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The effect of model structure on the noise and disturbance sensitivity of

Predictive Functional Control

Muhammad Abdullah1 and John Anthony Rossiter2

Abstract— An Independent Model (IM) structure has become
a standard form used in Predictive Functional Control (PFC)
for handling uncertainty. Nevertheless, despite its popularity
and efficacy, there is a lack of systematic analysis or academic
rigour in the literature to justify this preference. This paper
seeks to fill this gap by analysing the effectiveness of different
prediction models, specifically the IM structure and T-filter, for
handling noise and disturbances. The observations are validated
via both closed-loop simulation and real-time implementation
and show that the sensitivity relationships are system depen-
dent, which in turn emphasises the importance of performing
this analysis to ensure a robust PFC implementation.

Keywords—Predictive Control, PFC, Sensitivity Analysis, In-
dependent model, T-filter, Noise, Disturbance.

I. INTRODUCTION

Predictive Functional Control (PFC) is a variant of Model

Predictive Control (MPC) that optimises a cost function

solely based on a single degree of freedom (d.o.f) [8],

[9]. With this simplification, PFC only requires a minimal

computation and indeed, for low order models, the coding

is almost trivial. In addition, PFC inherits some benefits

of MPC such as systematic handling of constraints and/or

systems with delays [10]. Because of its transparent tuning

procedure, the controller is widely used in many industrial

applications and has become a prime competitor to Propor-

tional Integral Derivative (PID) regulators [4], [9], [10].

Despite its attractive attributes, the simplistic PFC concept

is often unable to provide a consistent prediction [11],

accurate constrained solutions [1] and effective handling

of systems with challenging dynamics [13]. Several works

have modified the traditional PFC framework to tackle these

weaknesses either via cascade structures [9], pole-placement

[13], [14] or input shaping [1]–[3], [13]. However, the

derivation of these methods excludes explicit consideration

of uncertainty and no attempt was made to discuss or analyse

systematically the robustness of PFC.

Generally, PFC has received comparatively little attention

in the academic literature because of its weaknesses in

providing rigorous properties such as stability assurances [5],

[15] or robust feasibility [7]. Critically however, embedding a

formal robust design into the PFC formulation conflicts with

the requirement for simplicity of coding and implementation

[6]; a key selling point of PFC is its simplicity. The normal
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option is to derive the nominal PFC controller using methods

expected to give a robust design [16], [18], such as the use

of a T-filter [17] or an Independent Model (IM) [9]. Since

the unconstrained PFC framework provides a fixed control

law, loop sensitivity can be computed and analysed to assess

the controller robustness.

A conventional PFC approach often employs the IM

structure to handle uncertainty [9], [10]. However, this paper

argues that it is not always the best option to improve

sensitivity in general. A user should also consider other alter-

natives such as the T-filter which may enable better trade-offs

between noise and disturbance sensitivity [16], [17]. This

paper compares the robustness of these two structures and

their sensitivity functions are derived and benchmarked with

a nominal PFC based on a CARIMA model. The analysis

may help a user to get some insight into how to improve the

controller robustness via selecting a suitable PFC structure

rather than requiring a more complicated robust design [7].

This paper consists of five main sections. Section II

discusses the basic formulation and derivations of sensitivity

functions for three different PFC structures: Carima model,

T-filter and IM structure. Section III presents the analysis

on a real-time example. Section IV analyses two numerical

examples with a higher order dynamics and section V

provides the concluding remarks.

II. PFC STRUCTURES AND SENSITIVITY FUNCTIONS

This section presents a brief formulation of three differ-

ent PFC structures associated to different prediction model

assumptions together with the derivation of the associated

sensitivity functions. Without loss of generality, this paper

assumes an underlying CARIMA model (since state space

and Finite Impulse Response (FIR) models can equally be

represented with a IM). Here, only a brief background on

PFC is presented; more detailed derivations, theory and

concepts are available in references [4], [9]–[11].

