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Co-location of energy storage with demand provides several benefits over other locations, while still
being able to provide balancing services to the grid. One of these additional benefits is deferral of
distribution infrastructure reinforcement, allowing increased load growth. This paper considers the
potential of electricity storage for peak shaving on distribution networks, focusing on residential areas. A
demand model is used to synthesise high resolution domestic load profiles, and these are used within
Monte Carlo analysis to determine how much peak shaving could be achieved with storage. An efficient
method of finding the potential peak shaving using electricity storage is developed for this purpose. It is
shown that moderate levels of storage capacity can deliver significant demand reductions, if suitably
coordinated and incentivised. With 2 kWh of battery storage per household, the peak demand at low
voltage substations could potentially be halved. The effects of PV capacity, household size and C rates are
considered. With 3 kW PV per house, 4.5 kWh of batteries could keep peak flows at the same level as
before the addition of PV. It is also shown that 3 kWh of battery storage per household could allow
provision of all heating from heat pumps without increasing the peak demand.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction
1.1. The benefits of distributed energy storage

To deal with the increasing penetration of variable renewables
associated with decarbonisation of the energy system, as well as
increasingly simultaneous load from heat pumps and electric
vehicle charging, flexibility is becoming increasingly important.
There are four main approaches to providing flexibility in a low
carbon energy system: flexible generation (such as gas with CCS),
interconnection to other countries and regions, demand response
(such as smart charging of electric vehicles), and finally energy
storage, on which this paper focuses.

Of the many candidate electricity storage technologies, batter-
ies are of particular interest at small- and medium-scales due to
their relatively high energy density, lack of geographic constraints,
low noise levels, and low maintenance requirements. The drive to
develop lithium-ion batteries for electric vehicles and portable
electronics has led to dramatic cost reductions in recent years [1],
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and it is widely expected that prices will continue to fall in future
[2].

Co-location of energy storage with demand, for example by
installing it in towns and cities (such as within houses [3] or at
substations), can provide a number of key benefits over other
locations. These benefits include peak shaving of both import and
export (e.g. from embedded solar) and hence deferred infrastruc-
ture reinforcement, provision of backup power, power quality
improvements, and increased self-consumption of embedded
generation. Storage co-located with demand can also provide
most of the benefits that can be provided by storage located
elsewhere, such as reserve, footroom,' and frequency response.

In many cases, the benefits of operating storage are spread
across a number of stakeholders. For example, self-consumption of
rooftop solar photovoltaics (PV) using battery storage in a domestic
property can lower the householder’s electricity bills. It is possible,
though not guaranteed, that this operation may consequently
reduce peak flows on the local distribution network, thus
benefitting the distribution network operator (DNO) and

! Footroom is the ability of the system to absorb decreases in demand|/increases in
generation.
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Nomenclature

y Demand threshold

Ne Charging efficiency of the storage, between 0
and 1

Na Discharging efficiency of the storage, between 0
and 1

d Raw power demand (i.e. with no embedded

generation or storage), >0

e Energy contained in the storage, >0

Enax Maximum allowable energy level in the storage,
>0

Emin Minimum allowable energy level in the storage,
>0

N Number of houses

p Net power demand, after taking account of
embedded generation and storage

Pc max Maximum allowable charging power of the
storage, >0

Py max Maximum allowable discharging power of the
storage, >0

S Output from the embedded generation (e.g.
rooftop solar PV), >0

t Time

u Charging power of the storage, or discharging
power if negative

ADMD After diversity maximum demand

C-MADEnRS Consortium for Modelling and Analysis of
Decentralised Energy Storage

CREST Centre for Renewable Energy Systems Technol-
ogy

DNO Distribution network operator

HH Household

HW Hot water

PV Photovoltaic

wd Weekday

we Weekend

subsequently other electricity consumers in the distribution area
(by lowering future distribution charges). It may also reduce peak
demands at a national level, thus reducing the country’s generation
capacity requirements and potentially displacing use of CO,-
emitting peaker plants, as well as providing footroom and lowering
ramp rates in demand.

This paper describes an investigation into the potential of
demand co-located electricity storage for peak shaving in low
voltage distribution networks. Peak shaving could make it possible
to defer reinforcement of distribution infrastructure as load
growth occurs, e.g. from implementation of electric heating or
electric vehicle charging. This paper is primarily concerned with
the technical potential for peak shaving using storage, which is
unaffected by price policy, therefore we do not consider price
policy or economics here. The proportion of the technical potential
that is achieved in reality depends upon the price policy that is
implemented, but currently there are no real incentives for
domestic peak shaving in the UK and many other parts of the
world. This research is one element of the modelling work that
forms part of a wider initiative looking at the role and value of
energy storage within cities, within a research project titled
‘Consortium for Modelling and Analysis of Decentralised Energy
Storage’ (C-MADERS, www.c-madens.org).

1.2. Summary of previous work

Many recent studies have considered the use of energy storage
for peak shaving. Luthander et al. [4] investigated the effects of
storage and solar PV curtailment on peak shaving, showing that
curtailment in particular can be used to halve peak PV export with
less than a 7% annual loss in self-consumption. This study however
has the limitation that the storage was operated simply to
maximise self-consumption, rather than focusing on peak shaving
explicitly.

A number of studies focus on control algorithms and pricing/
incentive schemes for peak shaving, often in combination with
some other goal (such as self-consumption of solar PV). Zheng et al.
[5] developed a simple dispatch strategy for residential peak
shaving from building-based energy storage, and investigated the
economics of various storage technologies operating under a Con
Edison demand tariff that charges consumers according to their
maximum power demand during a one-month billing period. For
the storage dispatch strategy, a “demand limit” was set, and the
storage acted to try and maintain the household’s power demand
at the demand limit. By optimising the storage capacity and
demand limit, it was found that annual profit from using storage
can reach around 40% of the household’s electricity bill, and that
allowing occasional breaches of the intended demand limit
increase profit.

