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Abstract

Decision formation recruits many brain regions, but the procedure they jointly execute is

unknown. Here we characterize its essential composition, using as a framework a novel

recursive Bayesian algorithm that makes decisions based on spike-trains with the statistics

of those in sensory cortex (MT). Using it to simulate the random-dot-motion task, we demon-

strate it quantitatively replicates the choice behaviour of monkeys, whilst predicting losses

of otherwise usable information fromMT. Its architecture maps to the recurrent cortico-

basal-ganglia-thalamo-cortical loops, whose components are all implicated in decision-mak-

ing. We show that the dynamics of its mapped computations match those of neural activity

in the sensorimotor cortex and striatum during decisions, and forecast those of basal ganglia

output and thalamus. This also predicts which aspects of neural dynamics are and are not

part of inference. Our single-equation algorithm is probabilistic, distributed, recursive, and

parallel. Its success at capturing anatomy, behaviour, and electrophysiology suggests that

the mechanism implemented by the brain has these same characteristics.

Author summary

Decision-making is central to cognition. Abnormally-formed decisions characterize dis-

orders like over-eating, Parkinson’s and Huntington’s diseases, OCD, addiction, and com-

pulsive gambling. Yet, a unified account of decision-making has, hitherto, remained

elusive. Here we show the essential composition of the brain’s decision mechanism by

matching experimental data from monkeys making decisions, to the knowable function of

a novel statistical inference algorithm. Our algorithm maps onto the large-scale architec-

ture of decision circuits in the primate brain, replicating the monkeys’ choice behaviour

and the dynamics of the neural activity that accompany it. Validated in this way, our algo-

rithm establishes a basic framework for understanding the mechanistic ingredients of

decision-making in the brain, and thereby, a basic platform for understanding how

pathologies arise from abnormal function.

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1006033 April 3, 2018 1 / 32

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Caballero JA, Humphries MD, Gurney KN

(2018) A probabilistic, distributed, recursive

mechanism for decision-making in the brain. PLoS

Comput Biol 14(4): e1006033. https://doi.org/

10.1371/journal.pcbi.1006033

Editor: Jean Daunizeau, Brain and Spine Institute

(ICM), FRANCE

Received:October 31, 2016

Accepted: February 12, 2018

Published: April 3, 2018

Copyright: © 2018 Caballero et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement:Data from sensory

cortex are available within the paper and from

http://www.neuralsignal.org/index_data.html within

the Macaque database via accession number

nsa2004.1. Third-party behavioural and neural data

from sensorimotor cortex and striatum is not

owned by the authors. However, it is available upon

request to Anne Churchland (churchland@cshl.

edu) and Long Ding (lding@mail.med.upenn.edu),

respectively.

Funding: This work was supported by a National

Council of Science and Technology (CONACyT;

https://doi.org/10.1371/journal.pcbi.1006033
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006033&domain=pdf&date_stamp=2018-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006033&domain=pdf&date_stamp=2018-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006033&domain=pdf&date_stamp=2018-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006033&domain=pdf&date_stamp=2018-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006033&domain=pdf&date_stamp=2018-04-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1006033&domain=pdf&date_stamp=2018-04-03
https://doi.org/10.1371/journal.pcbi.1006033
https://doi.org/10.1371/journal.pcbi.1006033
http://creativecommons.org/licenses/by/4.0/
http://www.neuralsignal.org/index_data.html
mailto:churchland@cshl.edu
mailto:churchland@cshl.edu
mailto:lding@mail.med.upenn.edu


Introduction

Decisions rely on evidence that is collected for, accumulated about, and contrasted between

available options. Neural activity consistent with evidence accumulation over time has been

reported in parietal and frontal sensorimotor cortex [1–5], and in the subcortical striatum [6,

7]. What overall computation underlies these local snapshots, and how it is distributed across

cortical and subcortical circuits, is unknown.

Multiple models of decision making match aspects of recorded choice behaviour, associated

neural activity or both [8–16]. While successful, they lack insight into the underlying decision

mechanism. In contrast, other studies have shown how exact inference algorithms may be

plausibly implemented by a range of neural circuits [17–21]; however, none of these has repro-

duced experimental decision data.

Here we test the hypothesis that the brain implements an approximation to an exact infer-

ence algorithm for decision making. We show that the algorithm reproduces behaviour quan-

titatively while the dynamics of its inner variables match those of corresponding neural signals

on the random dot motion task—a highly developed paradigm to probe decision formation.

By doing so, we predict how experimentally-acquired snapshots of neural activity map onto

inference operations. We show this mapping accounts for the involvement of full recurrent

cortico-subcortical loops in decision making. Evidence accumulation is thus predicted to

occur over the entire loops, not just within cortex. Introducing this algorithm enables us to

predict which aspects of neural activity are necessary for inference—hence decision-making—

and which are not. For instance, recent data questioned whether non-increasing cortical firing

rates encode evidence accumulation during decisions [22, 23]. We demonstrate that, counter-

intuitively, non-increasing as well as increasing cortical rates can encode likelihood functions,

and hence evidence accumulation.

Our algorithm explains the decision-correlated experimental data more comprehensively

than any prior model, thus introducing a new, cohesive formal framework to interpret it. Col-

lectively, our analyses and simulations indicate that mammalian decision-making is imple-

mented as a probabilistic, recursive, parallel procedure distributed across the cortico-basal-

ganglia-thalamo-cortical loops.

Results

We tested our algorithm against behavioural and electrophysiological data recorded in sensori-

motor cortex [3] and striatum [6], from monkeys performing 2- and 4-alternative reaction-

time versions of the random dot motion task (Fig 1b and 1c). The decision evidence for the

algorithm also simulates spike-trains from sensory cortex (the area that provides evidence to

sensorimotor cortex), whose statistics we extracted from a third random-dot-task data set by

[24]. In all forms of the task, the monkey observes the motion of dots and indicates the domi-

nant direction of motion with a saccadic eye movement to a target in that direction. Task diffi-

culty is controlled by the coherence of the motion: the percentage of dots moving in the

target’s direction.

During the dot motion task, neurons in the middle-temporal visual area (MT) respond

more vigorously to visual stimuli moving in their “preferred” direction than in the opposite

“null” direction [24]. Both the mean (Fig 1d) and variance (Fig 1e) of their response are pro-

portional to the coherence of the motion (see also S4 Fig). MT responses are thence assumed

to be the uncertain evidence upon which a choice is made in this task [1, 9].
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Recursive MSPRT

Normative algorithms are useful benchmarks to test how well the brain approximates an opti-

mal probabilistic computation. The family of the multi-hypothesis sequential probability ratio

test (MSPRT) [25] is an attractive normative framework for understanding decision-making.

However, the MSPRT is a feedforward algorithm. It cannot account for the ubiquitous pres-

ence of feedback in neural circuits and, as we show ahead, for slow dynamics in neural activity

that result from this recurrence during decisions. To solve this, we introduce a novel recursive

generalization, the rMSPRT, which uses a generalized, feedback form of the Bayes’ rule we

deduced here from first principles (Eq 5).

We now conceptually review the MSPRT and introduce the rMSPRT (Fig 2), giving full

mathematical definitions and deductions in the Materials and methods. The (r)MSPRT

decides which of N parallel, competing alternatives (or hypotheses) is the best choice, based on

C sequentially sampled streams of evidence (or data). For modelling the dot-motion task, we

have N = 2 or N = 4 hypotheses—the possible saccades to available targets (Fig 1b and 1c)—

Fig 1. Random dot motion task and statistics of neural responses in sensory cortex (MT). (a) Fixed duration task for MT recordings [24]. (b, c) Reaction time
task for sensorimotor cortex and striatum recordings, N = 2, 4 alternatives [3, 6]. (d, e) Smoothed population moving mean and variance of the firing rate of MT
during the fixed duration dot motion task (189–213 neurons), aligned at onset of the dot stimulus (Stim), for a variety of coherence percentages (colour-coded as
in the legend in panel f). Solid lines are statistics when dots were moving in the preferred direction of the MT neuron. Dashed lines are statistics when dots were
moving in the opposite, null direction. Data from [24], re-analysed. (f) Lognormal density functions for the inter-spike intervals (ISI) specified by the statistics over
the approximately stationary segment of (d, e) before smoothing (parameter setO in Table 1). Preferred and null motion directions by line type as in (d, e).

https://doi.org/10.1371/journal.pcbi.1006033.g001
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and the C uncertain evidence streams are assumed to be simultaneous spike-trains produced by

visual-motion-sensitive MT neurons [1, 9] (see Methods). Every time new evidence arrives,

the (r)MSPRT refreshes ‘on-line’ the likelihood of each hypothesis: the plausibility of the com-

bined evidence streams assuming that hypothesis is true. The likelihood is then multiplied by

the probability of that hypothesis based on past experience (the prior). This product for every

hypothesis is then normalized by the sum of the products from all N hypotheses; normalisation

is crucial for decision, as it provides the competition between hypotheses. The result is the

probability of each hypothesis given current evidence (the posterior)—a decision variable per

hypothesis. Finally, posteriors are compared to a threshold, whose position controls the speed-

accuracy trade-off. A decision is then made to either choose the most probable hypothesis, if

its posterior surpassed the threshold, or to continue sampling the evidence streams otherwise.

Crucially, the (r)MSPRT allows us to use the same algorithm irrespective of the number of

alternatives, and thus aim at a unified explanation of the N = 2 and N = 4 dot-motion task

variants.

The MSPRT is a special case of the rMSPRT (in its general form in Eqs 5 and 10) when pri-

ors do not change or, equivalently, for an infinite recursion delay; that is, Δ !1. Also, the

previous recurrent extension of MSPRT [18, 26] is a special case of the rMSPRT when Δ = 1.

Hence, our rMSPRT generalizes both in allowing the re-use of posteriors from any given time

in the past as priors for present inference. This uniquely allows us to map the rMSPRT onto

neural circuits containing arbitrary feedback delays, in particular solving the problem of

decomposing the decision-making algorithm into distributed components across multiple

brain regions. We show below how this allows us to map the rMSPRT onto the cortico-basal-

ganglia-thalamo-cortical loops.

