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This paper introduces a new general platform for the simulation of occupants’ presence and behaviours.
Called No-MASS (Nottingham Multi-Agent Stochastic Simulation) this generates a synthetic population
of agents, predicts their presence and, in the case of residences also their activities and inferred locations,
as well as their use of windows, lights and blinds. Using the Functional Mockup Interface No-MASS
is coupled with EnergyPlus: EnergyPlus parses environmental parameters to No-MASS which in turns
parses back the energetic consequences of agents’ behaviours. After describing the architecture of No-
MASS and the form of the integrated models, we demonstrate its utility through two use cases: a house
and an office. We close by outlining how No-MASS has been extended to more comprehensively simulate
the behaviours of agents occupying multiple buildings; including behaviours for which data is scarce,
social interactions between agents, and a generalisation of No-MASS to simulate electrical devices and
their interactions.
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1. Introduction

Predicted building performance continues to deviate, sometimes considerably, from that which is
observed post-build. The reasons are many and complex. We can categorise these as: (type I) errors
in modelling deterministic phenomena or indeed the neglect of these phenomena, (type II) errors
in the inputs to these deterministic models, (type III) errors in modelling stochastic phenomena or
indeed the neglect of these phenomena, (type IV) errors in the inputs to these stochastic models.
Type I errors might include ignoring thermal storage in the modelling of heat diffusion, assuming
thermophysical properties to be constant in the dynamic modelling of heat diffusion, or assuming
that heat diffuses exclusively in one direction. Type II errors might relate to the characterisation of
the bulk thermophysical properties of building materials, or assuming that multilayer constructions
are perfectly homogenous and known; where as in reality workmanship is imperfect and unknown.
Type III errors can be sub-categorised according to whether stochastic perturbations to heat flows
in buildings are a) climatic, or b) human-behavioural in nature. Type IIIa errors might relate to
wind pressures across the envelope and the corresponding impacts on convective heat transfers
and infiltration, or the effects of cloud cover on transmitted shortwave irradiation. Whereas, type
IIIb might relate to occupants’ presence and associated metabolic heat gains, interactions with the
envelope (e.g. windows and blinds), lights, appliances and systems. Finally, type IV errors relate
to the empirical coefficients that are estimated for the models that are structured to address type
III errors and their suitability to the particular context under consideration. Thus, and as with
deterministic phenomena, we distinguish between the model structure and its ability to capture
the underlying stochastic phenomena in principle, and the calibration of this model to a particular
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circumstance. This paper focuses on the development and application of a new simulation platform
conceived to systematically improve upon the representation of type IIIb and associated type IV
errors in building simulation. In this we begin by reviewing empirical evidence in support of the
impacts of human behaviour on building performance, and the corresponding progress that has
been made in the development of stochastic models of human behaviour to address these impacts,
before presenting and demonstrating the application of our new platform.

1.1. The need for stochastic behavioural models and platforms

In their study of 22 identical residential houses in Germany, Maier, Krzaczek, and Tejchman (2009)
have identified a factor of two variation in heating demand. Meanwhile, post occupancy evaluations
of UK EcoHomes have found that occupants’ planned behaviour accounts for a variation of 51%
in heating demand between dwellings (Gill et al. 2010). Altering the heating controls using an
occupant comfort measure (predicted mean vote), Andersen, Olesen, and Toftum (2007) found
that a simulated building could vary in energy use by 324% from a low consumption scenario to a
high consumption scenario.
The quest to reduce the performance gap, and thus to predict the above variations, has led

to models addressing the stochastic nature of occupants’ behaviours, integrated within building
performance simulation software. These range from hard coded integration in the case of lighting
behaviour models in Reinhart’s (2004) Lightswitch2002 algorithm to Haldi and Robinson’s (2011b)
integration of occupant presence, window and blind models into CitySim. More recently, Vorger
(2014) hard coded models of presence, activities, approximate use of heating systems, windows
and blind interactions within the building simulation software Pleiades+COMFIE. In line with
empirical findings, Haldi and Robinson (2011b) found with CitySim that variations in stochastic
behaviour accounted for a factor of two variation in heating demand. Likewise, when comparing
an ideal and worst case occupant scenario to demonstrate the range of influence occupants have,
Roetzel et al. (2011) found that there was a factor of 2 difference in the simulated annual energy
use for both heating and cooling. Bonte, Thellier, and Lartigue (2014) found a similar factor of two
variation arising from the integration of models of blinds, lights, windows, temperature setpoints
and clothing into a building simulation tool.
Although these efforts have usefully demonstrated the potential impact of stochastic behaviours

(and models of them) on building performance, and that these closely concur with empirical ob-
servations, they are software specific and lack generality. This criticism was partially addressed by
Bourgeois, Reinhart, and Macdonald (2006) who developed a general solution for the integration
of lighting, windows and blind models with ESP-r, called Sub-Hourly Occupant Control (SHOCC).
In a similar way, Gunay, O’Brien, and Beausoleil-Morrison (2016) implemented several data-driven
stochastic models into EnergyPlus using the in-built EMS functionality. But this approach is also
software specific and does not support more complex features. Robinson, Wilke, and Haldi (2011)
suggest that a comprehensive behavioural modelling framework should support:

• The definition of archetypes and archetypal behaviours to account for diversity between
occupants.

