rates and/or

some form of rigorous validation of closed-loop behaviour.

The downside is that some times the parametric solutions are

very complex, requiring excessive offline computation and

excessive online storage and set membership tests [9]. Thus,

there is interest if finding alternatives which give simple

solutions, perhaps at the cost of some suboptimality [3].

This paper investigates the two issues discussed above,

that is to investigate the potential of different input parame-

terisations to reduce the complexity of parametric solutions

alongside a simple aim of achieving large enough feasible

regions [18]. Nevertheless, rigorous analytic results are not

possible due to the highly nonlinear interdependence between

feasible regions, constraints, degrees of freedom and the

underlying system. Instead, here we take a case study based

approach to explore alternatives using the argument that, if

different solutions have significant benefits for some systems,

they may also do so for other systems and thus this is useful

knowledge; this paper focuses on square systems only as

non-square systems have a number of additional issues which

complicate the scenario further. The focus is on dual-mode

approaches to MPC as these have straightforward guarantees

of closed-loop stability whereas finite horizon approaches do

not. The 2nd section introduces basic background material

on dual-mode MPC and also, gives explicit details of how

integral action, tracking and steady-state offset are incorpo-

rated into the problem (such details are often avoided in

the literature). Section 4 presents several examples of how

feasibility varies for different parameterisations of the d.o.f.

Section 5 focuses on parametric solutions to explore how

complexity of these might, or might not, be linked to the

choice of parameterisation. Conclusions are in section 6.

II. BACKGROUND ON DUAL-MODE PREDICTIVE CONTROL

This section summarises the optimal predictive control

(OMPC) [17], [22] algorithm with specific attention given

to how the problem is augmented to include reference



trajectories and steady-state offsets. Such detail is important

to understand the dimension of the associated parametric

space, as extra states are required to include: (i) integral

action/targets; (ii) definition of input rates; (iii) steady-

state offsets. The need for each of these states is often

tacitly ignored but, this increase in dimension has significant

repercussions for computational loading and data storage.

Remark 1: Proofs of recursive feasibility and stability are

established in the literature and thus not repeated as this

paper contribution focusses on the impact of different choices

on the volumes of feasible regions.

A. Nominal model

For simplicity this paper assumes an observable and con-

trollable state space model of the following form.

xk+1 = Axk +Buk; yk = Cxk + dk (1)

with xk, uk, yk, dk the states, input, output and disturbance

respectively with dimensions nx,m,m,m and the input rate

defined from ∆uk = uk − uk−1. The disturbance signal dk,

which is estimated, is used to incorporate integral action and

cope with parameter uncertainty. The system is subject to

constraints, typically (others are possible):

u ≤ uk ≤ u; ∆u ≤ ∆uk ≤ ∆u; x ≤ Kxxk ≤ x (2)

Define the future target r
→k+1

as (assumed constant):

r
→k+1

= [rT
k+1, r

T

k+2, · · · , r
T

k+ny
]T = [I, I, . . .]T rk+1 (3)

The system steady-state states and inputs are estimated from

solving xk+1 = xk, yk = rk+1 and hence:

[
A− I B

C 0

] [
xss

uss

]

=

[
0

rk+1 − dk

]

(4)

→

[
xss

uss

]

=

[
Kxr

Kur

]

(rk+1 − dk)

B. Optimal or dual-mode predictive control

It is now well known [12] that dual-mode approaches
have good stability properties in general. Here, a standard
OMPC algorithm is defined. OMPC uses a infinite horizon
performance index of the following form:

J =

∞∑

i=0

(xk+1+i−xss)
T
Q(xk+1+i−xss)+(uk+i−uss)

T
R(uk+i−uss)

(5)

Define uk − uss = −K(xk − xss) to be the optimal

unconstrained feedback minimising (5); this can be solved

with standard identities. A key selling point of OMPC is

the ability to handle constraints. To do this two things are

needed; (i) a definition of the system predictions so these can

be compared to the constraints (2) for all future samples and

(ii) some d.o.f. which can be used to vary the predictions

about the nominal unconstrained optimal predictions arising

from the use of feedback uk − uss = −K(xk − xss).