A. PFC with a CARIMA model

The PFC framework is designed based on human intuition

where one computes a required control action depending on

how fast one desires the output to reach the set point. The

first order target trajectory is utilised to define the desired

future output by enforcing the equality [11]:

yk+n|k = (1− λn)r + λnyk (1)

where yk+n|k is the n-step ahead system prediction at

sample time k, the desired closed-loop pole λ controls the

convergence rate from output yk to steady-state target r, and



the coincidence horizon n (a tuning parameter) is when the

system prediction is forced to match the target trajectory

exactly [9]. Since the n-step ahead prediction algebra for a

CARIMA model is well known in the literature (e.g. [16]),

only the final form is given here. For input increments ∆uk

and outputs yk, the n-step ahead linear prediction model is:

yk+n|k = H∆uk
→

+ P∆uk
←

+Qyk
←

(2)

where parameters H , P , Q depend on the model parameters

and for a model of order m:

∆uk
→

=








∆uk

∆uk+1

...

∆uk+n−1







; ∆uk
←

=








∆uk−1

∆uk−2

...

∆uk−m







; yk
←

=








yk
yk−1

...

yk−m








(3)

Substituting prediction (2) into equality (1) gives:

H∆uk
→

+ P∆uk
←

+Qyk
←

= (1− λn)r + λnyk (4)

The constant future input assumption [9], [10] of PFC means

∆uk+i = 0 for i > 0, hence only the first column (H1) of

matrix H is used to construct the control law, thus:

∆uk =
1

H1

[

(1− λn)r + λnyk −Qyk
←

− P∆uk
←

]

(5)

The control law can be represented in a vector form by

rearranging (5) in terms of parameters F , N and D̂ with

obvious definitions:

∆uk = Fr −Nyk
←

− D̂∆uk
←

(6)

Although the formulation in (6) can be implemented

directly, it is easier to utilise a transfer function form for

analysing its sensitivity [16]. The vectors of

N = [N0, N1, N2, ..., Nn]

D̂ = [D̂0, D̂1, D̂2, ..., D̂n]
(7)

are defined in the z domain as:

N(z) = N0 +N1z
−1, N2z

−2 + ...+Nnz
−n

D̂(z) = D̂0 + D̂1z
−1, D̂2z

−2 + ...+ D̂nz
−n

D(z) = 1 + z−1D̂(z)

(8)

Noting the definitions of ∆uk
←

and yk
←

in (3), the sensitivity

functions are derived based on a fixed closed loop form:

D(z)∆uk = F (z)r −N(z)yk (9)

Fig. 1 indicates the equivalent block diagram and adds

measurement noise nk and output disturbance dk. From

the structure, the effective control law can be simplified

to K(z) = Nc(z)[Dc(z)∆]−1. Assuming system G(z) =
B(z)A(z)−1, the closed-loop pole polynomial Pc(z) = 1 +
K(z)G(z) is represented as:

Pc(z) = D(z)A(z)∆ +N(z)B(z) (10)

The sensitivity of input to noise is derived by finding the

transference from u to n (refer to Fig. 1):

Sun = K(z)[1 +K(z)G(z)]−1

= N(z)Pc(z)
−1A(z)

(11)

Fig. 1: PFC equivalent block diagram representation.

Similarly, the sensitivity of output to disturbance is obtained

by solving the transference from y to d:

Syd = [1 +K(z)G(z)]−1 = A(z)Pc(z)
−1D(z)∆ (12)

Remark 1: This work only considers the sensitivity to

noise and output disturbances. Analysis of parameter uncer-

tainty is similar but excluded to save space.

B. PFC with T-Filter (PFCT)

The T-filter acts as a low pass filter to eliminate high

frequency measurement noise without affecting the nominal

tracking performance [17] of predictive control, although in

the literature a T-filter has yet to be applied to PFC. The

framework proposed here is a two stage design whereby

PFC is first tuned for performance tracking, then the T-

filter is employed to improve the sensitivity. Conceptually,

the measurement output is low-pass filtered before prediction

and anti-filtered after prediction to restore the predicted data

back to the correct domain before deploying the nominal

algorithm. The procedure is illustrated in Fig. 2 and reduces

the impact of high frequency noise on the prediction while

retaining the valuable low frequency dynamics [16].