• Social interactions between members of a population and the corresponding implications for
their behaviours.

• Behaviours that are conditional on others having already been exercised or indeed on prox-
imity to the building envelope or system, with corresponding implications for interaction
probability.

With the objective of addressing these limitations, our approach is to use multi-agent stochastic
simulation. To combine stochastic models into a single package that can be used to support building
and urban performance simulation using a range of software; whilst facilitating the modelling
of interactions between agents (whether these be occupants, electrical devices or both) and of
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interactions for which data is scarce (e.g. due to privacy, cost or complexity constraints).

1.2. Multi-Agent Simulation (MAS): Background

Multi-agent simulation is a tool that has been developed primarily in the social sciences to effec-
tively model human interaction (Bonabeau 2002; Zhang, Siebers, and Aickelin 2011). Its use in the
social sciences has typically been to study behaviours that emerge from bottom up interactions,
allowing the creator to make and encode judgements as to what has caused these emergent be-
haviours and whether they correspond with expectation from social theory. An agent should have
the following properties; they should be autonomous, have social ability, perceive and react to the
environment and be proactive with their choices (Wooldridge and Jennings 1995). Each agent has
rules and behaviours, making them excellent at modelling group and individual interactions (Axtell
2000). Multi-agent simulation has been used to represent people in a variety of application areas.
Epstein and Axtell’s (1996) SugarScape simulates a simple society where inhabitants need to eat
resources in an artificial world to survive. Each agent moves around a plane looking for and con-
suming sugar based on predetermined rules. These models demonstrated how societies can develop
over time, congregating around areas of resource. The model was expanded to include sugar and
spice as resources that could be traded, from which the authors showed that the prices of both
converged to an equilibrium, as economic theory would predict. Meanwhile Axelrod (1997) tested
agents, employed in combination with a genetic algorithm, against a prisoner’s dilemma scenario
(should you defect against or cooperate with your accomplice who has the same options); finding
that 95% of all populations evolved towards the optimal tit-for-tat strategy, demonstrating the
effectiveness of agents in exploring alternative decisions. Traffic flow within cities has also been
modelled with agents, allowing traffic planners to make informed decisions to improve congestion
(Nagel, Beckman, and Barrett 1999; Balmer, Axhausen, and Nagel 2006). Each agent in these
scenarios occupies a vehicle, with their own goals and decisions to make. Another example is a
city wide disaster scenario, evaluating traffic flow during an evacuation and the effects of different
city road layouts (Ring, Grid, etc.) on evacuation time (Chen and Zhan 2006). Finally, Siebers and
Aickelin (2011) model the effects of changes in employee empowerment on customer satisfaction in
shops.
Agent cognition is often based on the Belief-Desire-Intention (BDI) system described further in

Rao and Georgeff (1995); D’Inverno et al. (1998); Bratman (1987). In this system an agent has
beliefs about the current state of the environment and related desires about what they want to
achieve, committing their intent to take an action that moves them towards achieving their desires.
A belief-desire-intention system allows us to encode behavioural interactions that will likely occur
under specific circumstances and to test their impacts. For example, what if an occupant closed a
shade for privacy while showering; how would it effect the building’s performance?

1.3. MAS applied to modelling occupant behaviours

The BDI methodology has been used in the context of building performance simulation, where
agents obtain a belief about the state of the current environment from a building performance
simulation tool. In this vein, Andrews et al. (2011) combine the Radiance ray tracing tool with
agents, to simulate interactions with lighting and shading. Agents build up their understanding
of the environment with data from Radiance (room illuminance) then, based on their assigned
personal characteristics, develop plans of action and act on the plan that maximizes their utility
(satisfaction). To simulate diversity each agent was given an archetype of either green activist,
good citizen, healthy consumer or traditional consumer. These archetypes were developed from
questionnaires administered to building occupants, to better understand their preferred lighting
levels and the energy use they are comfortable with. The agents’ assigned archetype would effect
their desire thus altering their intended method of interaction. Kashif (2014) uses a similar approach
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to predict the use of fridge-freezers, where an occupant would first perceive their hunger, second
conceive a desire based on social normals, household rules and culture. They then perform an
action, remove food from the freezer, increasing the electrical load on the fridge, and then cook.
These approaches attempt to encapsulate the human decision making processes involved in each