Inference using recursive and non-recursive forms of Bayes’ rule gives the same results (e.g.

see [27]), and so MSPRT and rMSPRT perform identically. Thus, like MSPRT [17, 25], for

N = 2 rMSPRT also collapses to the sequential probability ratio test of [28]; the rMSPRT is

Fig 2. The MSPRT and rMSPRT as a diagram. Circles joined by arrows are the Bayes’ rule. All C evidence streams
(data) are used to compute every one of the N likelihood functions. The product of the likelihood and prior probability
of every hypothesis is normalized by the sum (∑) of all products of likelihoods and priors, to produce the posterior
probability of that hypothesis. All posteriors are then compared to a constant threshold. A decision is made every time
with two possible outcomes: if a posterior reached the threshold, the hypothesis with the highest posterior is picked,
otherwise, sampling from the evidence streams continues. The MSPRT as in [25] and [17] only requires what is shown
in black. The general recursive MSPRT introduced here re-uses the posteriors Δ time steps in the past for present
inference, thus re-using itself; hence the rMSPRT is shown in black and blue. If we are to work with the negative-
logarithm of the Bayes’ rule—as we do in this article—all relations between computations are preserved, but products
of computations become additions of their logarithms and the divisions for normalization become their negative
logarithm. Eq 9 shows this for the rMSPRT. The rMSPRT itself is formalized by Eq 10.

https://doi.org/10.1371/journal.pcbi.1006033.g002
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thereby optimal, not only in the oft-used sense of using all available information to do statisti-

cal inference (e.g. using the Bayes’ rule), but also in the strict sense that it requires the smallest

expected number of observations, thus the shortest time to decide, at any given error rate

(which follows from [29]). This is to say that the (r)MSPRT is quasi-Bayesian in general: the

physical limit of performance or ideal Bayesian observer for two-alternative decisions (N = 2),

and an asymptotic approximation to it for decisions between more than two (N> 2) (which

follows from [17, 25]).

Upper bounds of decision time predicted by the (r)MSPRT

The hypothesis that the brain approximates an exact inference algorithm during decision for-

mation is so far untested. This requires showing how uncertain sensory spike-trains can be

transformed into the experimentally recorded choices. We do so here for the first time by com-

paring the predicted choice reaction times of the (r)MSPRT to those of monkeys performing

the random dot motion task. We sought to account for the reaction time dependence on three

factors: the coherence of the dot motion, the number of decision alternatives, and the trial’s

outcome (error, correct). We use a particular instance of rMSPRT (Eqs 9 and 10) to determine

predicted normative bounds on the decision time in the dot motion task. We can then ask

how well monkeys approximate such bounds. The bounds result from using a minimal

amount of sensory information, by assuming as many evidence streams (spike-trains fromMT

neurons) as alternatives; that is, C = N. Thus, this rMSPRT instance gives the upper bound on

optimal expected decision times (exact for N = 2 alternatives, approximate for N = 4) per con-

dition (given combination of coherence and N). Assuming C> N would predict even shorter

optimal expected decision times (see [20]).

We assume that during the random dot motion task (Fig 1a–1c), the evidence streams for

every possible saccade come as simultaneous sequences of inter-spike intervals (ISI) produced

in MT. On each time step, fresh evidence is drawn from the appropriate (null or preferred

direction; see Methods) ISI distributions extracted fromMT data (Fig 1f). By repeating the

simulations for thousands of trials per condition, we can compare algorithm and monkey

performance.

Using these data-determined MT statistics, the (r)MSPRT predicts that the mean

decision time on the dot motion task is a decreasing function of coherence (Fig 3a). For

comparison with monkey reaction times, the algorithm’s reaction times are the sum of its

decision times and estimated non-decision time, encompassing sensory delays and motor

execution. For macaques 200–300 ms of non-decision time is a plausible range [30, 31].

Within this range, monkeys tend not to reach the predicted upper bound of reaction time

(Fig 3a).

The monkey brain loses otherwise useful information from sensory
evidence

The (r)MSPRT framework suggests that decision times directly depend on the discrimination

information in the evidence. Discrimination information here is measured as the divergence

between pairs of distributions of ISIs (those in Fig 1f) produced simultaneously by MT neu-

rons responding to the same stimulus: one where they were tuned to the dominant motion

direction of the dots (it was their preferred; solid lines in Fig 1f) and another where they were

not (it was a null direction; dashed lines). Intuitively, the larger this divergence or difference,

the easier and hence faster the decision. We can estimate how much discrimination informa-

tion monkeys used by asking how much the exact inference performed by (r)MSPRT would

A probabilistic, distributed, recursive mechanism for decision-making in the brain
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require to obtain the same reaction times on correct trials as the monkeys, per condition. We

thus find, first, that the discrimination information available for decision is very similar across

N (Fig 3b), implying that monkeys use MT sensory information consistently. Second, and

most important, we find that monkeys tended to use less discrimination information than that

in ISI distributions in their MT when making the decision. In contrast, the (r)MSPRT uses the

full discrimination information available. This implies that the decision-making mechanism in

the monkey brain lost large proportions of MT discrimination information (Fig 3c). Since

these (r)MSPRT decision times are upper bounds, this in turn means that this loss of discrimi-

nation information in monkeys (Fig 3c) is the minimum.

Fig 3. (r)MSPRT predicts information loss during decision making. (a) Comparison of the mean reaction time of
monkeys for 2 and 4 alternatives (lines) with that predicted by (r)MSPRT (markers), both for correct trials. Red line:
assumed 250 ms of non-decision time. Simulation values are means over 100 Monte Carlo experiments each
comprising 3200, 4800 total trials forN = 2, 4, correspondingly, under the parameter setO extracted fromMT
recordings. (b) Discrimination information per ISI in MT statistics (red) compared to the (r)MSPRT’s predictions of
the discrimination information available to the monkeys (blue, green). Central lines are for a non-decision time of 250
ms; the edges of the correspondingly-coloured shaded regions are for non-decision times of 300 and 200 ms. (c) As per
panel (b), but expressed as a percentage of information lost by monkeys with respect to the information available in
MT for the three assumed non-decision times (solid lines and shadings). The information lost if the reaction time
match is further enhanced is shown as dashed lines (assuming 250 ms of non-decision time; see Methods). (d)
Example ISI density functions before (blue) and after (solid blue and dashed red) information depletion;N = 2, 51.2%
coherence, and 250 ms of non-decision time. The null distribution was adjusted to become the ‘new null’ by changing
its mean and standard deviation to make it more similar to the preferred distribution. Once done throughout and for a
non-decision time of 250 ms, this procedure gives ISI distributions bearing a reduced amount of discrimination
information (blue or green lines in panel b), rather than the full discrimination information actually produced by MT
(red line). That is, after adjustment, the discrimination information between the preferred and ‘new null’ distributions
matches that estimated from the monkeys’ performance.

https://doi.org/10.1371/journal.pcbi.1006033.g003
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(r)MSPRT with depleted information quantitatively reproduces monkey
performance

To verify if this information loss alone could account for the monkeys’ deviation from the

(r)MSPRT upper bounds, we depleted the discrimination information of its input distributions

to exactly match the estimated monkey loss in Fig 3c per condition. We did so only by modify-

ing the mean and standard deviation of the null direction ISI distribution, to make it more

similar to the preferred distribution (exemplified in Fig 3d).

Using these information-depleted statistics, the mean reaction times predicted by the

(r)MSPRT in correct trials closely match those of monkeys (Fig 4a). Importantly, this involved

no parameter fitting. Instead, we used the fact that for (r)MSPRT the mean total information

for a decision is constant given error rate and N; this implies that longer decision times could

only result from reducing the discrimination information in the evidence. Strikingly, although

this information-depletion procedure is based only on data from correct trials, the (r)MSPRT

Fig 4. Monkey reaction times are consistent with (r)MSPRT using depleted discrimination information. (a, b)
Mean reaction time of monkeys (lines) with 99% Chebyshev confidence intervals (shading) and (r)MSPRT predictions
for correct (a; Eq 14) and error trials (b; Eq 15) when using information-depleted statistics (MT parameter setOd). (r)
MSPRT results are means of 100 simulations with 3200, 4800 total trials each for N = 2, 4, respectively. Confidence
intervals become larger in error trials because monkeys made fewer mistakes for higher coherence levels. (c-f) ‘Violin’
plots of reaction time distributions (vertically plotted histograms reflected about the y-axis) frommonkeys (red; 766–
785, 1170–1217 total trials forN = 2, 4, respectively) and (r)MSPRT when using information-depleted statistics (blue;
single Monte Carlo simulation with 800, 1200 total trials for N = 2, 4).

https://doi.org/10.1371/journal.pcbi.1006033.g004
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now also matches closely the mean reaction times of monkeys from error trials (Fig 4b), which

are consistently longer than those of correct trials (S1 Fig). Moreover, for both correct and

error trials the (r)MSPRT accurately captures the relative scaling of mean reaction time by the

number of alternatives (Fig 4a and 4b).

The reaction time distributions of the algorithm closely resemble those of monkeys in that

they are positively skewed and exhibit shorter right tails for higher coherence levels (Fig 4c–

4f). These qualitative features are captured across both correct and error trials, and 2 and

4-alternative tasks. Together, these results support the hypothesis that the primate brain

approximates an algorithm similar to the rMSPRT, ‘starved’ of sensory discrimination

information.

rMSPRTmaps onto cortico-subcortical circuitry

The above shows that the (r)MSPRT family of exact inference algorithms can account for the

dependence of choice reaction times on task difficulty, trial outcome, and the number of alter-

natives. But replicating behaviour alone does not tell us if the brain implements a similar com-

putation during decisions. We thus asked whether the inner variables of the rMSPRT could

account for the known dynamics of neural activity in cortex and striatum during the dot-

motion task. To answer this, we must first map its components to a neural circuit. The

rMSPRT is the first probabilistic model of decision able to handle recursion and arbitrary sig-

nal delays, which means that in principle it could map to a range of feedback neural circuits.

Because cortex [1–5], basal ganglia [6, 32] and thalamus [33] have been implicated in decision-

making, we sought a mapping that could account for their collective involvement.

In the visuo-motor system, MT projects to the lateral intra-parietal area (LIP) and frontal

eye fields (FEF)—two ‘sensorimotor cortex’ areas. The basal ganglia receives topographically

organized afferent projections [34] from virtually the whole cortex, including LIP and FEF

[35–37]. In turn, the basal ganglia provide indirect feedback to the cortex through thalamus

[38, 39]. This arrangement motivated the feedback embodied in rMSPRT.