Form 

predic ons

y ~
Low-pass 

lter
An - lter

~y y y

Fig. 2: PFCT prediction structure with T-filter.

The desired T-filter T−1 is deployed as ỹk = ykT
−1 or

T ỹk = yk. Define the filtered predictions upto horizon n as

follows:

ỹ
→k+1

= H∆ũk
→

+ P∆ũk
←

+Qỹk
←

(13)

The relationship between the filtered and unfiltered predicted

data can be represented using Toeplitz/Hankel form (refer to

[16] for more details):

y
→k+1

= CT ỹ
→k+1

+HT ỹk←

∆uk
→

= CT∆ũk
→

+HT∆ũk
←

(14)

where for T (z) = T0 + T1z
−1 + ...+ Tnz

−n:

CT =








T0 0 0 · · ·

T1 T0 0 · · ·

...
...

...
. . .

Tn Tn−1 Tn−2 · · ·







, HT =








T1 T2 · · · Tn

T2 T3 · · · 0
...

...
...

. . .

0 0 · · · 0








(15)



substituting (14) into (13) gives:

C−1T [y
→k+1

−HT ỹk←
]

︸ ︷︷ ︸

ỹk
→

= H C−1T [∆uk
→

−HT∆ũk
←

]
︸ ︷︷ ︸

∆ũk
→

+P∆ũk
←

+Qỹk
←

(16)

Multiplying through by CT and grouping common terms:

yk
→

= H∆uk
→

+ P̃∆ũk
←

+ Q̃ỹk
←

(17)

where P̃ = [CTP − HHT ] and Q̃ = [HT + CTQ]. The

difference between (17) and (2) are the last two terms which

now are based on past filtered data. Hence, applying a similar

control law and derivation to eqns.(4-9), a PFCT fixed control

law can be formulated as:

Dt(z)∆uk = F (z)r −Nt(z)yk (18)

where Dt(z) =
D(z)
T (z) and Nt(z) =

N(z)
T (z) are represented in

the block diagram of Fig. 3. The closed-loop pole polyno-

mial, sensitivity of the input to noise and sensitvity of the

output to disturbances are:

Pt(z) = Dt(z)A(z)∆ +Nt(z)B(z)

Sun = Nt(z)Pt(z)
−1A(z)

Syd = A(z)Pt(z)
−1Dt∆

(19)

Remark 2: It can be shown that the closed-loop poles of

PFCT Pt(z) are related to the equivalent poles of PFC by

Pt(z) = Pc(z)T (z) and also that the inclusion of T-filter

cannot affect the nominal tracking performance [16].

Fig. 3: TPFC fix control loop.

C. PFC with an Independent Model (PFCI)

As discussed before, the IM structure is often used in

conventional PFC [9], [10] as the creators believe it gives

better sensitivity properties in general. The implementation

is equivalent to using a step response model (ignoring

truncation errors [16]). Define ym to be the model output and

yp the process output, then the prediction of future output in

(2) is defined based on ym and augmented with a correction

term Dk = yp,k − ym,k as follows:

yp,k+n|k = H∆uk
→

+ P∆uk
←

+Qy
←m,k

+Dk (20)

Equating prediction (20) with the target trajectory (1) gives:

H∆uk
→

+P∆uk
←

+Qy
←m,k

−ym,k = (1−λn)(r−yp,k) (21)

Since the future input increment ∆uk+i is assumed zero for

i > 0 and H is reduced to H1, the PFC control law is:

∆uk =
1

H1

[

(1−λn)r+(1−λn)yp,k−Qy
←m,k

+ym,k−P∆uk
←

]

(22)

For suitable F,Ni,Mi, D̂, one can rearrange (22) as:

∆uk = Fr −Ni y←m,k
−Miyp,k − D̂∆uk

←
(23)

Transforming (23) into an equivalent transfer function for-

mat, the PFCI fixed closed loop is constructed as:

D(z)∆uk = F (z)r −Ni(z)ym,k −Mi(z)yp,k (24)

The model output can be determined exactly from the model

ym,k = B(z)A(z)−1uk and hence equation (24) can be

replaced by (see Fig. 4 for the effective loop structure):

[D(z)∆ +Ni(z)B(z)A(z)−1]
︸ ︷︷ ︸

Di(z)

uk = F (z)r −Mi(z)yp,k

(25)

Fig. 4: PFCI fix control loop.