Leadbetter and Swan [6] conducted investigations into the
optimal sizing of battery storage systems for residential peak
shaving, with results suggesting that typical system sizes should
range from 5 kWh/2.6 kW for homes with low electricity usage, up
to 22 kWh/5.2 kW for homes with high usage and electric space
heating. Peak shaving of between 42% and 49% was reported in five
regions of Canada. They also found that very little cycling is
required for peak shaving, and that as such the system’s life is
limited by the calendar life of the batteries.

Hayes et al. [7] investigated individualised price policies to
incentivise demand management, with the goal of reducing system
demand peaks in such a way that the price tariffs seen by
consumers are individualised and non-discriminatory. These
exploit the demand awareness obtained from advanced metering
infrastructure. Through a case study of residential users with
energy storage in a typical European distribution network, the
individualised price policy approach is shown to have advantages
over a global price policy, where many users in the same network
region are given the same price policy. These advantages included
increased load factor, improved voltage and line loading con-
ditions, and reduced network losses.

Others have focused on the effect of time-of-use tariffs on load
shifting in residential areas with energy storage. Graditi et al. [8]
considered the economics of electrochemical storage systems
(including batteries and flow batteries) responding to time-of-use
tariffs in Italy, focusing on their use within public institutions.
Through case studies it is shown that at current costs, the use of
battery storage systems is only economically feasible if there is a
significant difference between the high and low prices in the tariff.
Reductions in battery costs, and the introduction of support
policies, will improve the economics of storage.

In the UK, much of the recent research into small-scale energy
storage has been carried out within projects funded through
Ofgem’s Low Carbon Networks Fund. Yunusov et al. [9] used smart
meter data to assess the impact of battery storage location (i.e.
position on the feeder as well as whether on one or all three
phases) on performance for peak shaving and phase balancing,
focusing on two real low voltage networks. Some of the same
authors have also considered real-time optimisation of DNO-
owned storage being used for peak reduction, developing storage
controllers that take into account demand forecasts and consumer
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clustering [10]. Load forecasting in storage controllers for peak
shaving has also been proposed by Reihani et al. [11] among others.
Pudjianto et al. [12] also investigated smart control of electric
vehicle charging, heat pumps and network voltage regulators to
reduce network investment, showing that between 2010 and 2050
the costs of network reinforcement in the UK could reach up to
£36bn if we maintain passive distribution network and passive
demand approaches, and that these costs could be reduced
significantly by taking advantage of smart demand technologies.

Others have carried out work on similar themes to those
featured in this paper. In a very similar approach to that presented
here, Navarro et al. [13] used the CREST Demand Model within
Monte Carlo analysis, in their case to understand the likelihood of
voltage issues arising with varying penetrations of solar PV on two
low voltage networks in the north-west of England, showing the
relationship between PV penetration and voltage issues to be
roughly exponential.

Aside from having energy storage devices within (or on the
outside of) domestic properties, there are several other approaches
to providing householders with some energy storage capacity. Two
particularly interesting concepts are ‘cloud energy storage’ [4,14]
(also proposed in Germany as ‘Die Strombank’ [15]), whereby
householders and enterprises can rent out a portion of a large
storage device in the local area, and virtual power plants [16],
whereby small distributed energy storage units are operated by an
aggregator to provide larger levels of generation and load, allowing
revenue through provision of services such as Short Term
Operating Reserve (which requires a minimum of 3 MW) [17].
Whether such systems would act to perform peak shaving is
dependent upon the incentive schemes put in place.

As well as being considered for distribution networks, energy
storage is also being studied for use within transmission networks.
Aguado et al. [18] developed an optimisation algorithm for making
decisions on the suitability, size and placement of battery storage
systems for transmission network expansion. This required the
modelling of new lines and batteries in the transmission network.
Results show how the deferral of the construction of new
transmission lines is feasible in a market-driven environment if
batteries are attached to certain nodes.

Later on in this paper we examine how electricity storage can be
used to reduce the impact of heat pumps. Others have also
researched active control of heat pumps [19], showing that active
control can lower peak loads and increase self-consumption of
embedded renewables generation, but also that active control
increases the electricity consumption of the heat pump by 8-12%.
Here we assume that regular heat-driven control is used, however
future work could look at how to combine active control of a heat
pump with the control of local energy storage in order to maximise
socioeconomic benefits in areas with high penetrations of heat
pumps.

While many studies have looked at control strategies and
pricing schemes for peak shaving with energy storage, there is no
clear understanding of the potential of the technology: what is the
maximum possible peak shaving that can be achieved? This is an
important question from a policy and planning perspective.
Without a good understanding it is difficult to account for the
potential of storage in the planning of future networks and
generating capacity.

The answer is highly dependent upon profiles of demand and
local generation, so for example the potential peak shaving at an
industrial estate will be different to the potential peak shaving in a
residential street. Even in residential areas, the penetration of
active energy technologies such as heat pumps, electric vehicles,
and solar PV, will have an effect on peak flows on the distribution
infrastructure, and on the potential for peak shaving using energy
storage. Domestic electricity consumption accounted for 30% of

electricity demand in the UK in 2016 [20], more than any other
sector, and domestic consumption patterns are well-understood
and reasonably consistent across a country such as the UK, so we
have focused on storage in residential areas here. We consider the
effects of heat pump and solar PV penetration by including them in
the analysis at certain points.

Many previous studies are also limited in that they have only
considered single household demand peaks. We have set out to
address this by considering the aggregated peak import and export
at the secondary substation level. Secondary substations, also
known as final distributions substations, transform electricity from
medium voltage down to low voltage, for final distribution to
homes and businesses. We focus on the aggregated benefits of
storage when connected to the distribution network, and we do
not investigate the placement of storage (which has been
previously investigated by others, e.g. [9,18,21]).