Multiple parallel recurrent loops connecting cortex, basal ganglia and thalamus can be

traced anatomically [38, 39]. Each loop in turn can be sub-divided into topographically orga-

nised parallel loops [39, 40]. Based on this, we conjecture the transient organization of these

circuits into N functional loops, for decision formation, to simultaneously evaluate the possible

hypotheses.

Our mapping of computations within the rMSPRT to the cortico-basal-ganglia- thalamo-

cortical loop is shown in Fig 5, capturing the most prominent functional features of such cir-

cuits. For instance, it has been demonstrated that the striato-nigral and the subthalamo-nigral

pathways of the basal ganglia compete during decision formation [41]. The computations pre-

dicted by rMSPRT to map on the striatum, subthalamic nucleus, and substantia nigra pars reti-

culata (SNr; see S3 Fig), provide a qualitative formalization of this phenomenon.

Also, negative log-posteriors will tend to decrease for the best supported hypothesis and

increase otherwise. This is consistent with the idea of basal ganglia output nuclei (e.g. SNr)

selectively removing inhibition from a chosen motor program while increasing inhibition of

competing ones [17, 32, 42, 43].

Lastly, our mapping of rMSPRT provides an account for the spatially diffuse cortico-tha-

lamic projection [44], previously unaccounted for by probabilistic models of decision. It pre-

dicts that the projection conveys a constantly-increasing, hypothesis-independent baseline

that does not affect the inference carried out by the cortico-basal-ganglia-thalamo-cortical

loop, but may produce the offset required to facilitate the cortical re-use of inhibitory, fed-

back decision information from the basal ganglia (see S2 Fig). This increasing baseline may
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form part of the hypothesis-independent drive dubbed the “urgency signal” by [31], revealed

after averaging LIP population responses across choices. All this is consistent with current

views on the active modulation of information transmitted to the cortex by thalamus [45].

The mapping of rMSPRT to cortico-subcortical circuits produces key, testable predictions.

First, that sensorimotor areas like LIP or FEF in the cortex evaluate the plausibility of all avail-

able alternatives in parallel, based on the evidence produced by MT, and join this to any initial

bias. Second, that as these signals traverse the basal ganglia, they compete, resulting in a deci-

sion variable per alternative. Third, that the basal ganglia output nuclei use these to assess

whether to make a final choice and what alternative to pick. Fourth, that decision variables are

returned to sensorimotor cortex via thalamus, to become a fresh bias carrying all conclusions

on the decision so far. The rMSPRT thus predicts that evidence accumulation happens unin-

terruptedly in the overall, large-scale loop, rather than in a single site.

Electrophysiological comparison

With the mapping above, we can compare the dynamics of rMSPRT computations to those of

recorded activity during decision-making in area LIP and striatum. We first consider the

dynamics around decision initiation. During the dot motion task, the mean firing rate of LIP

neurons deviates from baseline into a stereotypical dip soon after stimulus onset, possibly indi-

cating the reset of a neural integrator [1, 14]. LIP responses become choice- and coherence-

modulated after the dip [1]. This also occurs when firing rates deviate from the initial baseline

in striatum, where no dip is exhibited [6]. We therefore reasoned that LIP and striatal neurons

engage in decision formation from the bottom of the dip or deviation from baseline (respec-

tively) and model their mean firing rate from then on. After this, mean firing rates “ramp-up”

Fig 5. Mapping of rMSPRT computations to the cortico-basal-ganglia-thalamo-cortical loops. (a) Mapping of the negative logarithm of rMSPRT components
from Fig 2. Sensory cortex (e.g.MT) produces fresh evidence for the decision, delivered to sensorimotor cortex in C parallel channels (e.g.MT spike trains).
Sensorimotor cortex (e.g. LIP or FEF) computes in parallel the simplified log-likelihoods of all hypotheses given this evidence and adds log-priors—or fed-back log-
posteriors after the delay Δ has elapsed. It also adds a hypothesis-independent baseline comprising a simulated constant background activity (e.g. from LIP before
stimulus onset) and a time-increasing term from the interaction with the thalamus. The basal ganglia bring the computations of all hypotheses together into new
negative log-posteriors (the output of the model basal ganglia; see S3 Fig for details) that are then tested against a threshold. Finally, the thalamus conveys the updated
log-posterior from basal ganglia output to be used as a log-prior by sensorimotor cortex. Thalamus’ baseline is given by its diffuse, hypothesis-independent feedback
from sensorimotor cortex. (b) Corresponding formal mapping of rMSPRT’s computational components, showing how Eq 9 decomposes. All computations are delayed
with respect to the basal ganglia via the integer latencies Ďpq, from p to q; where p, q 2 {y, b, u}, y stands for the sensorimotor cortex, b for the basal ganglia, and u for the
thalamus. Δ = Ďyb + Ďbu + Ďuy with the requirement Δ � 1.

https://doi.org/10.1371/journal.pcbi.1006033.g005
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for* 40 ms in LIP, then “fork”: they continue ramping-up if dots moved towards the response

(or movement) field of the neuron (inRF trials; Fig 6a, solid lines) or drop their slope if the

dots were moving away from its response field (outRF trials; dashed lines) [1, 3]. Striatal neu-

rons exhibit an analogous ramp-and-fork pattern of response (Fig 7c and 7d). The magnitude

of LIP firing rate is inversely proportional to the number of available alternatives (Fig 6a and

6b) [3, 46]; a phenomenon also recorded in other visuo-motor sites, notably in the superior

colliculus [47] and FEF [48–50].

The model LIP (sensorimotor cortex) in rMSPRT captures each of these properties: activity

ramps from the start of the accumulation, forks between putative in- and out-RF responses,

and scales with the number of alternatives (Fig 6c). Under this model, inRF responses in LIP

occur when the likelihood function represented by neurons was best matched by the uncertain

MT evidence; correspondingly, outRF responses occur when the likelihood function was not

well matched by the evidence.

The rMSPRT embodies a mechanistic explanation for the ramp-and-fork pattern in the two

cases of Eq 9. Initial accumulation (steps 0–2 in our simulations; feedforward inference) occurs

before the feedback has arrived at the model sensorimotor cortex, resulting in a ramp. The

forking (step 3; start of feedback inference) is the point at which the posteriors from the output

of the model basal ganglia first arrive at sensorimotor cortex to be re-used as priors. By con-

trast, non-recursive MSPRT (without delayed feedback of posteriors) predicts well-separated

neural signals throughout (Fig 6e). With recursion as the key difference, our framework sug-

gests, first, that the ramp-and-fork pattern gives away the existence of an underpinning

delayed inhibitory drive within a looped architecture—here from the model basal ganglia. Sec-

ond, that the fork represents the time at which updated signals representing the competition

between alternatives (posterior probabilities in the rMSPRT) are first made available to the

sensorimotor cortex.

The rMSPRT further predicts that the scaling of activity in sensorimotor sites by the num-

ber of alternatives is due to cortico-subcortical loops becoming transiently organized as N par-

allel functional circuits, one per hypothesis. This would determine the baseline output of the

basal ganglia. Until task related signals reach the model basal ganglia output, it codes the initial

priors for the set of N hypotheses. Their output is then an increasing function of the number of

alternatives (Fig 6f). This increased inhibition of thalamus in turn reduces baseline cortical

activity as a function of N. The inverse proportionality of cortical activity to N in macaques

during decisions (Fig 6a and 6b; [3, 46, 48, 49]) and the direct proportionality of the firing rate

to N in their SNr [42] lend support to this hypothesis.

The rMSPRT also captures key features of dynamics at decision termination. For inRF tri-

als, the mean firing rate of LIP neurons peaks at or very close to the time of saccade onset (Fig

6b). By contrast, for outRF trials mean rates appear to fall just before saccade onset. The

rMSPRT can capture both these features (Fig 6d) when we allow the algorithm to continue

updating after the decision rule (Eq 10) is met. The decision rule is implemented at the output

of the basal ganglia and the model sensorimotor cortex peaks just before the final posteriors

have reached it. The rMSPRT thus predicts that the activity in LIP lags the actual decision.

This prediction may explain an apparent paradox of LIP activity. The peri-saccadic popula-

tion firing rate peak in LIP during inRF trials (Fig 6b) is commonly assumed to indicate the

crossing of a threshold and thus decision termination. Visuo-motor decisions must be termi-

nated well before saccade to allow for the delay in the execution of the motor command, con-

ventionally assumed in the range of 80–100 ms in macaques [9, 30]. It follows that LIP peaks

too close to saccade onset (* 15 ms before) for this peak to be causal. The rMSPRT suggests

that the inRF LIP peak is not indicating decision termination, but is instead a delayed read-out

of termination in an upstream location.
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Fig 6. Example LIP firing rate patterns and predictions of rMSPRT andMSPRTat 25.6% coherence. (a, b) Mean
population firing rate of LIP neurons during correct trials on the reaction-time version of the dot motion task (19
neurons). By convention, inRF trials are those when recorded neurons had the motion-cued target inside their
response field (solid lines); outRF trials are those when that target was outside the neuron’s response field (dashed
lines). (a) Aligned at stimulus onset, starting at the stereotypical dip, illustrating the “ramp-and-fork” pattern between
average inRF and outRF responses. (b) Aligned at saccade onset (vertical dashed line). (c, d) Mean time course of the
model sensorimotor cortex in rMSPRT aligned at decision initiation (c; t = 1) and termination (d; Term; dotted line),
for correct trials. Initiation and termination are with respect to the time of basal ganglia output. Note the suggested
saccade time “Sac?”, close to the peak of inRF computations. Simulations are a single Monte Carlo experiment with
800, 1200 total trials for N = 2, 4, respectively, using parameter setOd. For simplicity the (r)MSPRT is simulated in
discrete time steps, but these have an interpretation in continous time (see Methods). We include an additional step at
−1 determined only by initial priors and baseline, where no inference is carried out (yi(t + Ďyb) = 0 for all i; see
Methods). Conventions as in (a). (e) Same as in (c), but for the standard, non-recursive MSPRT (Eq 10 using only the
first case of Eqs 8 and 9). (f) Baseline output of the model basal ganglia increases as a function of the number of
alternatives, thus increasing the initial inhibition of thalamus and cortex. For uniform priors, the rMSPRT predicts this
function is: −log P(Hi) = −log (1/N). Coloured dots indicateN = 2 (blue) and N = 4 (green).

https://doi.org/10.1371/journal.pcbi.1006033.g006
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In the rMSPRT, the striatum relays the input from sensorimotor cortex as an inhibitory

drive for downstream basal ganglia nuclei. The rMSPRT has three free parameters that shape

the ramp-and-fork of its inner variables, but do not alter inference. We have set their value to

show that mapped variables can match the pattern in sensorimotor cortical neural dynamics

(see Methods); below we show how these predictions depend on the parameter values.