The sensitivities for IM structure of figure 4 are obtained

analogously to CARIMA PFC by substituting parameter

D(z)∆ with Di(z), and N(z) with Mi(z) in equation (10-

12). The closed-loop pole polynomial and sensitivites are:

Pi(z) = Di(z)A(z) +Mi(z)B(z)

Sun = Mi(z)Pi(z)
−1A(z)

Syd = A(z)Pi(z)
−1Di(z)

(26)

D. Summary of Control Laws

Table I summarises the sensitivity functions for PFC (Fig.

1), PFCT (Fig. 2) and PFCI (Fig. 4). The key observation is

that while, the derivation and structure of all the sensitivity

functions are almost same, their parameters are different and

hence, different sensitivity response should be expected.

TABLE I: Sensitivity to noise and disturbance.

Algorithm Input sensitivity to Output sensitivity to

noise disturbance

PFC N(z)Pc(z)−1A(z) A(z)Pc(z)−1D(z)∆
PFCT Nt(z)Pt(z)−1A(z) A(z)Pt(z)−1Dt(z)∆
PFCI Mi(z)Pi(z)

−1A(z) A(z)Pi(z)
−1Di(z)

III. REAL TIME SYSTEM EXAMPLE

This section analyses the sensitivity of a PFC con-

trolled Quanser SRV02 servo based unit [19] system against

noise and disturbance. The servo is powered by a Quanser

VoltPAQ-X1 amplifier that comes with National Instrument

ELVIS II+ multifunctional data acquisition device. The con-

troller is run by National Instrument LabVIEW software via



Fig. 5: Quanser SRV02 servo based unit.
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Fig. 6: Sensitivity plot for G1 with different PFC structures.

USB connection (Fig. 5). The objective is to track the desired

servo angular speed, θ̇(t) by regulating the supplied voltage,

V (t). The mathematical model is given as [19]:

0.0254θ̈(t) = 1.53V (t)− θ̇(t) (27)

where θ̈(t) is the servo angular acceleration. Converting the

model (27) to discrete form with sampling time 0.02s, the

transfer function of angular speed to voltage input is:

G1 =
0.8338

1− 0.455z−1
(28)

For a fair comparison, all PFC structures will use the same

tuning parameters (λ = 0.7 and n = 3). The sensitivity

functions for different loop structures: PFC, PFCT and PFCI

are illustrated via Bode plots (see Fig. 6). A summary of

observations is given as:

• In the high frequency range, the first order PFCT, T =
1−0.8z−1 (red dashed line) gives the lowest sensitivity
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Fig. 7: Closed-loop performance of Quanser servo with

different PFC structures.

to noise and disturbance followed by PFCI (green dotted

line) and PFC (blue dashed-dotted line).

• The output of PFCT is more sensitive to low and mid

frequency disturbances compared to PFCI and PFC.

This observation is then validated by comparing their

closed-loop performance on the hardware (see Fig. 7). In

this case, the desired angular speed is set at 4 rad/s and

the output step disturbance (d = 2) entered the system at

3s. The output measurement is corrupted by Gaussian white

noise with amplitude of 2. The results show:

• PFCT reduces noise transmission to the input compared

to PFCI and PFC.

• PFCT rejects the output disturbance 0.2s slower com-

pared to PFCI and PFC.