1.3. Objectives

Investigations by partners on the C-MADERS research project
have shown that a lack of appropriate incentives for storage, along
with simple control algorithms that do not monitor household
import and export, can lead to home batteries being uneconomical
[22]. The work presented here has taken a different approach,
investigating the possible benefits of small-scale storage to the
local distribution network. It is hoped that provision of these
benefits could be suitably monetised.

This paper sets out to answer the following key questions:

1. What is the maximum possible peak shaving that is achievable
using battery storage in residential areas, both from demand
and export of solar PV?

2. Can battery storage in residential areas help to alleviate the
impacts of heat pumps?

By answering these questions we are also answering a
fundamental question of whether peak shaving using battery
storage in residential areas is worth pursuing, as well as providing
a basis against which the performance of control systems and
incentive schemes can be compared. We will explore how a range
of factors influence the achievable peak shaving, including storage
capacity, maximum charging and discharging rates, household
size, and the penetration of active energy technologies such as
solar PV and heat pumps.

To accomplish our objectives, an existing, well-validated
demand model [23] is used to synthesise household-level
electricity demands, heat demands, and solar generation. To
determine the maximum possible peak shaving achievable using
battery storage in residential areas (the first question), we develop
a novel method of finding the maximum peak shaving that can be
achieved using a given energy storage device, assuming there is
perfect foresight of the local demand and generation. We use this
method with the synthesised demand data. While perfect foresight
of demand is not possible in reality, the method of finding the
maximum peak shaving that is developed in this paper could be
used with forecasted demand patterns in a real storage control
system.

Economic aspects are not considered in this paper. It is
anticipated that the methods and results that are presented here
will be used by others to determine the economic effects of
alleviating stress on distribution networks using energy storage.
This would involve in-depth assessment of the costs of upgrading
transmission and distribution infrastructure to cope with energy
technologies such as rooftop solar PV, heat pumps, and electric
vehicles [24].
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The paper is laid out as follows. Section 2 describes the
methodology, including the demand model and how we determine
the maximum possible peak shaving. Section 3 looks at the average
household electricity demands generated by the demand model, as
well as the effect of aggregation on peak demand. Section 4
evaluates the potential peak import and export reductions on
existing networks, both with and without solar PV, and the effect of
heat pumps is investigated in Section 5. Finally, Section 6 presents
our conclusions, explores possible policy implications from the
work, and discusses the next steps.

2. Methodology

Before giving detailed descriptions of the different steps of the
methodology, we first explain the general process of finding the
possible effects of electricity storage on peak import and export at
a low voltage substation. For any given combination of PV capacity,
storage capacity, and heat pump penetration, the process shown in
Fig. 1 is followed to find the ‘After Diversity Maximum Demand’
[25] (ADMD, explained in Section 2.1) with and without storage. A
very similar process is followed to find the possible effects of
storage on peak export from solar PV.

To generate datasets for use in this analysis, the demand profiles
of aggregations of 100 houses are found using the CREST Demand
Model. This is a typical number of houses connected to a secondary
substation in the UK. The household sizes and building types are
assigned randomly based on UK distributions [26]. To account for
the time it takes for energy storage to reach what might be
considered as steady-state operation, each demand profile consists
of two weeks of net demands (raw demands minus generation

ADMD_wo_sto(i_agg)
and
ADMD_w_sto(i_agg)

»
P
A

A

Find Generate characteristics of
ADMD_wo_sto(i_agg) and 100 households using the
ADMD_w_sto(i_agg) CREST Demand Model

|

i_agg=i_agg+1

Generate demand data over
two weeks (one in summer,
one in winter) for the 100
households

Find the ADMD without
storage and save as
ADMD_wo_sto(i_agg)

i_agg <150

Find the lowest possible
ADMD with storage and
save as ADMD_w_sto(i_agg)

Find mean(ADMD_wo_sto)
and mean(ADMD_w_sto)

Fig. 1. Finding the After Diversity Maximum Demand (ADMD) for aggregations of
100 households with and without storage (ADMD_w_sto and ADMD_wo_sto,
respectively).

from rooftop solar PV), one week in summer and one week in
winter. When analysing peak demands, the storage starts the two
week period full (100% state of charge), and when analysing peak
export, the storage starts the period empty. In each case, five
weekdays are followed by two weekend days. We focus on mid-
summer and mid-winter because in residential areas with rooftop
solar PV, import and export peaks are most likely to occur in mid-
summer and mid-winter, respectively, when outside temperatures
and day lengths are near their extremes.

In almost all of the analyses presented here, 150 different
aggregations of 100 houses are used, and in each analysis, the peak
flows to and from the aggregation are averaged over the 150
aggregations. Each of the 150 aggregations is a different set of
houses. Choosing the number of aggregations is a trade-off
between accuracy and computational time: the more aggregations
that are used, the closer the average results will be to reality,
however if too many aggregations are used then the computational
time becomes problematic. 150 aggregations provide reasonable
accuracy while allowing results to be generated in a reasonable
time.

In this work it is assumed that the electricity storage installed in
an area is coordinated in its operation. This could be because the
storage is operated by a DNO or aggregator. The storage could be a
single device (e.g. within a substation) or a number of smaller
devices (e.g. street-side or in-home). It is assumed that the storage
is operated purely with the goal of minimising the ADMD or peak
export of the group of houses being served by the substation.