C. Input parameterisation and modified performance index

A common input parameterisation takes the form:

uk+i − uss = −K(xk+i − xss) + ck+i i = 0, 1, · · · , nc − 1
uk+i − uss = −K(xk+i − xss) + c∞ i ≥ nc

(6)

so the variables ck+i, i = 0, 1, . . . , nc − 1 are the degrees of

freedom which allow deviations in the first nc moves of the

optimal input trajectory; the term c∞ is a d.o.f. which enables

steady-state offset between the asymptotic output predictions

and desired target rk+1. Substituting (6) into (5), it is well

known [17] that minimising the performance index wrt to

c
→k

is equivalent to minimising the following (with SD =

diag(S, S, ...)):

J = c
→

T

k
SD c

→k
+
∑

∞

cT
∞
Sc∞; c

→k
= [cT

k
, · · · , cT

k+nc−1]
T

(7)

Remark 2: Given the sum to infinity of error terms, J

of (7) is minimised by minimising the term cT
∞
Sc∞, that

is, unsurprisingly, minimising the offset. One might argue

that choosing c∞ = 0 is a reasonable choice, if possible.

However, putting all the focus on the asymptotic offset can

be disadvantageous to transient errors, so in practice a trade

off can be achieved using something along the lines of:

J = c
→

T

k
SD c

→k
+ λcT

∞
Sc∞ (8)

where λ is a weighting to be selected.

D. Predictions

Formulating the predictions needs a little more care

because the predictions are used to ensure the expected

behaviour satisfies constraints. In consequence, due to the

implied closed-loop form of (6), the predictions must include

information such as the future target, measured disturbance

and current input. A convenient means of combining (1,6)

is with an autonomous model formulation [10]. In this case,

the formulation must be extended to capture the evolution

of rk+1 − dk, xk, uk,∆uk as these values appear in the

constraints (2). Hence, the following identities are needed:

{ck+i = c∞, i ≥ nc} {rk+i − dk+i = rk+1 − dk, i ≥ 1}
(9)

{∆uk+i = uk+i − uk+i−1, i ≥ 0}

Combining (1,4,6,9) gives the following:

Zk =









xk

rk+1 − dk
c
→k

c∞
uk−1









; (10)

Zk+1 =









Φ (I − Φ)Kxr [B, 0, . . . , 0] 0 0
0 I 0 0 0
0 0 IL I 0
0 0 0 I 0
K −K.Kxr −Kur [I, 0, 0, . . .] 0 0









︸ ︷︷ ︸

Ψ

Zk

where IL is a block upper triangular matrix of identities.



E. Constraints

The final building block in an MPC algorithm is the

set of inequalities which ensure the predictions from model

(10) satisfy constraints (2). There are several algorithms for

formulating these inequalities (e.g. [6], [14]) so here just

the result is given. Combining model (10) and constraints

(2), inequalities representing constraint satisfaction of the

predictions, for suitable N,T,M,P,Q, f , reduce to:

N c
→k

+ Tc∞ +Mxk + Puk−1 +Q(rk+1 − dk) ≤ f (11)

where details of how to compute the parameters are excluded

as standard in the admissible set literature [6].
Lemma 1: The constraint inequalities (11) can be ex-

pressed in parametric form as (f is assumed constant):

[N,T ]
︸ ︷︷ ︸

NT

[
c
→k

c∞

]

+ [M,P,Q]
︸ ︷︷ ︸

Mw

Wk ≤ f ; Wk =





xk

uk−1

rk+1 − dk





(12)

where the parameter space is Wk and the d.of. are in c
→

, c∞.

Theorem 1: Including both tracking and input rate con-

straints into OMPC increases the effective parameter space

by the dimensions of the target rk and the input uk respec-

tively compared to the scenarios where these are excluded.

Proof: Self-evident from the definition of Wk in (12). ⊔⊓
This latter point is important because, it highlights a

little discussed impediment to the widespread adoption of

parametric approaches. It is well accepted that parametric

approaches suffer from computational challenges as the state

dimension increases [2], [9], but it is rarely highlighted that it

is not just the state dimension which is an issue, but also the

significant increase in the implied state dimension required

to include input rate constraints and offset free tracking.

Corollary 1: As one aspect of this paper is focussed

around parametric approaches, future target information has

not been included, that is we assume rk+i = rk+1, ∀i > 0.

To do otherwise would increase the parametric dimension of

Wk further still [5].