Fig 7. Modulation of activity by coherence throughout the cortico-basal-ganglia-thalamo-cortical loops. (a-j)
N = 2. (k-r)N = 4. Top row: mean population firing rate in LIP over time during the random dot motion task (19
neurons), aligned to stimulus onset (Stim; a, k) or saccade onset (Sac; b, l) (vertical dashed lines). (c, d) mean
population firing rate in striatum during the dots task (48 neurons); same conventions as in top row. (e-j, m-r) mean
rMSPRT computations as mapped in Fig 5, aligned at decision initiation or termination (Init/Term; dotted lines);
single Monte Carlo experiment with 800, 1200 total trials forN = 2, 4, respectively; simulation as in Fig 6c–6e. (e, f, m,
n) predicted time course of the model sensorimotor cortex (e.g. LIP) or striatum. (g, h, o, p) predicted simultaneous
course of mean firing rate in SNr. (i, j, q, r) predicted course in thalamic relay nuclei. Solid: inRF. Dashed: outRF.
Coherence % as in legend. Unshaded regions indicate approximate periods where a mechanism of decision formation
should aim to reproduce the recordings.

https://doi.org/10.1371/journal.pcbi.1006033.g007
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Nonetheless, the rMSPRT with these parameters also captures the ramp-and-fork pattern of

activity in the monkey striatum (compare panels c, d to e, f in Fig 7).

LIP and striatal firing rates are also modulated by dot-motion coherence (Fig 7a–7d, 7k,

7l). Following stimulus onset, the response of these neurons tends to fork more widely for

higher coherence levels (Fig 7a, 7c and 7k) [1, 3, 6]. The increase in activity before a saccade

during inRF trials is steeper for higher coherence levels, reflecting the shorter average reac-

tion times (Fig 7b, 7d and 7l) [1, 3, 6]. The sensorimotor cortex or striatum in the rMSPRT

shows coherence modulation of both the forking pattern (Fig 7e and 7m) and slope of activity

increase (Fig 7f and 7n). rMSPRT also predicts that the apparent convergence of peri-sac-

cadic LIP activity to a common level during inRF trials (Fig 7b and 7l) is not required for

inference and so may arise due to additional neural constraints. We take up this point in the

Discussion.

Electrophysiological predictions

Our proposed mapping of the rMSPRT’s components (Fig 5) makes testable qualitative predic-

tions for the mean responses in basal ganglia and thalamus during the dot motion task. For the

basal ganglia output, likely from the oculomotor regions of the SNr, rMSPRT (like MSPRT)

predicts a drop in the activity of output neurons during inRF trials and an increase in outRF

ones. It also predicts that these changes are more pronounced for higher coherence levels (Fig

7g, 7h, 7o and 7p). These predictions are consistent with recordings from macaque SNr neu-

rons showing that they suppress their inhibitory activity during visually- or memory-guided

saccade tasks, in putative support of saccades towards a preferred region of the visual field [42,

51, 52], and enhance it otherwise [52].

In detection tasks like visually- or memory-guided ones, the decision cues are extremely

obvious. Hence, the accompanying recorded neural-activity transients may be argued to

encode very short evidence-accumulations. After all, the accumulation of a single observation

(e.g. an ISI) is the simplest, albeit degenerate case of evidence accumulation.

For visuo-motor thalamus, rMSPRT predicts that the time course of the mean firing rate

will exhibit a ramp-and-fork pattern similar to that in LIP (Fig 7i, 7j, 7q and 7r). The separa-

tion of in- and out-RF activity is consistent with the results of [33] who found that, during a

memory-guided saccade task, neurons in the macaque medio-dorsal nucleus of the thalamus

(interconnected with LIP and FEF), responded more vigorously when the saccade target was

flashed within their response field than when it was flashed in the opposite location.

Predictions for neural activity features not crucial for inference

Understanding how a neural system implements an algorithm is complicated by the need to

identify which features are core to executing the algorithm, and which are imposed by the con-

straints of implementing computations using neural elements—for example, that neurons can-

not have negative firing rates, so cannot straightforwardly represent negative numbers. The

three free parameters in the rMSPRT allow us to propose which functional and anatomical

properties of the cortico-basal-ganglia-thalamo-cortical loop are workarounds within these

constraints, but do not affect inference.

One free parameter enforces the baseline activity that LIP neurons maintain before and

during the initial stimulus presentation (Fig 7a and 7k). Varying this parameter, l, scales the

overall activity of LIP, but does not change the inference performed (Fig 8a). Consequently,

this suggests that the baseline activity of LIP depends on N but does not otherwise affect the

inference algorithm implemented by the brain.
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The second free parameter, wyt, sets the strength of the spatially diffuse projection from cor-

tex to thalamus. Varying this weight changes the forking between inRF and outRF computations

but does not affect inference (Fig 8b). The third free parameter, n, sets the overall, hypothesis-

independent temporal scale at which sampled input ISIs are processed; changing n varies the

slope of sensorimotor computations, even allowing all-decreasing mean firing rates (Fig 8c). By

definition, the log-likelihood of a sequence tends to be negative and decreases monotonically as

the sequence lengthens. Introducing n is required to get positive simplified log-likelihoods,

capable of matching the neural activity dynamics, without affecting inference. Hence, nmay

capture a workaround of the decision-making circuitry to represent these whilst avoiding signal

‘underflow’, by means of scaling the input data.

Traditionally, evidence accumulation is exclusively associated with increasing firing rates

during decision, and previous studies have questioned whether the often-observed decision-

correlated yet non-increasing firing rates (e.g. in outRF conditions in Fig 7a, 7c and 7k and [1–

3, 5, 53, 54]) are consistent with accumulation [22, 23]. The diversity of patterns predicted by

rMSPRT in sensorimotor cortex (Fig 8) solves this by demonstrating that both increasing and

non-increasing activity patterns can house evidence accumulation.

Fig 8. Effect of variations of free parameters on the time course of the model LIPin rMSPRT. Each solid and
dashed set of lines is the mean of correct trials in a single Monte Carlo experiment, with 800 total trials, 25.6%
coherence and N = 2; simulation as in Fig 6c–6e. Computations aligned at decision initiation. Solid: inRF. Dashed:
outRF. Blue: with parameters as tuned for this study. Green: increasing parameter value by 50%, keeping other
parameters as tuned. Red: decreasing it by 50%, keeping others as tuned. Black: removing the effect of the tested
parameter (l = 0, wyu = 0, n = 1), keeping others as tuned. (a) Varying the baseline, l. (b) Varying the cortico-thalamic
weight, wyu. (c) Varying the data scaling factor, n.

https://doi.org/10.1371/journal.pcbi.1006033.g008
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Discussion

We tested the hypothesis that the brain approximates exact inference for decision making. We

did so by showing that a novel recursive form of the MSPRT, the rMSPRT, uniquely accounts

for both monkey choice behaviour and the corresponding neural dynamics in cortex and stria-

tum, while its architecture matches that of the cortico-subcortical decision circuits.

Why implement a recursive procedure in the brain?

The recursive computation implied by the looped cortico-basal-ganglia-thalamo-cortical

architecture has several advantages over local or feedforward computations. First, recursion

makes trial-to-trial adaptation of decisions possible. Priors determined by previous stimulation

(fed-back posteriors), can bias upcoming similar decisions towards the expected best choice,

even before any new evidence is collected. This can shorten reaction times in future familiar

settings without compromising accuracy. Second, recursion provides a robust memory. A pos-

terior fed-back as a prior is a sufficient statistic of all past evidence observations. That is, it has

taken ‘on-board’ all sensory information since the decision onset. In rMSPRT, the sensorimo-

tor cortex only need keep track of observations in a moving time window of maximum width

Δ —the delay around the cortico-subcortical loop— rather than keeping track of the entire

sequence of observations. For a physical substrate subject to dynamics and leakage, like a neu-

ron in LIP or FEF, this has obvious advantages: it would reduce the demand for keeping a per-

fect record (e.g. likelihood) of all evidence, from the usual hundreds of milliseconds in

decision times to the* 30 ms of latency around the cortico-basal-ganglia-thalamo-cortical

loop (adding up estimates from [55–57]).

Lost information and perfect integration

The rMSPRT decides faster than monkeys in the same conditions because monkeys do not

make full use of the discrimination information available in their MT (Fig 3b). However, this

performance gap arises partially because rMSPRT is a generative model of the task. Thus, this

assumes that knowledge of coherence is available by decision initiation, which in turn deter-

mines appropriate likelihoods for the task at hand. Any deviation from this generative model

will tend to degrade performance, whether it comes from one or more of: the coherence to

likelihood mapping [58], the inherent leakiness of neurons, or correlations between spikes or

between neurons (see [20]). In this respect, we must consider, first, that the activity dip* 170

ms after stimulus onset is assumed to indicate decision engagement at the LIP level. By then,

MT neurons have been reliably modulated by motion coherence for about 120 ms (start-

ing* 50 ms after stimulus onset; see S4 Fig for details), giving a sizeable window to adjust LIP

‘likelihood functions’ to match the decision at hand. Whether this window is large enough or

if trial-by-trial ‘likelihood adjustment’ occurs at all remain as interesting questions for future

experimental explorations. Second, that LIP neurons change their coding during learning of

the dot motion task and MT neurons do not [59], implying that learning the task requires

mapping of MT to LIP populations by synaptic plasticity [60]. Consequently, even if the MT

representation is perfect, the learnt mapping only need satisfice the task requirements, not

optimally perform.

Excellent matches to monkeys’ performance in both correct and error trials, and hence

their speed-accuracy trade-offs, were obtained solely by accounting for lost information in the

evidence streams. No noise was added within the rMSPRT itself. Prior experimental work

reported perfect, noiseless evidence integration by both rat and human subjects performing an

auditory task, attributing all effects of noise on task performance to the variability in the sen-

sory input [61]. Our results extend this observation to primate performance on the dot motion
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task, and further support the idea that the neural decision-making mechanism can perform

perfect integration of uncertain evidence.