2.1. Quantifying peak flows

In areas with low levels of embedded generation, infrastructure
requirements have traditionally been evaluated using the concept
of ‘After Diversity Maximum Demand’ (ADMD) [25]. For a group of
houses/dwellings being fed from a substation in such areas, the
expected peak power demand of the whole group over a long
period of time is what sets the required capacities of the substation
equipment and the cables running to each house. ADMD is the
peak power demand of the group divided by the number of houses
in the group, and is given by

N
ADMD = %maxt (me}> (1)
i=1

where N is the number of houses and py; ;, is the demand of house i
at time t. ADMD is typically expressed in kW, so values of p; ., are
specified in kW. The time resolution of demand data should ideally
be high enough that demand peaks are not averaged out with
lower demands in neighbouring time intervals. For p;,, we have
used data at one minute resolution for two weeks of a year in this
work, one week in mid-winter and one week in mid-summer, i.e.
the times when peak import and peak export (from solar PV) are
most likely to occur, respectively. ADMD typically reduces to less
than 2 kW for large groups of houses (e.g. >20 houses) [25]. The
way that a curve of ADMD against N flattens out as N is increased
can be explained by the law of large numbers.

In areas with high levels of embedded generation, peak export
can again be expressed on a per-household level, using the same
method as used for ADMD. In this paper, peak export is therefore
expressed as peak export per household, even though most of the
analyses are conducted with aggregations of 100 households.

2.2. Generating household net demand data
In order to understand the effect of introducing electricity

storage within residential distribution networks, data describing
demand profiles of domestic properties is required. Many demand
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models exist (e.g. [27,28]), but here the CREST Demand Model [23]
has been used. The CREST Demand Model uses time use survey logs
taken by thousands of UK householders as part of the UK Time Use
Survey [29], along with data on appliances found in UK house-
holds, to stochastically synthesise a realistic load profile based
upon many parameters (some of which are listed further below).
The resulting demand data is at one minute resolution, and can be
aggregated over a number of households.

The CREST Demand Model is an integrated thermal-electrical
model, with sub-models for occupancy, irradiance, external
temperature, electrical demand (itself comprising sub-models
for lighting and appliance demand), thermal demand, solar PV, and
solar thermal collectors. Being an integrated model, many of the
different sub-models are interlinked, so for example a change in
irradiance will affect four sub-models: solar thermal collector,
solar PV, thermal demand (changing passive solar gains), and
electrical demand (for lighting in actively occupied dwellings).
Several of the sub-models have been separately validated, and the
whole model has been validated by comparing its output with
independent empirical data. The CREST Demand Model is an open-
source development, and its authors make clear that it is primarily
for application in low voltage network and urban energy analyses,
exactly the type of analysis presented in this paper.

Using the CREST Demand Model it is possible to generate net
demand profiles for households at one minute resolution, based
upon many parameters. The following parameters are of particular
interest in this work:

e Number of residents

e Month of the year

o Weekday/weekend

o Installed solar panel area

e Solar panel efficiency

e Solar panel angle and elevation
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At the time of writing, the CREST Demand Model does not have
a multiple day feature, so in order to simulate multiple consecutive
days, separate days were modelled while maintaining the same
household and appliance properties between days. Therefore
within the resulting data there is some discontinuity in demand at
midnight, however as this is not a time when the distribution
network is under stress, this does not impact significantly on our
results.

2.3. Modelling heat pumps

In Section 5, we consider the effects of heat pumps on peak
power flows in areas with electricity storage, therefore it is
necessary to generate realistic electricity demands resulting from
use of heat pumps. As mentioned above, the CREST Demand Model
includes a thermal sub-model, generating realistic heat demands
based upon the synthesised occupancy and irradiance profiles. For
an individual household, the heat demand profile has a character-
istic ‘spikiness’, due to thermostat deadbands (set in the CREST
Demand Model at 2 °C for space heating and 5 °C for hot water) and
the thermal inertia inherent in buildings. Heat pumps produce
heat over longer periods than gas boilers, so have a less spiky
demand profile; for the analysis shown in Section 5, we configured
the CREST Demand Model such that the heating unit can provide
up to 10 kW of heat, typical for an air source heat pump [30], and
included a 125 | domestic hot water tank. The energy demands for
space and water heating have been converted into electricity
demands by using a heat pump coefficient of performance of 3.
This is within the typical range of 2-4 [31]. In the heat pump
analyses, only the winter data was used. This is because heating
demands in summer are very low, so introducing electric heating
into residential areas increases the likelihood that peak electricity
demands will occur in winter.
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Fig. 2. Net demands over 24 h for an aggregation of 100 houses with solar PV and battery storage, for two demand thresholds (shown with dashed lines): (A) demand

threshold of 20 kW, (B) demand threshold of 50 kW.
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2.4. Finding the maximum possible peak shaving using storage

The extent to which a given storage device can be used to
reduce ADMD is dependent upon how it is used for other services,
such as grid balancing and electricity price arbitrage, and the
effectiveness of the control system. In reality, forecasts of demand
and local generation would be used alongside voltage/current
monitoring within a controller using an algorithm such as model
predictive control or stochastic receding horizon control, in order
to maximise the potential of the storage. However, it is possible to
put an upper limit on the potential of a given storage device in
reducing peak demands, assuming full knowledge of demands in
advance (i.e. ex-post analysis), using the novel method presented
in this subsection. The same method can also be used to find the
maximum reduction in peak export from embedded generation,
but a description is given here for reducing peak demands.

To find the maximum achievable reduction, a “demand
threshold” is first set. A storage schedule is determined by
stepping through each discrete time interval and doing the
following: whenever demand is lower than the demand threshold,
try to charge the storage in order to bring the net demand up to the
demand threshold, and whenever demand is higher than the
demand threshold, try to discharge the storage in order to bring the
net demand down to the demand threshold. The demand threshold
is used in the same way as the demand limit implemented by
Zheng et al. in their economic analysis of storage operating under
demand tariffs [5]. Fig. 2 shows an example of the effect of two
different demand thresholds on net demand over the course of
24 hin an area of 100 households with solar PV and battery storage.