F. The OMPC algorithm

Having constructed all the foundation components, an

OMPC algorithm [22] can now be defined.
Algorithm 1: OMPC is defined as follows. At each sam-

ple, perform the quadratic programming optimisation

min
c
→k

,c∞

c
→

T

k
SD c

→k
+ λc

T
∞Sc∞ s.t. NT

[
c
→k

c∞

]

+MxWk ≤ f ;

(13)

Implement the first value of ck in (6) to determine the current

input, that is uk.

Remark 3: Strictly speaking the classical OMPC algo-

rithm uses λ = c∞ = 0 but this paper includes the extra

d.o.f. because the intention is to consider the efficacy of this

for simplifying overall complexity and computational load.

G. Summary

This section has defined the core components in an OMPC

algorithm which allows for steady-state offset in the pre-

dictions, that is an appropriate performance index and also

inequalities to capture the constraints. This offset may be

used optionally as a mechanism to avoid infeasibility in

transients [7], even where steady-state feasibility is assured.

Moreover, the OMPC framework has been deliberated cast in

a format suitable for parametric approaches as these results

can now used to investigate two related but separate issues.

1) The extent to which the parameter c∞ is more or less

effective than c
→k

in increasing the feasible space.

2) The extent to which the parameter c∞ may or may not

simplify parametric solutions as compared to the use of

c
→k

in the cases where the problem includes tracking.

III. EXPLOITING OFFSET IN SYSTEM PREDICTIONS

A key point in this paper is how to deal with transient

infeasibility in a computationally efficient manner but it is

assumed that the asymptotic steady state is feasible (and thus

differs from [15]). A key observation is that the class of input

predictions (6), with c∞ = 0, may not have sufficient d.o.f. to

satisfy constraints (2 or 12) when nc is small (as is common

to ensure the corresponding QP of (13) is manageable). A

historical proposal, where the infeasibility was due to a rapid

change in the target rk, was to deploy a reference governor

which, in effect, changed the target temporarily. Here, the

intention is to deploy the d.o.f. c∞ which has the same effect,

that is, its inclusion is equivalent to a change in the steady-

state target. The preference for using c∞ is that it fits neatly

into the prediction structure of (6) and autonomous model

of (10) and thus is straightforward to use when assessing

feasible regions using admissible sets and inequalities.

A. Using c∞ to enlarge feasible regions

The first objective is to assess whether adding the d.o.f.

c∞ is more effective than increasing nc by one; both these

changes increase the overall d.o.f. and thus optimisation

dimension by the same amount. Any insights gained are

useful as, in practice, operators like to keep the overall

optimisation dimension as small as reasonably possible.

The concept of n-step sets is widely understood in the

MPC literature. In essence:

• A 0-step set is the region in which the control law (6)

satisfies constraints when nc = 0 and c∞ = 0. This is

where the unconstrained control law is feasible.

• A 1-step set gives the range of values of Wk such

that, with a single non-zero value of ck, one can satisfy

constraints at the first sample, and move into the 0-step

set by the next sample.

• A 2-step set gives the range of values of Wk such

that, with a single non-zero value of ck, one can satisfy

constraints at the first sample, and move into the 1-step

set by the next sample.

• The definition of a n-step set follows the same pattern.

Lemma 2: With c∞ = 0 and a given choice of nc, the

feasible region is given by the nc-step set. This is obvious.

Remark 4: Problems occur when the current states

xk, uk−1 are good distance from the target steady-state

xss, uss. In this case infeasibility can arise as the nc-step set

around the target steady-state is limited in volume, so points



far away are not inside if nc is small. To retain feasibility, it

is necessary to choose an alternative nc-step set, that is one

associated to a different Wk; this means change the only

component in Wk which you can which is rk.

Theorem 2: Where a simple move of the implied steady-

state xss, uss is sufficient to retain feasibility, then the d.o.f.

c∞ will be sufficient to retain feasibility.

Proof: This is obvious as choices for c∞ exist which can

be used to imply convergence to any asymptotically stable

steady-state point. ⊔⊓
Theorem 3: Assuming that the OMPC problem was fea-

sible at sample k − 1, then the inclusion of c∞ guarantees

feasibility at the sample k.