In summary, without filter or altered structure, the PFC

input is fluctuating between 2.5V to 3V. This situation may

lead to a fatigue failure especially for a highly sensitive appli-

cation. However, improving the sensitivity in one frequency

range may make it worst at the other range and hence in

practice, a trade-off to get the best overall performance is

required. In this example, it may be worth to have a slower

disturbance rejection (which is less likely to occur) to get

the best noise sensitivity with the T-filter.

IV. ANALYSIS FOR HIGHER ORDER SYSTEMS

This section discusses the sensitivity analysis of second

order systems with over and under-damped dynamics. The

analysis is then validated with their closed-loop performance

using Matlab simulations.
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A. Over Damped Second Order System

An over damped second order system (29) is considered

here. The set point is zero and a step output disturbance

(d = 0.1) occurs at the 50th sample. The measurement is

corrupted by Gaussian random white noise. All PFCs are

tuned with λ = 0.7 and n = 3.

G2 =
z−2 + 0.3z−1

1− 1.2z−1 + 0.32z−2
(29)

The Bode plots in Fig. 8 show:

• The input of PFCT2, T2 = (1 − 0.8z−1)2 (pink line)

gives the lowest input sensitivity to noise followed by

PFCI (green dotted line), PFCT1, T1 = 1−0.8z−1 (red

dashed line) and PFC (blue dash-dotted line).

• However, over filtering the measurement as with PFCT2

leads to a poor output reaction to disturbances in the low

or mid frequency range compared to other structures.

The closed-loop simulation in Fig. 9 reflects the sensitivity

analysis whereby:

• PFCT2 rejects most of the noise in input but in fact the

variance with PFCI is still small.

• In the present of the output disturbance, PFCT2 con-

verges 7 samples slower than PFCI (ymax = 0.3) and

PFCT1 (ymax = 0.26) and with the highest overshoot

(ymax = 0.5).

Although, a user can manually tune the T-filter, in this

example there is a reasonable argument that the IM structure

provides a good sensitivity trade off between noise and

disturbances.

B. Second Order Under-damped System

A PFC controlled second order under-damped system (30)

again has a zero set point and a disturbance (d = 0.1) at
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Fig. 9: Closed-loop response of G2 with corrupted measure-

ment noise and disturbance.

50th sample and measurement noise. The tuning parameter

(λ = 0.8 and n = 4) is selected based on the conjecture

presented in [2], [11].

G3 =
0.0565z−2 + 0.0495z−1

1− 1.5643z−1 + 0.6703z−2
(30)

A similar pattern to the previous example is observed in

the Bode diagrams of sensitivity (see Fig. 10):

• PFCT1 gives a small improvement in rejecting high

frequency noise, but less than PFCI, while having al-

most similar disturbance sensitivity in the low frequency

range compared to PFCI.

• Over filtering the measurement noise with PFCT2 leads

to a more sensitive output to low frequency distur-

bances.

The closed-loop simulations in Fig. 11 validate the anal-

ysis whereby:

• PFCI rejects more noise compared to PFCT1 and almost

the same as PFCT2.

• In the presence of the output disturbance, PFCI over-

shoots more than PFCT1 and less then PFCT2 but

converges faster than both.

In this case, it is clearly shown that PFCI has better

sensitivity trade-off between noise and disturbances, thus no

filter or observer would be recommended.

V. CONCLUSIONS

This work provides a sensitivity analysis to uncertainty

for different PFC structures. Although generic conclusions

are not applicable, it is clearly shown that the popular

IM structure does not always give the best robustness to
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uncertainty especially for a simple first order system. In some

cases, using a low pass filter such as a T-filter can provide

a good sensitivity trade-off between noise and disturbances

as shown in the hardware example of section III. However,

the sensitivity of PFC structures are system dependent and

thus the best option may not be clear a priori as the latter

two examples indicated a likely preference for using the IM

approach. Hence, production of off-line sensitivity plots is

essential to give insight into the robustness of differing PFC

structures and indeed, this should be extended to consider a

wider range of sensitivity such as parameter uncertainty.

It is also noted that this paper did not consider the impact

of changes in the parameters λ, n and one might argue that

this should also be investigated. Moreover, where PFC is

challenging to tune [12] and/or needs structural changes,

further alternative structures may be beneficial and should

be included in any offline analysis.