A “perfect” storage device with instantaneous response and
infinite storage capacity, charging power capacity, and discharging
power capacity, would always produce a perfectly flat net demand
profile when being used to reduce peaks as much as possible,
however with a real storage device this will not be the case. The
resulting net demand profile, and in particular the resulting ADMD,
is dependent upon the demand threshold: as shown in Fig. 2(A1
and A2), a low demand threshold will tend to keep the storage at a
low state of charge, meaning that peaks may be missed because the
storage is empty; as shown in Fig. 2(B1 and B2), a high demand
threshold will tend to keep the storage at a high state of charge and
under-utilise the device. Using a bounded optimisation algorithm
(such as MATLAB’s fminbnd function) it is possible to search for the
demand threshold that gives the greatest reduction in ADMD. The
resulting ADMD is the lowest that could possibly be achieved using
that storage device.

To be clear, we solve the following optimisation problem:

myin ADMD = max;(p,) (2)

where y is the demand threshold and p; is the net demand of an
aggregation of households at time t, given by

pr=dr — St + Ur 3)

d, is the total raw demand of the aggregation (i.e. the total demand
if there were no solar PV or storage), s; is the total power coming
from the solar PV panels installed within the aggregation, and u, is
the total power going into the storage installed within the
aggregation (or being discharged from the storage, if negative).

The power into storage, u,, is calculated using a time-stepping
approach. For each time t in turn, we determine if the storage will
be charged or discharged by comparing the net demand without
storage (i.e. d; — s;) with the demand threshold y, and calculate the
value of u, accordingly.

If d; — s¢ < y, then the storage will be charged, and u; is given by

Uy = min (P max, (Emax — €)/(n:At), ¥ — (dr — S¢)) 4)

where P, ,5x is the charging power capacity of the storage, Enax iS
the maximum allowable energy level in the storage, e, is the energy
level in the storage at the current time, and 7. is the charging
efficiency of the storage.

Otherwise, the storage will be discharged, and u, is given by

U = _min(Pd.maxa (et - Emin)nd/Atv (dt - St) - V) (5)

where Py max i the discharging power capacity of the storage, Enin
is the minimum allowable energy level in the storage, and 7, is the
discharging efficiency of the storage.

We initially set e; = Enax. Once u; has been determined, e;.q is
then calculated as follows, ready to be used as e; in the next time
step.

er +umAt, u >0
eri1 = e[+u[At, U <0 (6)
Na

As mentioned above, y* can be found using bounded
optimisation, since we know that

0 < ]/* < maxt(dt — St) (7)

2.5. Assumed storage characteristics

Throughout this paper it is assumed that the storage has
charging and discharging efficiencies of 92.2%, giving a round-trip
efficiency of 85%. This is typical for battery storage [8,32], but
higher efficiencies are also achievable. It is also assumed that the
full storage capacity can be used (i.e. 100% depth of discharge). In
reality, battery storage is typically not used with 100% depth of
discharge, however manufacturers typically quote “useable
storage capacity” or “effective storage capacity”, which is equiva-
lent to what we have used. Degradation is not considered, though it
could be considered in future work in this area.

3. Average demand profiles and ADMD

The average UK household electricity demand, as synthesised
by the CREST Demand Model, is shown against time of day in Fig. 3.
Peak and trough values are shown in Table 1. Morning and evening
peaks are clear, with both being higher in winter than in summer.
Also clear is that the evening peak is wider during winter than
during summer. These increases are all related to increased
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Fig. 3. Average UK household electricity demand against time of day for weekdays
and weekends in mid-July and mid-January, as synthesised by the CREST Demand
Model. No solar PV. Demands averaged over 5 weekdays and 2 weekends in each
season, for 15,000 households.
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Table 1
Daily peaks and troughs of average UK household electricity demand as generated
by the CREST Demand Model (and shown in Fig. 3).

Summer Weekday Summer Weekend

Time Demand (kW) Time Demand (kW)
Overnight trough 04:00 0.15 04:00 0.15
Morning peak 08:15 0.50 08:15 0.50
Afternoon trough 15:15 0.39 15:15 0.39
Evening peak 21:15 0.78 21:15 0.76

Winter Weekday Winter Weekend

Time Demand (kW) Time Demand (kW)

Overnight trough 04:00 0.15 04:00 0.15
Morning peak 08:15 0.65 09:30 0.63
Afternoon trough 13:45 0.46 14:15 0.48
Evening peak 19:00 0.84 18:45 0.82

lighting and heating demands in winter (while we are assuming
that the heating system is a gas boiler, there are electrical loads
associated with pumps in the heating system). The maximum
average demand is shown to be 0.84 kW, this is not the same as the
average peak demand (‘After Diversity Maximum Demand’, as
explained above), which is higher. The maximum average demand
is very similar to the 0.91 kW found in smart meter trials
conducted within the Customer-Led Network Revolution project
run by Northern Powergrid [33]. The shape of the curve, including
time of maximum average demand, is also very similar.

It should be noted that the average demand values rise from
zero at midnight at the start of the day. This is because the demand
model does not have a multiple day feature, as explained in
Subsection 2.2. Since the distribution network is not under stress
at midnight, this is not an issue and does not affect the results
shown later in the paper. Since the fact that the demand starts the
day at zero is simply a consequence of the lack of a multiple day
feature in the demand model, the demands before 01:00 were
disregarded when picking out the overnight troughs shown in
Table 1.