Neural response patterns during decision formation

Neurons in LIP, FEF [4], and striatum exhibit a ramp-and-fork pattern during the dot motion

task. Analogous choice-modulated patterns have been recorded in the medial premotor cortex

of the macaque during a vibro-tactile discrimination task [53] and in the posterior parietal cor-

tex and frontal orienting fields of the rat during an auditory discrimination task [5]. The

rMSPRT indicates that such slow dynamics emerge from decision circuits with a delayed,

inhibitory drive within a looped architecture. This suggests that decision formation in mam-

mals may use a common recursive computation.

A random dot stimulus pulse delivered earlier in a trial has a bigger impact on LIP firing

rate than a later one [2]. This highlights the importance of capturing the initial, early-evidence

ramping-up before the forking. However, multiple models omit it, focusing only on the fork-

ing (e.g. [9, 10, 13]). Other, heuristic models account for LIP activity from the onset of the

choice targets, through dots stimulation and up until saccade onset (e.g. [12, 14–16]). Never-

theless, their predicted firing rates rely on two fitted heuristic signals that shape both the post-

stimulus dip and the ramp-and-fork pattern. In contrast, the ramp-and-fork dynamics emerge

naturally from the delayed inhibitory feedback in rMSPRT during decision formation.

rMSPRT qualitatively replicates the ramp-and-fork pattern for individual coherence levels

and given number of alternatives, N (Fig 6). However, the peak of the accumulated evidence in

the model sensorimotor cortex of rMSPRT does not converge to a common value around deci-

sion termination during inRF trials. Consequently, it predicts that the apparent convergence

of LIP activity to a common value (Figs 6b and 7b and 7l) is not part of the inference proce-

dure, but reflects other constraints on neural activity.

One such constraint is that these brain regions engage in multiple other computations,

some of which are likely orthogonal to solving the random dot motion task. The neural activity

recorded during decision tasks may then be a transformation of inference computations, by

mixing them with all other simultaneous computations. Consistent with this, the successful fit-

ting of previous computational models to neural data [12, 14–16] has been critically dependent

on the addition of heuristic signals for unknown constraints. While beyond the scope of this

study, which examined whether a normative mechanism could explain behaviour and electro-

physiology during decisions, adding similar heuristic signals to the rMSPRT would likely allow

a quantitative reproduction of the peri-saccadic convergence of LIP activity.

Emergent predictions

Inputs to the rMSPRT were determined solely fromMT responses during the dot-motion task,

and it has only three free parameters, none of which affect inference. It is thus surprising that

it renders emergent predictions that are consistent with experimental data. First, our informa-

tion-depletion procedure used exclusively statistics from correct trials. Yet, after depletion,

rMSPRT matches monkey behaviour in correct and error trials (Fig 4), suggesting a mechanis-

tic connection between them in the monkey that is naturally captured by rMSPRT. Second,

the values of the three free parameters were chosen solely so that the model LIP activity resem-

bled the ramp-and-fork pattern observed in our LIP data-set (Fig 6a and 6c). As demonstrated

in Fig 8, the ramp-and-fork pattern is a particular case of two-stage patterns that are an intrin-

sic property of the rMSPRT, guaranteed by the feedback of the posterior after the delay Δ has

elapsed (Eq 5). Nonetheless, the algorithm also qualitatively matches LIP dynamics when

aligned at decision termination (Fig 6b and 6d). Third, the predictions of the time course of
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the firing rate in SNr and thalamic nuclei naturally emerge from the functional mapping of the

algorithm onto the cortico-basal-ganglia-thalamo-cortical circuitry. These are already congru-

ent with existing electrophysiological data; however, their full verification awaits recordings

from these sites during the dot motion task. These and other emergent predictions are an

encouraging indicator of the explanatory power of a systematic framework for understanding

decision formation, embodied by the rMSPRT.

Relation of the rMSPRT to prior decision models

The rMSPRT contains all previous instances of the MSPRT [17, 18, 25, 26, 62] as special cases.

It generalizes them by allowing the re-use of posteriors at any given time in the past as priors

for present inference, via recursion. The (r)MSPRT also contains the sequential probability

ratio test when N = 2, and its continuous-time equivalent, the popular drift-diffusion model

(e.g. [4, 6, 9, 61, 63–66]). While a valuable basic model of decision-making, the drift-diffusion

model is restricted to N = 2 alternatives and does not address neural mechanisms. First, it

assumes that evidence for decisions comes as a continuous Gaussian process whose presence

in the brain is unproven. Since the decision times predicted by the model critically hinge on

this process and its statistics (typically disconnected from the statistics of sensory neural activ-

ity), this limitation also obscures the interpretation of the drift-diffusion model’s behavioural

predictions. Second, its single decision variable must restrict itself to the half-plane closest to

the choice threshold associated to one of its two hypotheses if such hypothesis is to be chosen;

hence, the drift-diffusion model can account for forking dynamics, but not for the preceding

ramping observed in experimental data. In contrast, the rMSPRT natively captures decisions

among any number of alternatives (N� 2), can explain ramp-and-fork dynamics, and does so

using neural evidence for decisions in its natural format: spike-trains with statistics extracted

fromMT recordings.

Biophysical models that directly address neural implementations of decision making are

predominantly based on winner-take-all competition between neurons representing different

hypotheses [8, 11–14, 16, 67, 68]. These provide valuable insights into potential mechanisms

by which neural circuits can represent and compute decisions, but do not typically make con-

tact with formal inference procedures (see [69]). The studies of [13, 68] are possible exceptions,

since they make the analogy between the predictions of their neural-network model and those

of exact, Bayes-based inference. Conversely, the rMSPRT shows how a normative decision-

making algorithm can account for cortical and subcortical activity. As such, the rMSPRT pro-

vides target, exact-inference computations for future biophysical models.

Anatomical mapping, assumptions, and future directions

Mapping any formal algorithm to a neural substrate implies proposing assumed computa-

tional contributions for the components of the substrate. In mapping the rMSPRT we made

two broad classes of assumptions. First, as explained above, that individual substrates imple-

ment multiple functions either simultaneously or under different stimulation scenarios (e.g.

experimental paradigms). In particular, we assume that during decision-formation the stria-

tum is only required to perform a light-touch, relay-like transformation of its excitatory corti-

cal inputs into inhibitory outputs. This assumption is shared by multiple models of the basal

ganglia (e.g. [70, 71]). The similarity between ramp-and-fork patterns of response across neu-

rons in the LIP [3], FEF [4], and striatum [6] during the dot-motion task, is consistent with

this (Fig 7a–7d). That said, computational models have shown how the striatum’s intricate

microcircuit [72] can give rise to several types of complex responses to simple cortical input,

often taking the form of spontaneously appearing neural ensembles [73–75]. Thus a promising
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avenue for future research is determining if, and how, the dynamics of the striatal micro-cir-

cuit can act as a relay-like function during decision formation.

Our second class of assumptions is that the omitted connections into and within the basal

ganglia may not contribute to the computations essential to inference with cortical inputs. Of

note, we have omitted in our mapping the projections from thalamus to striatum [76] or to

subthalamic nucleus [77], as well as the intrinsic connections from subthalamic nucleus or

from globus pallidus pars externa (globus pallidus in non-primates) to striatum (e.g. see [77,

78]). Such omitted connections might offer a more robust implementation of inference com-

putations, or may contribute to overcoming the limitations of implementing an algorithm

with neurons.

Demonstrating the compatibility of anatomical pathways with the mapping of the

(r)MSPRT is the subject of ongoing research. Success has been achieved in the expansion of

the basal-ganglia mapping of the MSPRT to include the pathway from striatum to globus palli-

dus pars externa and that from the latter to SNr, where the same inference could be done with-

out those pathways [17]. It has also been recently shown that the pallido-striatal connection is

compatible with the MSPRT mapping onto the basal ganglia [21], possibly giving a more

robust neural implementation. Both results carry to the rMSPRT. In the same bracket is our

inclusion of the cortico-thalamic projection here (Fig 5). Since this projection is assumed to be

hypothesis-independent (Eq 12), it does not affect the inference done by the rMSPRT. Similar

exercises may be able to account for projections from thalamus to striatum or to subthalamic

nucleus, and from the latter to striatum, though these are beyond the scope of this study. The

rMSPRT provides a starting point to explore all such extended mapping alternatives.

Conclusion

We sought to characterize the neural mechanism that underlies decisions using a normative

algorithm—the rMSPRT—as a framework. We find it remarkable that, starting from data-con-

strained spike-trains, our monolithic statistical test can simultaneously account for much of

the anatomy, behaviour, and electrophysiology of decision-making. While it is not plausible

that the brain implements exactly a specific algorithm, our results suggest that the essential

composition of its underlying decision mechanism includes the following. First, that the mech-

anism is probabilistic in nature—the brain utilizes the uncertainty in neural signals, rather

than suffering from it. Second, that the mechanism works entirely ‘on-line’, continuously

updating representations of hypotheses that can be queried at any time to make a decision.

Third, that this processing is distributed, recursive, and parallel, producing a decision variable

for each available hypothesis. And fourth, that this recursion allows the mechanism to adapt to

the observed statistics of the environment in an unsupervised manner, as it can re-use updated

probabilities about hypotheses as priors for upcoming decisions. With the currently available

range of experimental studies giving us local snapshots of cortical and subcortical activity dur-

ing decision-making tasks, the rMSPRT shows us how, where, and when these snapshots fit

into a complete inference procedure.

Materials andmethods

Experimental paradigms

Behavioural and neural data was collected in three previous studies [3, 6, 24], during two ver-

sions of the random dot motion task (Fig 1a–1c). Detailed experimental protocols can be

found in each report. Below we briefly summarize them.

Fixed duration. Three rhesus macaques (Macaca mulatta) were trained to initially fixate

their gaze on a visual fixation point (cross in Fig 1a). A random dot kinematogram appeared
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covering the response field of the MT neuron being recorded (grey patch); task difficulty was

controlled per trial by the proportion of dots (coherence %) that moved in one of two direc-

tions: that to which the MT neuron was tuned to—its preferred motion direction—or its oppo-

site—null motion direction. After 2 s the fixation point and kinematogram vanished and two

targets appeared in the possible motion directions. Monkeys received a liquid reward if they

then saccaded to the target towards which the dots in the stimulus were predominantly moving

[24].

