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What does a universal initial mass function imply about star formation?

Simon P. Goodwin� and M. B. N. Kouwenhoven
Department of Physics & Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH

Accepted 2009 April 27. Received 2009 April 3; in original form 2008 December 19

ABSTRACT
We show that the same initial mass function (IMF) can result from very different modes of
star formation from very similar underlying core and/or system mass functions. In particular,
we show that the canonical IMF can be recovered from very similar system mass functions,
but with very different mass ratio distributions within those systems. This is a consequence of
the basically lognormal shapes of all of the distributions. We also show that the relationships
between the shapes of the core, system and stellar mass functions may not be trivial. Therefore,
different star formation in different regions could still result in the same IMF.
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1 I N T RO D U C T I O N

Finding the form of the mass function of stars, in particular the
initial mass function (IMF), has been a major goal of stellar and
galactic astrophysics since Salpeter’s (1955) seminal study (also see
Kroupa 2002; Chabrier 2003b; Bonnell, Larson & Zinnecker 2007).
The origin of the IMF has recently been a subject of intense interest
(see Bonnell et al. 2007 for a review). Observationally, studies of
the core mass function (CMF) have shown it to have a similar form
to the IMF (Motte, André & Neri 1998; Testi & Sargent 1998;
Johnstone et al. 2000, 2001; Motte et al. 2001; Johnstone & Bally
2006; Young et al. 2006; Alves, Lombardi & Lada 2007; Nutter
& Ward-Thompson 2007; Enoch et al. 2008; Simpson, Nutter &
Ward-Thompson 2008) suggesting a link between the two (see, in
particular, Alves et al. 2007; Goodwin et al. 2008).

It is often assumed that if the IMF of two regions is the same,
then star formation in those two regions must have been basically
the same. However, the IMF is the mass function of individual
stars. Therefore, the IMF – taken in isolation – ignores the fact
that many stars are in multiple systems, and that most/many stars
are thought to have formed as multiples (e.g. Goodwin & Kroupa
2005; Kouwenhoven et al. 2005, 2007; Goodwin et al. 2007, 2008
and references therein; see also Lada 2006). The IMF thus ignores
a large amount of information related to the star formation process
that is stored in the binary population.

During star formation, many cores must collapse and fragment
into a multiple system (Goodwin & Kroupa 2005; Goodwin et al.
2007). Therefore, it is the system mass function (SMF) that we
should expect to follow the CMF (as emphasized by Goodwin
et al. 2008). The IMF is produced by splitting these multiple sys-
tems into their component parts. How the masses of the individ-
ual stars in the IMF are distributed depends not only upon the
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SMF, but also on the binary fraction and mass ratio distribution
(MRD) of systems. Moreover, these quantities may well be mass-
dependent.

In this Letter, we show that very different models for the con-
version of the CMF to the SMF and from the SMF to the IMF can
produce very similar IMFs. In Section 2, we outline our method and
the results, and discuss the implications in Section 3.

2 FRO M T H E C M F TO T H E I M F

2.1 Method

Following Goodwin et al. (2008), we have constructed a simple
model of multiple star formation from ‘cores’.1 We assume a uni-
versal CMF with a lognormal form. This form is based on the
observations of Alves et al. (2007) and Nutter & Ward-Thompson
(2007). We take the average mass to be ∼1 M�, and the width to
be σlog10M ∼ 0.5. We then randomly sample cores from this CMF in
a Monte Carlo simulation (see also earlier studies by Larson 1973;
Elmegreen & Mathieu 1983; Zinnecker 1983).

We note that taking a lognormal form means that we fail to
reproduce the power-law tail at high mass that is observed and
expected theoretically (e.g. Padoan & Nordlund 2002; Hennebelle
& Chabrier 2008), and so we do not expect to fit the IMF properly
at high masses.

We create an SMF from a CMF by converting each core into a
system with a particular efficiency. Thus, a core of mass MC will
become a system of mass MS = εMC, where ε is the core-to-star
efficiency (CSE). The CSE may depend on the mass of the core,
and even upon the mass ratio of the stars within the core.