The mean ADMD for a range of aggregation sizes is shown as a
curve in Fig. 4, and the error bars show standard deviation of the
ADMDs over 150 repetitions. (Most of the results shown in this
paper are the average results from 150 different aggregations. Each
aggregation is a new set of houses.) The reason for the shape of the
curve is as follows: while each house might have its own annual
peak demand of over 10 kW (e.g. an electric shower, kettle and

ADMD (kW)
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Fig. 4. ADMD against number of houses in the aggregation, as found using the
CREST Demand Model. Results averaged over 150 different aggregations. Bars show
standard deviations.

washing machine all operating at the same time), the chances of
every house in a large group of houses all requiring such high
powers at the same time is very low. From Fig. 4 it is clear that with
amoderate number of households, ADMD settles down to a level of
just over 1 kW. Clearly this level is dependent upon various factors
including household size (i.e. number of residents) and wealth;
being based on the CREST Demand Model, the results shown are
representative of the UK average.

4. Peak shaving on existing networks

This section considers the possible peak shaving that can be
achieved using electricity storage in various scenarios. Each of the
different subsections looks at the effect of varying a different key
parameter; these are rooftop solar PV capacity, household size, and
the storage C rates. A C rate is the measure of the rate at which a
battery is charged (or discharged) relative to the energy storage
capacity of the battery. For example, a discharging C rate of 0.5C
means that the discharging current in A is 0.5 times the storage
capacity in Ah, so the battery will take 2 h to be fully discharged
from full. In this work we use kW and kWh, but the concept
remains the same.

4.1. Varying solar PV capacity

Using the method laid out in Section 2, the maximum possible
peak demand reduction from using energy storage is found. Fig. 5
shows the lowest possible ADMD when using battery storage in
residential areas; in much of this paper, storage capacity is
expressed on a per-household level, but it is assumed that the
storage takes the form of a single device (e.g. at the substation) or
multiple smaller devices (e.g. within homes or on the street-side)
which are coordinated in their operation, for example through
control by an aggregator. From these results it is clear that
significant reductions in peak electricity demand on a low voltage
feeder can be achieved using battery storage, assuming that the
storage is coordinated and suitably incentivised in its operation.
With a 2 kWh battery per household (a reasonably small domestic
battery [34]), the peak electricity demand of a group of houses
could be halved. Therefore in areas where electricity storage is
adopted, increased load growth could potentially be possible
without the need for infrastructure reinforcement. This load
growth could take the form of more houses attached to a feeder, or
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Storage capacity per house (kWh)

Fig. 5. Lowest possible ADMD against battery storage capacity per house, on an
aggregation of 100 houses with varying penetrations of solar PV. Maximum
charging C rate of 0.33C, maximum discharging C rate of 1C. Results averaged over
150 different aggregations. Bars show standard deviations.
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increased consumption within existing houses, for instance due to
the introduction of electric vehicles or heat pumps. The latter is
considered further in the next section of this paper.

It is evident from Fig. 5 that with storage capacities below
approximately 1.5 kWh per house, the potential for peak shaving of
demand is independent of the size of any installed solar PV. With
storage capacities above 1.5 kWh per house, greater reductions in
peak demand are possible with higher PV capacities. This is
because, with large amounts of electricity storage, the evening
demands of the aggregation can be reduced to such an extent that
peak demands sometimes occur earlier in the day, so that solar PV’s
effect of depressing daytime demand becomes noticeable.

The general flattening out of the curves as storage capacity is
increased is simply related to the fact that there is a limit to how
much storage capacity is worthwhile in any given application. The
curves all exhibit clear elbows at ~0.4 kWh. They are approxi-
mately linear up to this point, then become nonlinear with greater
storage capacities. This is because, with small storage capacities,
storage capacity is not a limiting factor; instead, the discharge
power is the limiting factor on the peak shaving that can be
achieved, with the storage simply being used at the well-spaced,
short periods of highest demands. Therefore the effect of storage
on peak demands scales linearly with discharge power (e.g. a
discharge power of 0.2 kW can reduce peak demands by 0.2 kW).
With higher storage capacities than ~0.4 kWh, peak demands can
be reduced to such an extent that storage capacity becomes the
limiting factor. Increased storage capacities then give diminishing
returns as there are more and more times when the storage is
empty. The positions of the elbows would change with different
maximum C rates. The curves are specific to UK domestic
electricity demands; they would change shape in areas with
substantially different electricity usage patterns.

Bars are used in Figs. 5 and 6 to show standard deviations of the
results. It is clear that uncertainty in the potential peak shaving is
increased with high levels of PV capacity and storage capacity.
Standard deviation bars are not shown in the rest of the charts in
this paper in order to enhance clarity.

Fig. 6 shows the lowest possible maximum absolute power
flows when using battery storage for both positive and negative
peak shaving. This shows the effect of solar PV on peak flows,
particularly where there is little or no storage and >1 kW of PV per
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Fig. 6. Lowest possible absolute peak power flows against battery storage capacity
per house, on an aggregation of 100 houses with varying penetrations of solar PV.
Absolute peak power flow takes into account reverse flows due to export of locally
generated solar power, as well as demand. Maximum charging C rate of 0.33C,
maximum discharging C rate of 1C. Results averaged over 150 different
aggregations. Bars show standard deviations.

house (so that reverse flows start to dominate). It also shows that
larger installed storage capacities, such as greater than 2 kWh per
house, are most beneficial in areas with higher penetrations of
solar PV.

As mentioned above, the results presented in this section are
developed based on the assumption that the storage is coordinated
and suitably incentivised in its operation. This paper is mostly
concerned with the maximum possible peak shaving that can be
achieved using storage. In reality, storage will generally be
operated to maximise economic value, and so electricity tariffs
are important in that case. If storage is only exposed to a flat tariff,
the effect of storage on reducing peak demand and peak export is
very low. An example of another method of incentivising peak
shaving with storage is to expose householders to financial
penalties associated with high peak flows, particularly if they occur
at certain times of day.