Reaction time. Two macaques per study learned to fixate their gaze on a central fixation

point (Fig 1b and 1c). Two (Fig 1b) or four (Fig 1c; only in the protocol of [3]) eccentric targets

appeared, signalling the number of alternatives in the trial, N. One such target fell within the

response (movement) field of the recorded neuron (grey patch). This is the region of the visual

field towards which the neuron would best support a saccade. Later a random dot kinemato-

gram appeared where a controlled proportion of dots moved towards one of the targets. The

monkeys received a liquid reward for saccading to the indicated target when ready [3, 6].

Data analysis

For comparability across databases, we only analysed data from trials with coherence levels of

3.2, 6.4, 12.8, 25.6, and 51.2%, unless otherwise stated. We used data from all neurons recorded

in such trials. Our datasets contained between 189 and 213 visual-motion-sensitive MT neu-

rons (see Table 1; single-cell recordings from [24, 79]), as well as 19 LIP neurons (data from

[3]) and 48 striatal ones (from [6]) whose activity was previously determined to be choice- and

coherence-modulated. The behavioural data analysed was that associated to LIP recordings.

For MT, we analysed the neural activity between the onset and the vanishing of the stimulus.

For LIP and striatum we focused on the period between 100 ms before stimulus onset and 100

ms after saccade onset.

To estimate moving statistics of neural activity we first computed the spike count over a 20

ms window sliding every 1 ms, per trial. The moving mean firing rate per neuron per condi-

tion was then the mean spike count over the valid bins of all trials divided by the width of this

window; the standard deviation was estimated analogously. LIP and striatal recordings were

either aligned at the onset of the stimulus or of the saccade; after or before these (respectively),

data was only valid for a period equal to the reaction time per trial. The population moving

mean firing rate is the mean of single-neuron moving means over valid bins; analogously, the

population moving variance of the firing rate is the mean of single neuron moving variances.

For clarity, population statistics were then smoothed by convolving them with a Gaussian

Table 1. Population ISI statistics (ms) in MT per coherence (first column).

O, Od O Od, N = 2 Od, N = 4

Coherence % No. neurons μ�n σ�n μ0n σ0n μ0n σ0n μ0n σ0n

3.2 206 54.1 33.1 59.4 34.5 59.0 34.4 58.5 34.3

6.4 211 52.0 32.2 62.9 35.3 60.6 34.7 59.8 34.4

12.8 213 46.1 30.5 65.5 36.1 60.3 34.6 58.3 34.0

25.6 208 37.7 28.0 70.2 37.2 62.0 34.9 59.9 34.3

51.2 189 29.9 26.0 83.5 40.6 75.5 38.5 71.8 37.4

Second column: number of neurons for which data was available per coherence. μ: mean. σ: standard deviation. n: data scaling factor. Statistics with subscript � denote

that dots were moving towards the preferred motion direction of the MT neuron, whereas 0 denotes that they were moving in the opposite, null direction. The

parameter set, O (computed here fromMT data) or Od (after information depletion), to which each value corresponds is noted above them. Note that, due to the

information depletion required to produce Od, μ0n and σ0n take different values for N = 2, 4.

https://doi.org/10.1371/journal.pcbi.1006033.t001

A probabilistic, distributed, recursive mechanism for decision-making in the brain

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1006033 April 3, 2018 19 / 32

https://doi.org/10.1371/journal.pcbi.1006033.t001
https://doi.org/10.1371/journal.pcbi.1006033


kernel with a 10 ms standard deviation. The resulting smoothed population moving statistics

for MT are in Fig 1d and 1e. LIP and striatal mean firing rates are plotted only up to the

median reaction time plus 80 ms, per condition.

Analogous procedures were used to compute the moving mean of the computations within

simulated algorithms, per time step, rather than over a moving window. These are shown up

to the median of termination observations plus 3 time steps.

Definition of the recursive multi-hypothesis sequential probability ratio
test (rMSPRT)

Let x(t) = (x1(t), . . ., xC(t)) be a vector random variable composed of scalar observations,

xj(t), made in C channels at time t 2 {1, 2, . . .} (right-hand side of Fig 9). Let also x(r: t) =

(x(r)/n, . . ., x(t)/n) be the sequence of vectors x(t)/n, i.i.d. across time, from r to t (r< t). Here

n 2 fR > 0g is a constant data scaling factor. If n> 1, it scales down incoming data, xj(t); this

will prove useful ahead when tuning the algorithm to reveal that the dynamics in rMSPRT

computations match those of sensorimotor cortex. Note that scaling is only effective from the

likelihood on and does not affect the time interpretation of the data. Crucially, since n is

hypothesis-independent, it does not affect inference.

There are N 2 {2, 3, . . .} alternatives or hypotheses about the uncertain evidence, x(1: t)—

say possible courses of action or perceptual interpretations of sensory data. The task of a deci-

sion maker is to determine which hypothesisHi (i 2 {1, . . ., N}) is best supported by this evi-

dence as soon as possible, for a given level of accuracy. To do this, it requires to estimate the

posterior probability of each hypothesis given the data, P(Hi|x(1: t)), as formalized by Bayes’

Fig 9. The mean number of ISIs to decision in continuous-time spike-trains is equivalent to the mean number
observations to decision in discrete time. C sensory neurons (input channels; left) produce sequences of ISIs in
continuous time with mean μ�n (red; best tuned to the stimulus) or μ0n (black; otherwise). The average decision time—
between decision initiation (Init) and termination (Term)—is τc in correct trials, as in this diagram. In discrete time it
takes an average of hTic vector observations, x(t) (composed of scalar observations xi(t), each time step t; blue), to make
decisions. [20] showed that in the minimum input case (when C = N), the mean number of ISIs in the most active
channel (red) used by a general, continuous-time, spike-based instance of the MSPRT, approximately equal the mean
number of observations, hTic, required by the simpler, discrete-timeMSPRT (here 7 in both cases), which carries to
our identically-performing rMSPRT; this is true under equal input channel statistics (μ�, μ0, σ�, σ0), data distributions
(e.g. all lognormal), number of alternatives, N, and error rate, �. This all implies that, if we add 0.5—the expected
number of ISIs from decision initiation to a first spike—to hTic, and multiply this by the minimummean ISI, μ�n (of
fastest firing channel), this approximately equals τc, hence Eq 14; conversely, in error trials we use μ0 and hTie, to get τe
(Eq 15).

https://doi.org/10.1371/journal.pcbi.1006033.g009
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rule. The mechanism we seek must be recursive to match the nature of the brain circuitry. For-

mally, P(Hi|x(1: t)) will be initially computed upon starting priors P(Hi) and likelihoods P(x(1:

t)|Hi); however, after some time Δ 2 {1, 2, . . .}, it will re-use past posteriors, P(Hi|x(1: t − Δ)), Δ
time steps ago, as priors, along with the likelihood function P(x(t − Δ + 1: t)|Hi) of the segment

of x(1: t) not yet accounted by P(Hi|x(1: t − Δ)). A mathematical induction proof of this form

of Bayes’ rule follows.

If say Δ = 2, in the first time step, t = 1:

P Hijxð1Þ=nð Þ ¼ Pðxð1Þ=njHiÞPðHiÞ
Pðxð1Þ=nÞ ð1Þ

By t = 2:

P Hijxð2Þ=n; xð1Þ=nð Þ ¼ Pðxð2Þ=n; xð1Þ=njHiÞPðHiÞ
Pðxð2Þ=n; xð1Þ=nÞ

Note that we are still using the initial fixed priors P(Hi). Now, for t = 3:

P Hijxð3Þ=n; xð2Þ=n; xð1Þ=nð Þ ¼ Pðxð3Þ=n; xð2Þ=n; xð1Þ=njHiÞPðHiÞ
Pðxð3Þ=n; xð2Þ=n; xð1Þ=nÞ ð2Þ

According to the product rule, we can segment the probability of the sequence x(1: t) as:

Pðxð1 : tÞÞ ¼ Pðxðt � Dþ 1 : tÞ;xð1 : t � DÞÞ ¼
Pðxðt � Dþ 1 : tÞjxð1 : t � DÞÞPðxð1 : t � DÞÞ

ð3Þ

And, since x(t) are i.i.d., the likelihood of the two segments is:

Pðxð1 : tÞjHiÞ ¼ Pðxðt � Dþ 1 : tÞjHiÞPðxð1 : t � DÞjHiÞ ð4Þ

If we substitute the likelihood in Eq 2 by Eq 4, its normalization constant by Eq 3 and re-

group, we get:

P Hijxð3Þ=n; xð2Þ=n; xð1Þ=nð Þ ¼ Pðxð3Þ=n; xð2Þ=njHiÞ
Pðxð3Þ=n; xð2Þ=njxð1Þ=nÞ

� �

Pðxð1Þ=njHiÞPðHiÞ
Pðxð1Þ=nÞ

� �

It is evident that the rightmost factor is P(Hi|x(1)/n) as in Eq 1. Hence, in this example, by

t = 3 we start using past posteriors as priors for present inference as:

P Hijxð3Þ=n; xð2Þ=n; xð1Þ=nð Þ ¼ Pðxð3Þ=n; xð2Þ=njHiÞPðHijxð1Þ=nÞ
Pðxð3Þ=n; xð2Þ=njxð1Þ=nÞ

So, in general:

PðHijxð1 : tÞÞ ¼

Pðxð1 : tÞjHiÞPðHiÞ
Pðxð1 : tÞÞ for t � D

Pðxðt � Dþ 1 : tÞjHiÞPðHijxð1 : t � DÞÞ
Pðxðt � Dþ 1 : tÞjxð1 : t � DÞÞ for t > D

8

>

>

>

<

>

>

>

:

ð5Þ
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where the normalization constants are

Pðxð1 : tÞÞ ¼ PN

j¼1
Pðxð1 : tÞjHjÞPðHjÞ

Pðxðt � Dþ 1 : tÞjxð1 : t � DÞÞ ¼
PN

j¼1
Pðxðt � Dþ 1 : tÞjHjÞPðHjjxð1 : t � DÞÞ

Eq 5 is a general recursive form of the Bayes’ rule, designed to accumulate evidence for

inference in a recurrent, uninterrupted fashion. By t> Δ, it uses posteriors Δ � 1 time steps in

the past as current priors, thereby generalizing a previous common recursive form of the

Bayes’ rule that is limited to Δ = 1 (that in e.g. [18, 26, 68, 80, 81]). Priors updated in this man-

ner are a sufficient statistic of all the evidence observed up to t − Δ. By this ability, and in the

general machine-learning sense, any decision algorithm harnessing Eq 5 adapts or learns.