ACKNOWLEDGMENT

The first author would like to acknowledge International

Islamic University Malaysia and Ministry of Higher Educa-

tion Malaysia for funding this work.

REFERENCES

[1] M. Abdullah, J. A. Rossiter and R. Haber, “Development of con-
strained predictive functional control using laguerre function based
prediction,” IFAC World Congress, 2017.

[2] M. Abdullah, J. A. Rossiter, “Utilising Laguerre function in predictive
functional control to ensure prediction consistency,” 11th Int. Conf. on
Control, Belfast, UK, 2016.

[3] M. Abdullah, J. A. Rossiter, “Alternative Method for Predictive
Functional Control to Handle an Integrating Process”, under review
for Advances in PID, 2018.

[4] R. Haber, J.A. Rossiter2 and K. Zabet1, “An Alternative for PID
control: Predictive Functional Control - A Tutorial,” American Control
Conference (ACC), 2016, pp. 6935-6940

0 20 40 60 80 100
Samples

-1.5

-1

-0.5

0

0.5

In
pu

t

0 20 40 60 80 100
Samples

-0.5

0

0.5

1

O
ut

pu
t

Set point
PFC
PFCT1
PFC2
PFCI

Fig. 11: Closed-loop response for system G3 with with

corrupted measurement noise and disturbance.

[5] M. Khadir, J. Ringwood, Stability issues for first order predictive
functional controllers: extension to handle higher order internal mod-
els, International Conference on Computer Systems and Information
Technology (2005) 174-179.

[6] M. Khadir, J. Ringwood, Extension of first order predictive functional
controllers to handle higher order internal models, Int. Journal of
Applied Mathematics and Comp. Science 18,2, 2008, pp. 229-239.

[7] D. Q. Mayne, M. M. Seron, and S. Rakovic, “Robust model predictive
control of constrained linear systems with bounded disturbances,
Automatica, vol. 41, no. 2, pp. 219224, 2005.

[8] J. Richalet, A. Rault, J.L. Testud and J. Papon, Model predictive
heuristic control: applications to industrial processes, Automatica,
14(5), 413-428, 1978.

[9] J. Richalet, and D. O’Donovan, Predictive Functional Control: prin-

ciples and industrial applications. Springer-Verlag, 2009.
[10] J. Richalet, and D. O’Donovan, “Elementary Predictive Functional

Control: a tutorial,” Int. Symposium on Advanced Control of Industrial
Processes, 2011, pp. 306-313.

[11] J. A. Rossiter, and R. Haber, “The effect of coincidence horizon on
predictive functional control,” Processes, 3, 1, pp. 25-45, 2015.

[12] J. A. Rossiter, “Input shaping for PFC: how and why?,” J. Control

and Decision, pp. 1-14, Sep. 2015.
[13] J. A. Rossiter, R. Haber, and K. Zabet, “Pole-placement predictive

functional control for over-damped systems with real poles”, ISA

Transactions, vol. 61, pp. 229-239, 2016.
[14] K. Zabet, J. A. Rossiter, R. Haber, and M. Abdullah, “Pole-placement

Predictive Functional Control for under-damped systems with real
numbers algebra”, ISA Transactions, In Press., 2017.

[15] J. A. Rossiter, “A priori stability results for pfc, International journal

of control, vol. 90, no. 2, pp. 305313, 2016.
[16] J. A. Rossiter, Model predictive control: a practical approach, CRC

Press, 2003.
[17] T.-W. Yoon and D.W. Clarke, Observer design in receding horizon

predictive control, International Journal of Control, 61, 171-191, 1995.
[18] K. Zabet and R. Haber, “Robust tuning of PFC (Predictive Functional

Control) based on first- and aperiodic second-order plus time delay
models”, Journal of Process Control, vol. 54, pp. 25-37, 2017.

[19] Quanser user manual SRV02 rotary servo based unit set up and

configuration. Quanser Inc, 2012.