1 Such cores may be classical isolated cores (e.g. Ward-Thompson et al.
2007) or just dense regions in which stars form (i.e. the star-forming clumps;
see in simulations such as those of Bate 2009a,b).
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We show below that, depending on the CMF and the CSE, many
different SMFs can be formed. Therefore, we use an assumed SMF
and then convert the mass of the system MS into stars of masses
M1 and M2, or into a single star, depending on the binary fraction
to create an IMF. The mass ratio q = M2/M1 is drawn from an
MRD in the range 0 < q ≤ 1. The corresponding masses of the
primary and companion star are then M1 = MS(q + 1)−1 and M2 =
MS(q−1 + 1)−1 (see Kouwenhoven et al. 2009 for a detailed study
of pairing functions in binary systems). For simplicity, we will only
consider single stars and binary systems.

Finally, the IMF is given by the distribution of masses of all indi-
vidual stars (single stars, primaries, companions) in all of the sys-
tems. We then compare this derived IMF to the ‘canonical’ Chabrier
(2003) lognormal IMF.

In summary, we have an initial CMF. A combination of the CMF
and the CSE gives the SMF. Combining the SMF and the MRD then
gives the stellar IMF. Note that the CSE may depend on the MRD
as we shall discuss below.

We have assumed at the first step that the CMF is universal
(and has a lognormal form). Clearly, this assumption may well be
wrong. First, determinations of the CMF are very difficult, and it
is not clear if the observed CMF is indeed the CMF that should be
used as the underlying distribution from which stars form (Clark,
Klessen & Bonnell 2007; Hatchell & Fuller 2008; Smith, Clark
& Bonnell 2008; Swift & Williams 2008). However, for the pur-
poses of this Letter we wish to show that even if the CMF is
universal, we are able to produce the canonical IMF through dif-
ferent modes of star formation. However, as we shall see later, the
assumed initial lognormal form of the CMF is one of the main
reasons why the following distributions also maintain a lognormal
form.

2.2 From the CMF to the SMF

In Fig. 1, we show how it is possible to change the width and shape
of the SMF formed from the CMF by changing how the CSE varies
with core mass. If high-mass cores are more efficient at converting
gas to stars than low-mass cores, the SMF is broader than the CMF.
However, if low-mass cores are more efficient, then the SMF is
narrower than the CMF. But note that the resultant SMF always
has a roughly lognormal form, often with just a small degree of
skewness added.

Presumably, the CSE is not independent of mass. The higher the
level of feedback from stars, the lower we might expect the CSE to
be. However, this may not be a trivial relationship. More massive

Figure 1. In the right-hand panel, we show the SMFs (dotted, dashed and
dash–dotted lines) produced from a single CMF (solid line), produced by
different CSEs with mass shown in the left-hand panel (with corresponding
dotted, dashed and dash–dotted lines).

stars presumably produce more feedback,2 and so be able to reduce
the fraction of a core that accretes on to the system. On the other
hand, a more massive core is also more bound and so more difficult
to disperse.

An interesting possibility is that the CSE depends not just on the
mass of the system, but also on the mass ratio of that system. It is
possible that an unequal-mass system (say 1.8–0.2 M�) will pro-
duce far more feedback than an equal-mass system (say 1–1 M�)
with the same system mass. Therefore, a larger core is required to
form the first system. Also, as pointed out by Myers (2008), the
CSE should also depend on the core density.

2.3 From systems to stars

In Fig. 2, we present the IMFs that result from systems with a
binary fraction of unity for a selection of very different choices for
the MRD. We have fine-tuned the SMFs in order to obtain good fits
to the canonical IMF. What is clear from Fig. 2 is that very different
choices for the MRD are all able to produce the canonical IMF.

A potential problem is that we have introduced a fine-tuning el-
ement in that the SMF has been chosen to give the best fit to the
canonical IMF for a given MRD. However, this fine-tuning is not
significant. As indicated in the captions of Fig. 2, the SMFs do not
vary very much, with means of μlog10M = −0.3, −0.4, −0.3 and
−0.35 and variances of σlog10M = 0.4, 0.55, 0.4 and 0.5, respec-
tively, for the different models.