Since no labelled examples or teaching signals are required for such learning, the rMSPRT is

thence said to be engaged in ongoing unsupervised learning.

Ahead we use three key results from [20] as part of our methods, with no overlap between

their results and the results of the present study. First, a lognormal-based form of the likeli-

hood function whose component operations they showed are neurally plausible and most con-

sistent with the statistics of MT responses during the random dots task. Second, a crucial link

between the statistics of ISIs in the spike-trains used as evidence for decision (e.g. those of MT

during the dots task), and continuously-distributed MSPRT decision times. As discussed

below, this link enabled us to use simpler, discrete-time algorithms and still interpret their

behavioural predictions in continuous time. And third, the fundamental dependence of

MSPRT decision times on: (a) the discrimination information available in the evidence and

(b) a constant, fixed for given error rate and N. Since rMSPRT performs identically to MSPRT,

all this carries to it.

It is apparent that the critical computations in Eq 5 are the likelihood functions. The forms

that we consider ahead build upon the simplest shown by [20], where the number of evidence

streams equals the number of hypotheses (C = N); for instance, a minimum of C = 2 differ-

ently-tuned neurons are assumed to provide evidence for a N = 2 choice decision. As discussed

by them, more complex (C> N), biologically-plausible likelihood functions can be formulated

if necessary; the C< N case would make no sense as it would imply the testing of redundant

hypotheses. Although not essential, to simplify the notation when C = N, from now on data in

the channel conveying the most salient evidence for hypothesisHi will bear its same index i, as

xi(j). When t� Δ we have:

Pðxð1 : tÞjHiÞ ¼ aðtÞ
Y

t

j¼1

f�ðxiðjÞ=nÞ
f
0
ðxiðjÞ=nÞ

ð6Þ

this is, the likelihood that xi(j)/n was drawn from a distribution, f�, rather than from f0,

that is assumed to have originated xk(j)/n (k 6¼ i) for the rest of the channels. In Eq 6,

aðtÞ ¼
Qt

m¼1

QN

k¼1
f
0
ðxkðmÞ=nÞ is a hypothesis-independent factor that does not affect Eq 5

and thus needs not to be considered further.

When t> Δ only the observations in the time window [t − Δ + 1, t] are used for the likeli-

hood function because data before this window is already considered within the fed-back pos-

terior, P(Hi|x(1: t − Δ)). Then, the likelihood function is:

Pðxðt � Dþ 1 : tÞjHiÞ ¼ dðtÞ
Y

t

j¼t�Dþ1

f�ðxiðjÞ=nÞ
f
0
ðxiðjÞ=nÞ

ð7Þ

where again dðtÞ ¼ Qt

m¼t�Dþ1

QN

k¼1
f
0
ðxkðmÞ=nÞ needs not to be considered further.
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Now, for our likelihood functions to work upon a statistical structure like that produced by

neurons in MT we need to be more specific. Inter-spike intervals (ISI) in MT during the ran-

dom dot motion task are best described as lognormally distributed [20] and we assume that

decisions are made upon the information conveyed by them. Thus, from now on we assume

that f� and f0 are lognormal and that they are specified by means μ� and μ0, and standard devia-

tions σ� and σ0, respectively. We can then put together the logarithm of Eqs 6 and 7 as the log-

likelihood function, yi(t), substituting the lognormal-based form of it reported by [20]:

yiðtÞ ¼
g
0
Dþ g

1

Pt

j¼1
½logðxiðjÞ=nÞ�

2 þ g
2

Pt

j¼1
logðxiðjÞ=nÞ for t � D

g
0
Dþ g

1

Pt

j¼t�Dþ1
½logðxiðjÞ=nÞ�

2 þ g
2

Pt

j¼t�Dþ1
logðxiðjÞ=nÞ for t > D

8

<

:

ð8Þ

with

g
0
¼ k2

0

2Y
2

0

� k2

�

2Y
2

�
þ log

Y
0

Y�

� �

g
1
¼ 1

2Y
2

0

� 1

2Y
2

�

g
2
¼ k�

Y
2

�
� k

0

Y
2

0

where k ¼ log ðm2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 þ m2
p Þ and Θ2 = log(σ2/μ2 + 1) with appropriate subindices �, 0.

The terms g0Δ in Eq 8 are hypothesis-independent, can be absorbed into a(t) and d(t), cor-

respondingly, and thus will not be considered further. As a result of this, the yi(t) used from

now on is a “simplified” version of the log-likelihood.

We now take the logarithm of Eq 5, define −log Pi(t)� −log P(Hi|x(1: t)) and substitute the

simplified log-likelihood from Eq 8 in the result, giving:

� logPiðtÞ ¼
�ziðtÞ � logPðHiÞ þ log

X

N

j¼1

exp ðzjðtÞ þ logPðHjÞÞ for t � D

�ziðtÞ � logPiðt � DÞ þ log
X

N

j¼1

exp ðzjðtÞ þ logPjðt � DÞÞ for t > D

8

>

>

>

>

>

<

>

>

>

>

>

:

ð9Þ

Where zi(t) = yi(t) + c(t) and the term c(t) models a hypothesis-independent baseline. Because

of its uniformity across all hypotheses, c(t) has no effect on inference. It is defined in detail

below.

The rMSPRT itself takes the form:

DðtÞ ¼
Choose hypothesis i : if � logPiðtÞ ¼ min

j2f1;...;Ng
� logPjðtÞ � y; at t ¼ T

Continue sampling : if min
j2f1;...;Ng

� logPjðtÞ > y;

8

<

:

ð10Þ

where D(t) is the decision at the discretely distributed time t, θ 2 (0, −log (1/N)] is a constant

threshold, and T is the decision termination time. Alternatively, an individual threshold per

hypothesis can be set as {θ1, . . ., θN}, giving a more general formulation.
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Cortical and thalamic baselines

According to our mapping of rMSPRT to the cortico-subcortical loops (Fig 5), the sensorimo-

tor cortex baseline, c(t) (Eq 9), delayed with respect of the output of the model basal ganglia, is:

cðt þ dybÞ ¼ hðt � dbu � duyÞ þ l ð11Þ

It houses a constant baseline l and the thalamo-cortical contribution h(t − Ďbu − Ďuy), which
in turn is the delayed cortical input to the thalamus

hðt � dbuÞ ¼ wyu

PN

i¼1
ðziðt þ dyb � dyuÞ þ logPiðt � dbu � duy � dyuÞÞ

N
ð12Þ

Here we have chosen h(t − Ďbu) to be a scaled average of cortical contributions; nevertheless,

any other hypothesis-independent function of them can be picked instead if necessary. It

would thus not affect inference and render similar results.

The definitions above introduce two free parameters l 2 Rþ and wyu 2 [0, 1) that have the

purpose of shaping the dynamics of the computations within rMSPRT during decision forma-

tion. The range of wyu ensures that the value of computations in the cortico-thalamo-cortical,

positive-feedback loop is not amplified to the point of disrupting inference in the overall loop.

Crucially, since both parameters are hypothesis-independent, none affects inference.

Simulating the random dot motion task using the rMSPRT

For rMSPRT decisions to be comparable to those of monkeys, they must exhibit the same

error rate, � 2 [0, 1]. Error rates are taken to be an exponential function of coherence (%), s, fit-

ted by non-linear least squares (R2 > 0.99) to the behavioural psychometric curves from the

analysed LIP database, including 0, 9, and 72.4% coherence for this purpose. This resulted in:

� ¼
0:50 exp ð�0:11sÞ; for N ¼ 2

0:75 exp ð�0:08sÞ; for N ¼ 4

(

ð13Þ

Since monkeys are trained to be unbiased regarding choosing either target, initial priors for

rMSPRT are set flat (P(Hi) = 1/N for all i) in every simulation. During each Monte Carlo exper-

iment, rMSPRT made decisions with error rates from Eq 13. The value of the threshold, θ, was

iteratively found to satisfy � per condition. Decisions were made over data, xj (t)/n, randomly

sampled from lognormal distributions specified for all channels by means and standard devia-

tions μ0 and σ0, respectively; the exception was a single channel where the sampled distribution

was specified by μ� and σ�. This models the fact that MT neurons respond more vigorously to

visual motion in their preferred direction compared to motion in a null direction, e.g. against

the preferred. As explained in Fig 9, this effectively simulates macaque MT neural activity dur-

ing the random dot motion task. The same parameters were used to specify likelihood func-

tions per experiment.

Model parameters. To parameterize the input stochastic processes and likelihood func-

tions of rMSPRT, we estimated the means μ�n and μ0n, and standard deviations σ�n and σ0n

directly as those over the activity between 900 and 1900 ms after stimulus onset in the MT pop-

ulation, per condition (shown smoothed in Fig 1d and 1e). The subscript � indicates the condi-

tion when dots were predominantly moving in the direction preferred by the neuron. The

subscript 0 indicates when they were moving against it. We dub this parameter set O, and

report it in Table 1. Fig 1f shows the lognormal ISI distributions specified byO; solid ones are

f�, in our notation, and dashed ones are f0, per coherence.
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We use l = 15, wyu = 0.4, n = 40, and Ďyb, Ďyu, Ďbu, Ďuy = 1 (hence Δ = 3) in all simulations,

unless otherwise stated. The value of latencies was set to 1 for simplicity. The values of the first

three free parameters come from a manual tuning exercise with the aim of revealing a pattern

in the model LIP akin to the ramp-and-fork one in LIP recordings; note that such a two-seg-

ment pattern is already guaranteed by the two cases of Eq 5.

The statistics in all simulations were from either the O or Od parameter sets as noted per

case. Note that the statistics actually used are those extracted fromMT in Table 1, divided by

the scaling factor n.