4.2. Varying household size

The plots shown so far (and in the rest of this paper, unless
specified otherwise) are for mixes of households typical of the UK.
The average household size and wealth of an area influence the
potential demand reduction from using storage. The lowest
possible ADMD is plotted against battery storage capacity per
house for various household sizes in Fig. 7, and the lowest possible
peak power flows are shown against storage capacity in Fig. 8. Note
that in Fig. 8, the curve for 4-person households lies above the
curve for 3-person households; this is simply a result of the
stochastic nature of the analysis.

In Fig. 7, it can be seen that the reduction in peak demand
possible using a given amount of storage increases slightly with
larger household sizes. As an example of this, it can be seen that
2 kWh of battery storage per house in an area of 1-person houses
could potentially be used to achieve ~0.5 KW of peak shaving; in an
area of 5-person houses, this increases to ~0.7 kW, giving a similar
percentage reduction. Also, from Fig. 8 it is clear that in areas with
reasonable levels of solar PV, the effect of household size on peak
power flow is very low, at all levels of storage capacity. This is
because with 3 kW of solar PV per house, the peak power flow is
dominated by reverse flows from the PV, rather than by household
demand.
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Fig. 7. Lowest possible ADMD against battery storage capacity per house, on an
aggregation of 100 houses with no solar PV and varying numbers of occupants.
Results averaged over 10 different aggregations for each household size. Maximum
charging C rate of 0.33C, maximum discharging C rate of 1C.
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Fig. 8. Lowest possible absolute peak power flows against battery storage capacity
per house, on an aggregation of 100 houses with 3 kW solar PV and varying numbers
of residents. Absolute peak power flow takes into account reverse flows due to
export of locally generated solar power, as well as demand. Results averaged over 10
different aggregations for each household size. Maximum charging C rate of 0.33C,
maximum discharging C rate of 1C.

4.3. Varying maximum C rates

A benefit of using the CREST Demand Model to synthesise
electricity demand is that it synthesises data at one minute
resolution, revealing short-term spikes in aggregate demand
which would otherwise be missed when using lower resolution
data. This high resolution allows us to understand the importance
of the storage’s maximum charge and discharge power on peak
demand reduction. The power flow to/from an energy storage
device is typically represented using C rates. Maximum charging C
rate is defined here as the inverse of the minimum time (in hours)
taken to completely charge the battery from empty. Similarly,
maximum discharging C rate is defined here as the inverse of the
minimum time in hours to completely discharge the battery from
full.

To understand the importance of storage discharge power, the
lowest possible ADMD is shown against maximum discharge C rate
in Fig. 9, for an aggregation of 100 households with no solar PV and
three different levels of storage capacity. In each case there is
clearly a maximum discharge C rate above which there is no
further reduction in peak demand, because the storage capacity
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Fig.9. Lowest possible ADMD against storage discharge C rate, for an aggregation of
100 houses with no solar PV. Maximum charging C rate of 0.33C.

becomes the limiting factor. Evidently with lower levels of storage
capacity, higher maximum discharge C rates are required to
maximise peak demand reductions.

It is clear that the curves are all flat by C=1.5. This means that
higher Crates than 1.5C provide no further increase in the potential
peak shaving unless the installed storage capacity is very small.
Discharge C rates of at least 1.5C are achievable by many small- and
medium-scale electricity storage technologies, including batteries.

Similarly, Fig. 10 shows the lowest possible peak power flow
against maximum charge C rate. This shows similar characteristics
as Fig. 9. Again, higher C rates are more useful in areas with lower
levels of installed storage capacity.

5. The effect of heat pumps

In recent years, considerable progress has been made in
reducing the carbon intensity of electricity generation in many
parts of the world. To further reduce carbon emissions, efforts are
being made to decarbonise heating and transport, predominantly
through electrification of both sectors alongside increased low
carbon power generation. Great Britain’s transmission system
operator, National Grid, recently projected that by 2040 there will
be somewhere between 1 m and 8 m all-electric heat pumps in
Great Britain [35]. In this case, “all-electric heat pumps” means air
source and ground source heat pumps, so not including gas heat
pumps or hybrid heat pump gas boilers. Projected numbers of all-
electric heat pumps out to 2050 in National Grid’s four scenarios
are shown in Fig. 11. (The four scenarios represent different
political and societal approaches to energy issues, and more details
can be found in National Grid’s Future Energy Scenarios report
[35].) Simultaneous operation of millions of heat pumps on cold
winter evenings, along with overnight charging of millions of
electric vehicles, could have significant impacts on the require-
ments of electricity distribution networks [36].

In this section we consider the increased residential electricity
demand peaks as a result of heat pumps, and the potential to
reduce them using distributed electricity storage. While substan-
tial, we will not consider the associated increased demands placed
on low carbon power generation.

Heat pumps are not included in the CREST Demand Model, but
thermal demands and gas boilers are. The methodology for
converting these thermal demands into the electrical demands of
heat pumps is given in Subsection 2.3. The effect of heat pumps on
ADMD in areas with no storage capacity is shown in Fig. 12, and the
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Fig. 10. Lowest possible peak power flow against storage charge C rate, for an
aggregation of 100 houses each with 3 kW solar PV. Maximum discharging C rate of
1C.
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Fig. 11. Projected numbers of all-electric heat pumps in Great Britain according to
National Grid’s Future Energy Scenarios 2017 [35]. Gas heat pumps and hybrid heat
pump gas boilers are not classed as all-electric.
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Fig. 12. ADMD against penetration of 10 kW (thermal) heat pumps for space
heating and hot water (HW), on an aggregation of 100 households. 3 kW solar PV
per household, no storage.
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Fig. 13. ADMD against battery storage capacity per house on an aggregation of 100
households, for various penetrations of 10 kW (thermal) heat pumps for space and
water heating. 3 kW solar PV per household. Maximum charging C rate of 0.33C,
maximum discharging C rate of 1C.

effect of battery storage is shown in Fig. 13. Fig. 14 shows the
amount of battery storage required to ensure that the ADMD is not
increased above certain limits. From Fig. 12 we can see that with a
switch to 100% of space and water heating provided by heat pump,
we might expect that ADMD would increase by ~0.85 kW. This
lines up well with findings from Northern Powergrid’s Customer-
Led Network Revolution project, in which the demands of roughly
331 households with air source heat pumps were monitored from
May 2013 to April 2014 [25,37].