Proof: The main difference between sample k and k − 1
in terms of the implied predictions in (12), is the change in

the value rk+1−dk. It has been shown that c∞ can overwrite

any impact on predictions from a change in that state, and

thus can be used to place the system in the same effective

state as at the previous sample. ⊔⊓
Remark 5: It is noted that reachable steady-states are

limited to the sub-space implicit in (4). Where a simple move

of the implied steady-state xss, uss is not sufficient to retain

feasibility, then the d.o.f. c∞ is less likely to be useful and

hence one get more benefit from increasing nc. This case

will occur where the initial condition rather than changes in

the target cause infeasibility.

IV. NUMERICAL EXAMPLES

This section will show how the shapes of the feasible
regions vary for changes in nc and the inclusion or not of c∞.
For ease of illustration examples are restricted to a parameter
space of dimension 2. One example is:

A =

[
0.8 0.1
−0.2 0.9

]

; B =

[
0.3
0.8

]

; − 0.2 ≤ u ≤ 0.5; (14)

‖∆uk‖ ≤ 0.05;






1 0.2
−0.1 0.4
−1 0.2
0.1 −0.4




xk ≤






8
8
1.6
5






A 2nd example has:

A =

[
0.8 −0.53

−0.09 0.97

]

; B =

[
0.09
0.005

]

; −5 ≤ u ≤ 4; (15)

‖∆uk‖ ≤ 0.4;








1 0.2
−0.1 0.4
−1 −0.2
0.1 −0.4
−1 −0.45







xk ≤








4
1.6
0.8
1.6
0.6








A. With and without c∞ but varying uk−1

A little discussed issue in the literature is the impact of

the initial input on the feasible regions; this is relevant when

there are input rate constraints and it is also clear that uk−1

is one component of the parametric space Wk.

• Figures 1,3 show how the 2-step set for examples

(14,15) changes as uk−1 changes for a standard OMPC

algorithm without c∞.

Fig. 1. Variation in feasible region of example (14) with nc = 2, rk+1 =
0, no c∞ and uk−1 = 0.5, 0.2, 0,−0.2.

Fig. 2. Variation in feasible region of example (14) with nc = 1, rk+1 = 0
and c∞ 6= 0 and uk−1 = 0.5, 0.2, 0,−0.2.

• Figures 2 show how the 1-step set changes for examples

(14,15) as uk−1 changes and including the d.o.f. c∞.

Two conclusions are obvious: (i) First it is essential that

uk−1 is included as a parametric state and this can have a

significant impact on whether a given xk is feasible or not.(ii)

Secondly, in this case, adding a d.o.f. c∞ as opposed to ck+1

as given significant enlargements in the feasible region (all

figures (1,2) and (3,4) have the same number of d.o.f. but

clearly the latter of each pair has larger volumes.).

B. With and without c∞ but varying rk

Again, the literature has tended to focus on feasible

regions where the concern is focussed around the initial

condition and regulation with an almost tacit assumption that

the target is the origin. In practice, the target may change and

this can have significant effects on the shape of the feasible

region. In such a case, the traditional OMPC d.o.f., that is

c
→k

may, or may not, be effective.

This section uses example (14) and shows how the feasible

region shape and volume changes substantially as the target

changes and moreover emphasises that the standard d.o.f. in

c
→k

may have a limited impact in dealing with this.

• Figure 5 shows how the 2-step set changes as rk+1

changes for a standard OMPC algorithm without c∞.



Fig. 3. Variation in feasible region of example (15) with nc = 1, rk+1 = 0
no c∞ and uk−1 = 2, 1, 0,−1,−2.

Fig. 4. Variation in feasible region of example (15) with nc = 1, rk+1 = 0
and c∞ 6= 0 and uk−1 = 2, 1, 0,−1,−2.

• Figure 6 shows how the 1-step set changes as rk+1

changes but also including the d.o.f. c∞.

It is notable here that the 2nd option, the algorithm which

includes c∞, has a feasible region which is totally unaffected

by the choice of rk+1. In retrospect this is to be expected, but

of course it demonstrates the huge benefit of this option as

opposed to the conventional OMPC algorithm whose feasible

regions (figure 5) are much smaller by comparison, with the

inevitable risk that frequent infeasible scenarios could arise.

Similar conclusions are derived by looking at example (15)

- see figure 7, although it is interesting that for this example

the feasible region volume is closely linked to the choice

of target steady-state and some choices of target (e.g. r =
1.2) provide a feasible region that encompasses the smaller

feasible regions for alternative choices of r. However, once

again the most significant point is that if c∞ is included as

a d.o.f., the feasible region is unaffected by the choice of r.