It would be extremely difficult, if not impossible, to distinguish
observationally differences in the mean of the SMF between 0.4
and 0.5 M�, and differences in the 1σ widths of 0.1–0.2 M� at one
end, and 1.25–1.40 M� at the other. Indeed, the models presented
in Figs 2(a) and (c) have identical SMFs despite having completely
different MRDs (a single peak at q ∼ 0.3, compared to peaks at
q = 0.1 and 0.8) and yet both give good fits to the canonical IMF.

All of the models presented in Fig. 2 have assumed that all
systems produce a binary (as shown in Fig. 3). Clearly, the canonical
IMF can also be recovered from an SMF of entirely single stars if
the SMF is exactly the same as the IMF. However, we know that
a significant fraction of systems in the field are multiples, and that
presumably many more were multiples at birth as multiples are
destroyed, but not created (Kroupa 1995a,b; Parker et al. 2009).

Goodwin et al. (2008) found that – assuming a constant CSE and
a uniform MRD – a model with a binary fraction of unity was a
better fit to the canonical IMF than one in which binarity declined
with system (i.e. primary) mass as is observed in the field (see Lada
2006).

In Fig. 4, we show the best fits to the canonical IMF for the same
set of MRDs as in Fig. 2, but for a binary fraction that varies with
system mass as shown in Fig. 3 – unity for a system mass >1 M�,
linear for 0.1 < M sys/ M� < 1 and 0.1 for M sys < 0.1 M�. In
order to fit the canonical IMF for each MRD, the best SMFs are
μlog10M = −0.6 and σlog10M = 0.6 for all of our models. The peaks
of the SMFs (∼ 0.25 M�) are lower than for a binary fraction of
unity as the reduced number of low-mass companions means that
the low-mass end of the IMF must be made up largely of single
stars directly from the SMF. The increased width is then required
in order to allow sufficient numbers of higher mass stars to form.

2 Assuming a main-sequence-like relationship, the mass–luminosity rela-
tionship would go as L ∝ M3.5, however the mass–luminosity relationship
for pre-main sequence stars is highly complex and age- and mass-dependent.
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Figure 2. In the right-hand panel, we show the IMFs (solid black lines)
formed from a given SMF (dashed line) with an MRD as shown in the
left-hand panel assuming a binary fraction of unity. The IMFs are compared
to a canonical Chabrier (2003) IMF (light red dashed lines). The means
and variances of the SMFs that give the best fits are (from top to bottom)
μlog10M = −0.3, −0.4, −0.3 and −0.35 and σlog10M = 0.4, 0.55, 0.4 and
0.5, respectively.

It might seem that this result is at odds with Goodwin et al. (2008).
However, Goodwin et al. set the CMF with which to generate the
SMF and then the IMF as being the Orion/Pipe Nebula CMF (with
a mean of ∼1 M� and variance of σlog10M = 0.55, see above)
and a constant CSE. Given these constraints, it is impossible to form
an SMF with a mean of 0.25 M� and a variance of σlog10M = 0.6
as required to produce the canonical IMF with a decreasing binary
fraction. However, as we show here, if the CMF is different or if
the CSE is such that the variance is increased and the mean lowered
significantly, such a CMF can produce the canonical IMF with a
varying binary fraction.

We have also examined the effect of using a CMF that is not
lognormal (in particular, triangular and top-hat CMFs). Features in
the CMF are always reflected in some way (even if distorted) in
the SMF and the IMF no matter our choice of the CSE and MRD.
Thus, the apparently smooth lognormal-like shape of the IMF would
seem to be a natural consequence of the lognormal-like shape of the

Figure 3. The dependence of binary fraction on system mass used to gen-
erate the IMFs from the SMFs in Fig. 2 (dashed line) – where all systems
are binaries – and Fig. 4 (solid-line) – where there is an increasing binary
fraction with system mass.

CMF (cf. Elmegreen & Mathieu 1983; Zinnecker 1983). However,
the lack of features tells us that the CMF that produces the SMF that
produces the IMF is highly unlikely to contain any sharp features
or discontinuities as these should be apparent in the IMF.