Recent analysis of over 400 heat pump installations in the UK
has found the ADMD per heat pump to be 1.7 kW, occurring at
around 07:30 [38]. ADMD per heat pump is taken to be the per-
house ADMD of solely the aggregated heat pump demand, without
the rest of the household electricity use. Our work has showed that
average weekday winter electricity demand in areas without heat
pumps is around 0.5 kW at 07:30 (Fig. 3), thus the effect of heat
pumps in our analysis (Fig. 12) matches up well with the results in
ref. [38].

From Fig. 13 we can see that for an aggregation of 100 houses,
3 kWh of battery storage per household could potentially be
sufficient to ensure that space and water heating could be
completely provided using heat pumps without causing an
increase in the peak demand of the aggregation above what it is
today (i.e. with no battery storage or heat pumps). It has also been
found that this drops to 1.8 kWh of battery storage per household if
just considering space heating.

Clearly these levels of storage are significant; while 2 kWh and
3 kWh batteries are not particularly large physically, wide-scale
adoption is still likely to be some way off. However, it is quite
possible that council- or DNO-led schemes could lead to large
numbers of storage devices installed in small areas, as recently
took place in a town near Barnsley in the United Kingdom [39]. It
should be noted that the storage does not necessarily need to be
located within individual houses, but could be located on the
street-side (as in Scottish and Southern Electricity Networks’ New
Thames Valley Vision project [40]) or at the substation. Optimal
storage unit size and placement on the feeder are not considered in
this work, though they have been considered by others [9].

In terms of validation, it is worth noting the following. In work
being conducted at the University of Birmingham within the same
project (the C-MADERS project), professional installers of electric
heating systems recommended installation of storage heaters with
individual output rating of 1.25 kW within a household. The house,
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Fig. 14. Storage capacity required to ensure ADMD stays below certain limits with
increased penetrations of 10 kW (thermal) heat pumps for space and water heating.
3 kW solar PV per household. Maximum charging C rate of 0.33C, maximum
discharging C rate of 1C.
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which is a typical terraced house located in Birmingham, contains
five radiators, bringing total peak thermal output to 6.25 kW. If this
was switched to heat pumps with coefficient of performance of 3,
as used in the work presented here, total peak thermal output
would reduce to around 2.1 kW. This is very close to the peak
battery output power of 1.8 kW that has been found to be needed to
maintain ADMD at the level it was before installation of heat
pumps for space heating.

6. Discussion and conclusions

This paper has successfully answered the following key
research questions that were previously unaddressed:

1. What is the maximum possible peak shaving that is achievable
using battery storage in residential areas, both from demand
and export of solar PV?

2. Can battery storage in residential areas help to alleviate the
impacts of heat pumps?

To accomplish this, we developed a new method of finding the
maximum possible peak shaving given perfect foresight of net
demand patterns, and this was used within Monte Carlo analysis.
Our calculations have demonstrated that small scale electricity
storage of the size that is currently being installed within
households (e.g. 2kWh and upwards) has the potential to
significantly reduce peak power flows in low voltage networks.
By way of example, 2 kWh of battery storage per household could
potentially reduce the current peak demand at a low voltage
substation in the UK by over 50%. The benefits appear particularly
clear in cases where there is significant export from embedded PV,
and thus storage could play an important role in the management
of future low voltage networks. There remain a number of
uncertainties, especially with respect to appropriate coordination
and control processes, including forecasting of demand and
generation.

We have also demonstrated that small-scale battery storage
could contribute to reducing the demand peaks that will arise from
the wide-scale deployment of heat pumps. Battery storage of
3 kWh per household proved sufficient to keep peak demands at
current levels when 100% of space and domestic hot water heating
was provided from heat pumps. Further cost-benefit analysis is
required, but we have identified for the first time the potential of
household-scale electricity storage systems to ameliorate the
impact of heat pump deployment on electrical demand peaks.

If the potential for peak shaving we have identified is to be
realised, a key outstanding question is how to encourage
consumers to adopt and appropriately operate energy storage
technologies. Future work will explore the effects of fixed and
variable time-of-use tariffs, demand tariffs, and remote control of
storage by aggregators or DNOs (e.g. through a scheme where the
DNO pays to take control of home batteries at certain times of day).

A remaining question concerns the materiality of distributed
storage for UK electricity objectives. This can be explored by
combining our results as shown in Fig. 5, with projections of installed
non-transmission connected electricity storage capacity in Great
Britain made by the transmission system operator, National Grid, in
its Future Energy Scenarios 2017 report [35].To carry out the analysis,
we assume that in areas where storage is installed, it is at a scale of
1 kWh per house (orequivalent, e.g. 3 kWhinevery third house), thus
each kWh of storage provides up to 0.5 kW peak demand reduction at
the secondary substation level, as shown in Fig. 5. Under these
conditions, by 2050, non-transmission connected electricity storage
operating to bring down peak flows at the secondary substation level
has the potential to contribute 3.1 GW of peak demand reduction in
Great Britain, if suitably incentivised. This is the best case as realised

under the Consumer Power scenario. With the more conservative
Steady State scenario, peak demand reduction might be approxi-
mately 1.1 GW, whereas both the Slow Progression and Two Degrees
scenarios indicate peak demand reduction of around 2 GW.
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