V. PARAMETRIC SOLUTIONS

While the previous section has shown potential feasibility

benefits of exploiting the offset term in a closed-loop pre-

diction paradigm, another interesting question is whether this

d.o.f. can be used to simplify the complexity of a parametric

solution. That is, if one can obtain a similar volume feasible

Fig. 5. Variation in feasible region of example (14) with nc = 2, uk−1 = 0
and rk+1 = −1,−0.5, 0, 0.5, 1, 1.2.

Fig. 6. Variation in feasible region of example (14) with nc = 1, uk−1 = 0
and c∞ 6= 0 and rk+1 = −1,−0.5, 0, 0.5, 1, 1.2.

region with far fewer d.o.f., is it possible that one may also

require far fewer parametric regions.

In this case it is not obvious that any analysis or theorems

will offer insight, but the authors consider it interesting to

perform some case studies to investigate whether there were

any encouraging patterns. The basic premise is to find the

complexity of the associated parametric solution. Where c∞
is included, the implied number of d.o.f. is one higher and

of course the volumes of the feasible regions differ, but here

the focus is solely on the parametric solution complexity.

The results are presented in tables I-II and use the same

examples as in the previous section; it is accepted this is

a very narrow snapshot and a far broader investigation is

possible. A summary is that there is no obvious pattern, but

of course one could argue that including c∞ gives much

larger feasible volumes in gernal for the same number of

d.o.f., so for equivalent volumes of feasible region, it is likely

that using c∞ will result in far fewer parametric regions.

VI. CONCLUSIONS

This paper has made some investigations into the little

studied area of feasibility in predictive control. A rather

obvious but little explored insight is that the tool of a terminal

set deployed in dual mode MPC to facilitate guarantees

of stability can make feasibility worse as it introduces an



Fig. 7. Variation in feasible region of example (15) with nc = 1, rk+1 = 0
and c∞ = 0 and rk+1 = −1,−0.5, 0, 0.5, 1, 1.2.

Number d.o.f. 2 3 4 5 6

Without c∞,rk = 0, uk−1 = 0 32 58 79 105 142

With c∞, rk = 0, uk−1 = 0 32 58 79 105 189

Without c∞, rk = 1, uk−1 = 0.5 17 37 55 79 118

With c∞, rk = 1, uk−1 = 0.5 25 51 80 108 218

TABLE I

COMPARISON OF NUMBER OF REGIONS IN MPQP SOLUTION WITH

D.O.F. OF JUST ck AND WITH (ck, c∞) ON EXAMPLE (14).

artificial constraint on future predictions. Thus a means of

relaxing this constraint without impacting on stability will

improve feasibility.

It is known that the volume of the feasible regions is linked

to the number of d.o.f., and indeed the choice of terminal

control law, but little work has considered the dependence on

parameters such as the target (desired steady-state) and the

current input; indeed the visibility given to the importance of

the current value of the input is a core contribution. More-

over, although reference governors are a common concept,

these are rarely exploited in an integrated way into MPC

algorithms. Here it is shown that the systematic inclusion of

reference governor concepts, in essence the temporary move

of the target, allows for potentially substantial increases in

feasible volumes and thus caters for a number of important

scenarios which otherwise could lead to infeasibility.

An a prioiri analysis of expected benefits cannot be

performed in general, beyond the obvious scenario of set

point changes, and will vary from case to case although

the insights do apply equally to open stable and unstable

processes. Moreover, future work should explore alternative

Number d.o.f. 2 3 4 5 6

Without c∞,rk = 0, uk−1 = 0 40 86 138 193 255

With c∞, rk = 0, uk−1 = 0 40 86 138 193 355

Without c∞, rk = 1, uk−1 = 2 22 59 102 151 218

With c∞, rk = 1, uk−1 = 2 16 44 72 104 237

TABLE II

COMPARISON OF NUMBER OF REGIONS IN MPQP SOLUTION WITH

D.O.F. OF JUST ck AND WITH (ck, c∞) ON EXAMPLE (15).

reference governor paradigms as the current paper focuses

on proposals which improve feasibility alone, but does not

consider the impact on performance. Finally, there is a need

to consider the repercussions for parametric solutions with a

more comprehensive and wider ranging set of case studies.

Acknowledgements: Thanks to ETH for the use of the

MPQP software toolbox http://control.ee.ethz.ch/mpt.
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