Figure 4. As Fig. 2, but for a binary fraction that increases with system
mass as shown in Fig. 3 (solid line). In all cases, the canonical IMF can be
fitted with an SMF of mean μlog10M = −0.6 and variance σlog10M = −0.6.
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It is surprising that the IMF is so insensitive to the MRD of
stars. The reason is that the IMF is so insensitive that it retains
the lognormal-like shape of the SMF (which itself is retained from
the CMF). As the SMF is distributed in a roughly lognormal way,
each chosen mass ratio from the MRD retains this shape (e.g. for
an MRD of two delta functions, the SMF will produce two stellar
distributions, each a lognormal). Thus, the IMF is the sum of a
number of lognormals thus retaining the lognormal shape.3

It is interesting to examine what form we might expect the MRD
to have. We would expect that most binaries form via the fragmen-
tation of discs (or massive disc-like objects) around young stars
(see Goodwin et al. 2007 for a review). If discs fragment early, then
the secondary will form whilst there is still a significant amount of
material to accrete, and we might expect the MRD to favour more
equal-mass systems. If the discs fragment late after the primary
has accreted most of its mass, then there will be little material left
to accrete and unequal-mass systems might predominate (as might
also happen if the secondary formed at a large distance from the
primary). Thus, the MRD might contain information on the forma-
tion time of secondaries (which might depend on the amount of
angular momentum or strength of magnetic fields in the core?). If
the MRD favours unequal-mass binaries, then the primary IMF will
reflect the form of the SMF well, however if many binaries are more
equal-mass then the primary IMF would not.

3 D I S C U S S I O N A N D C O N C L U S I O N S

We have investigated the origin of the stellar IMF as produced by
an SMF, which is itself formed from a particular CMF. The CMF
is converted to the SMF via a CSE factor, and then turned into the
IMF via an MRD. Our main findings are as follows.

(i) Different CSEs can significantly change the width and shape
of the SMF formed from a given CMF.

(ii) Very different MRDs within systems can produce very similar
(and canonical) IMFs from very similar SMFs.

Thus, we conclude that observing the same IMF in different regions
does not necessarily mean that star formation was the same in those
regions. For very different choices of the MRD in star-forming
cores, the same (canonical) IMF may be found. In addition, the
form of the IMF is surprisingly insensitive to the variation of the
binary fraction with mass (modulo the position of the peak of the
SMF).

This raises a question about the universality, or non-universality,
of star formation based on observing the same IMF in different
regions. If one star-forming region produced systems with gener-
ally equal-mass stars, whilst another produced systems with gener-
ally comparatively low-mass companions, it seems very difficult to
claim that star formation in those regions was the same. However,
the CMFs, SMFs and IMFs could all be very similar. Therefore, in
order to claim that star formation is the same in different regions,
the birth SMF and MRD of binaries, and the binary fraction, must
also be the same.

It is important to note that it is the birth SMFs and MRDs that
must be determined. Dynamical evolution can seriously alter the

3 It is possible to produce other distributions. For example, an MRD which
always produces a star with 99.9 per cent of the mass in a core and a
planet with 0.1 per cent of the mass. In such a situation, the two lognormals
would be so far apart that they would appear as two separate lognormals.
However, observations show that typical mass ratios are in the range 0.1–1
(e.g. Duquennoy & Mayor 1991).

initial binary population in a cluster (e.g. Kroupa 1995a,b; Parker
et al. 2009) and destroy much of the vital information on the birth
properties.

It is important to note that the peak mass of the IMF which always
seems to occur at ∼0.1–0.3 M� does constrain the star formation
process. The initial CMFs must always have a similar peak mass
which is then imposed on the SMF (regulated by the CSE) which is
then imposed on the IMF (but regulated by the MRD including the
binary fraction). If the binary fraction varies between different star
formatting regions, the peak of the CMFs could change by a factor
of 2 or 3, but no more. Thus, the underlying CMFs in all regions
should probably have a peak mass of the order of 1 M�.
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