Spikes and continuous time interpretation of discrete time

We have defined rMSPRT to operate over a discrete time line; however, the brain operates

over continuous time. [20] introduced a continuous-time generalization of MSPRT that

uses spike-trains as inputs for decision. Thence, the length of ISIs is random and their sum

up until decision is, by definition, a continuously distributed time. With all other assump-

tions equal, they demonstrated that, as an average, the traditional discrete-time MSPRT

requires about the same number of observations to decision (discretely distributed), as the

maximum number of ISIs among input channels, required by the more general spike-based

MSPRT (also discretely distributed yet occurring over continuous time; Fig 9). This has two

key implications. First, that continuous-time spike-trains can be substituted as decision evi-

dence for (r)MSPRT by discrete-time stochastic processes—like x(r: t) here—as long as their

distributions and the statistics that specify them remain equal; with this we gain efficiency

on the implementation of discrete- versus continuous-time algorithms in digital computers,

as well as simplicity on their analysis and interpretation. Second, and most important to

compare the rMSPRT’s performance to experimentally-measured behaviour, that the

(discretely distributed) number of observations to decision, T, in (r)MSPRT has an interpre-

tation as continuously-distributed time. In brief, simulating decision evidence in discrete-

time for (r)MSPRT as defined here is a simpler, equivalent way to simulate decisions made

on the basis of continuous-time spike-trains. In light of this, the expected decision sample

size for correct choices, hTic, required by the (r)MSPRT, can be interpreted as the mean

decision time

tc ¼ ðhTic þ 0:5Þm�n ð14Þ

predicted by the more general continuous-time, spike-based MSPRT, where μ�n is the mean

ISI produced by a MT neuron whose preferred motion direction was matched by the stimu-

lus and was thus firing the fastest on average (Fig 9). When the mean firing rate to a pre-

ferred characteristic of the stimulus is larger than that to a non-preferred one (μ� < μ0)—as

in MT [24], middle-lateral, and anterolateral auditory cortex [66]—the hypothesis selected

in error trials is that misinformed by channels with mean μ0n which intuitively happened to

fire faster than those whose mean was actually μ�n. Hence, the mean decision time predicted

by rMSPRT in error trials would be:

te ¼ ðhTie þ 0:5Þm
0
n; ð15Þ

where hTie is the mean decision sample size for error trials. An instance of rMSPRT capable

of making choices upon sequences of spike-trains is straightforward from the formal frame-

work above and that introduced by [20]; nevertheless, as said, for simplicity here we choose

to work with the discrete-time rMSPRT. After all, thanks to Eqs 14 and 15 we can still inter-

pret its behaviour-relevant predictions in terms of continuous time. These are used to com-

pute decision times throughout.
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Estimation of lost information

We outline here how we use the monkeys’ reaction times on correct trials and the properties of

the rMSPRT, to estimate the amount of discrimination information lost by the animals. That

is, the gap between all the information available in the responses of MT neurons, as fully used

by the rMSPRT (parameter set O), and the fraction of such information actually used by

monkeys.

The expected number of observations to reach a correct decision for (r)MSPRT, hTic,
depends on two quantities. First, the mean total discrimination information required for the

decision, I(�, N), that depends only on the error rate, �, and N. Second, the ‘distance’ between

distributions of ISIs fromMT neurons that are simultaneously contributing evidence for deci-

sion, while visual motion matches the tuning of some and not others (e.g. red versus black in

Fig 9). This distance is the Kullback-Leibler divergence from f� to f0

K ¼
Z

x

f�ðxÞ log 2

f�ðxÞ
f
0
ðxÞ

� �

dx

which measures the discrimination information available between the distributions. Using

these two quantities, the decision time in the (r)MSPRT is [20]:

hTic �
Ið�;NÞ

K
; ð16Þ

The product of our Monte Carlo estimate of hTic in the rMSPRT (Fig 3a in the Results) and

K from the MT ISI distributions (Fig 1f), gives an estimate of the limit I(�, N) in expression 16,

denoted by Îð�;NÞ.
The ‘mean decision sample size’ of monkeys—hence the superscript m—within this frame-

work corresponds to hT̂imc ¼ ðt̂mc =m�nÞ � 0:5 (from Eq 14). Here, t̂mc is the estimate of the

mean decision time of monkeys for correct choices, per condition; that is, the reaction time

from Fig 3a minus some constant non-decision time. With hT̂imc and Îð�;NÞ, we can estimate

the corresponding discrimination information available to the monkeys in this framework as

K̂m ¼ Îð�;NÞ=hT̂imc (from expression 16).

Fig 3b compares K (red line) to K̂m (blue/green lines and shadings) for monkeys, using

non-decision times in a plausible range of 200–300 ms. Fig 3c shows the discrimination infor-

mation lost by monkeys as the percentage of K, ½1� ðK̂m=KÞ� � 100%.

Information depletion procedure

Expression 16 implies that the reaction times predicted by rMSPRT should match those of

monkeys if we make the algorithm lose as much information as the monkeys did. We did this

by producing a new parameter set that brings f0 closer to f� per condition, assuming 250 ms of

non-decision time; critically, simulations like those in Fig 4 will give about the same rMSPRT

reaction times regardless of the non-decision time chosen, as long as it is the same assumed in

the estimation of lost information and this information-depletion procedure.

An example of the results of information depletion in one condition is in Fig 3d. We start

with the original parameter set extracted fromMT recordings, O (‘preferred’ and ‘null’ densi-

ties in Fig 3d), and keep μ� and σ� fixed. Then, we iteratively reduce or increase the differences

|μ0 − μ�| and |σ0 − σ�| by the same proportion, until we get new parameters μ0 and σ0 that,

together with μ� and σ�, specify preferred (‘preferred’ in Fig 3d) and null (‘new null’) density

functions that bear the same discrimination information estimated for monkeys, K̂m; hence,

they exactly match the information loss in the solid lines in Fig 3c. Intuitively, since the ‘new
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null’ distribution in Fig 3d is more similar to the ‘preferred’ one than the ‘null’, the Kullback-

Leibler divergence between the first two is smaller than that between the latter two. The result-

ing parameter set is dubbed Od and reported in Table 1. Note that this is not a fitting proce-

dure, which would be merely descriptive. Instead, information depletion takes advantage of

the properties of the (r)MSPRT to describe the data, but also to predict that the longer decision

times of monkeys are explained by a reduction in the discrimination information in the

streams of decision evidence.

Information loss for an enhanced match of reaction times

The slight deviation of the mean reaction times of (r)MSPRT vs those of monkeys in Fig 4a

stems from the expression 16 being an inequality. Due to this, Îð�;NÞ is a likely over-estimate

of I(�,N). Dividing Îð�;NÞ by hT̂imc hence gives an over-estimate of the monkey discrimination

information, K̂m. If then rMSPRT uses statistics consistent with this over-estimated K̂m, it ren-

ders under-estimated reaction times. This residual discrepancy can be corrected by further

multiplying K̂m, per condition, by the corresponding ratio of the decision time of the model

over that of the monkey, from Fig 4a. Repeating the simulations with the implied parameter

set would trivially render rMSPRT reaction times that more exactly match those of monkeys.

This will likely carry with it a better match in error trials, which is unconstrained in the proce-

dure. Nonetheless, this exercise gives us the information loss associated to such enhanced

match, shown in Fig 3c as dashed lines for a 250 ms non-decision time (compare to solid

lines); this constitutes a further refined measure of the minimum information lost by the ani-

mals according to our framework.

Supporting information

S1 Fig. Mean error reaction times are longer than correct ones.Monkey mean reaction

times from Fig 4, panels a and b, shown in the same plot for comparison. Solid: correct trials.

Dashed: error trials. Blue, green: N = 2, 4.

(TIF)

S2 Fig. Influence of cortico-thalamic contribution in rMSPRT. Example mean cortico-tha-

lamic contribution, h(t − Ďbu) (red), compared to the mean thalamic output during inRF set-

tings (solid blue) and outRF ones (dashed blue) for 25% coherence and N = 2. Single Monte

Carlo experiment with 800 total trials.

(TIF)

S3 Fig. Mapping of rMSPRT computations to the basal ganglia. Parallel computations for

N hypotheses—indexed by j—mapped onto the basal ganglia nuclei, within the grey dashed

box (see [17, 18, 62]). This may include the pathway from striatum to the globus pallidus

pars externa, as well as the pathway from the latter to substantia nigra pars reticulata, as

demonstrated by [17], thus representing all major pathways among the basal ganglia. It has

recently been shown that neurons in the microcircuitry joining the rodent subthalamic

nucleus and globus pallidus, are theoretically able to collectively represent the normalization

term required by algorithms in the family of the (r)MSPRT [21]; this, as well showing that

the mapping of MSPRT (thus rMSPRT) to the basal ganglia can also account for a connec-

tion from globus pallidus pars externa to striatum. Same conventions and notation as in

Fig 5. All computations are delayed with respect to the substantia nigra pars reticulata.

log
PN

k¼1
expðykðt þ dybÞ þ logPkðt � dbu � duyÞ þ cðt þ dybÞÞ: normalization term (from Eq

9), putting together the cortical computations for all hypotheses into a hypothesis-
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independent contribution. Note that the model striatum represents a copy of the cortical sig-

nal (as in Fig 5) but its influence on the substantia nigra pars reticulata is the negative of

such cortical input.

(TIF)

S4 Fig. MT neurons are significantly modulated by coherence as soon as 50 ms after dots

appear in the random dot motion task.With the method described in the main article, we

computed the mean firing rate of every MT neuron in our data facing dots moving in its pre-

ferred or null motion directions at six coherence levels (%): 0, 3.2, 6.4, 12.8, 25.6, 51.2 (ran-

domly assigning 0% trials between directions). For every neuron, every 1 ms bin, we

conducted a linear regression per motion direction of the form v = Č + Čss, where v are the
mean firing rates at every bin, s are the corresponding coherence levels (%), and Č, Čs are the
intercept and the coefficient for the coherence contribution, respectively. We then applied a

t—test where the null hypothesis was: the mean of the distribution of the 189–213 Čs’s (again,
one per MT neuron) we got per direction, equals 0. Here we show the corresponding p—value

for MT coherence modulation, per direction, aligned at stimulus onset (Stim). Note that this

involved conducting a single statistical test/comparison for every 1 ms bin, independent of

those conducted in surrounding bins. Red: dots moving in the preferred direction of recorded

neuron. Black: moving in the opposite, null direction. Horizontal blue dashed line: p = 0.05.

Vertical blue dotted line: 50 ms. The coherence modulation p—values for preferred and null

directions drop under 0.05 about* 50 ms after the onset of the dots stimulus and drop much

further soon after this.

(TIF)
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