activity. But they can lead to very complex and unwieldy models that have a weak empirical
basis. Paradoxically this is also their strength, that with relatively little data reasonably reliable
aggregate behaviours can be simulated. Come what may it is important that for empirical studies
results have a high degree of certainty and that agents’ rules and behaviours are grounded with
data based on reality (Gimblett 2002). In recent years there has been a move from models based
on social theoretical rules and behaviours, to those derived from observation (Janssen and Ostrom
2006). By using previously developed stochastic models of occupant behaviour it is possible to
predict agent behaviours based on solid empirical evidence.
As an alternative to the BDI approach, Liao, Lin, and Barooah (2012) use room occupancy

data to inform their agents’ behaviours for the prediction of presence across multiple rooms and
occupants; albeit concluding that for larger numbers of agents, it is often difficult to obtain high
quality data from which to infer reliable rules. The model was also developed for a very specific
use case of university buildings where students and professors have very different schedules. It has
yet to be seen if this method can be applied to other building uses. Furthermore, these agents do
not have the properties (social ability, reactivity and pro-activness) required by Wooldridge and
Jennings (1995) to be formally designated as agents.

1.4. Towards software-independent platforms for occupant behaviour modelling

More recently, Langevin, Wen, and Gurian (2014) use data taken from a one year study of an air
conditioned office to develop rules that allow an agent to proactively restore thermal comfort based
on thermal sensation, through changes to clothing, the operation of windows/fans/heaters and by
changing set point temperatures. These values are then parsed to the dynamic building simulation
program EnergyPlus using the Building Control Virtual Test Bed (BCVTB). The Langevin agents
are only as good as the realism given to the agent attributes specified for the model (such as
clothing levels), the corresponding comfort model and the limited thermal inhomogeneity in the
simulated indoor environment. With thermal discomfort as the trigger for a specified behaviour
(based on the stationary ISO 7730 model), an error in the (dis)comfort prediction will inevitably
undermine the faithfulness of the predicted interactions and their consequences. An improvement
would be to more explicitly represent the dynamic relationship between environmental stimuli and
interactions for prediction.
More recently, Lawrence Berkeley National Laboratory have embarked on an ambitious research

programme to develop a comprehensive interoperable platform for the co-simulation of occupants’
behaviours and their energy and comfort consequences. Informed by a review of behavioural mod-
elling frameworks and of data-driven models of occupants’ stochastic behaviours, Hong et al.
(2015a) propose a Drivers - Needs - Actions - Systems framework to structure the occupant mod-
elling task. The logic underpinning this DNAS framework has much in common with the BDI
framework that has gained so much traction in social simulation research: drivers are in princi-
ple comparable to agents’ beliefs of the current state of the environment, needs to agents’ desires
that express their preferred state, and actions (and thence systems these being more general than
the name implies) to the commitment of agents’ intents to act to achieve their desires. But this
logic diverges somewhat as Hong et al. (2015a,b) elaborate their DNAS framework and develop
an XML Schema (obXML) from it. In particular, the seemingly MAS-inspired roots of the DNAS
framework are not truly retained in their (initial) schema and the examples demonstrating its ap-
plication; because the schema does not appear to support the formulation of BDI-inspired goals
and the definition and execution of plans to achieve them: it is restricted to the use of data-driven
stochastic models. Hong et al. (2016) go on to demonstrate the use of obXML with a preliminary
occupant modelling tool that is coupled with Energy Plus (using the Functional Mockup Interface
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(FMI) co-simulation standard, of which more later). Called obFMU, this solves equations predict-
ing the probability with which windows are opened / closed, lights are switched on/off and air
conditioning systems are switched on/off and translates these into actions that are then parsed to
Energy Plus. This is a very promising start, but both obXML and obFMU need further develop-
ment to handle: i) more complex forms of data driven stochastic model, ii) alternative modelling
strategies (e.g. BDI-type rules, machine learning techniques), iii) rationale informing appropriate
model (and coefficient) selection, iv) agent representations of occupants, the generation of agent
populations, the assignment of attributes influencing their behaviours and the handling of social
interactions between agents, and v) rationale informing the orchestration of calls to models (e.g.
the sequencing of behavioural actions).
In contrast with previous strategies to model occupants’ behaviour that have tended to be based

either on data-driven stochastic models or BDI rules, usually integrated with a specific dynamic
building simulation program, we propose a more general framework. The virtues of both modelling
approaches can be combined (data-driven where data is abundant and BDI or machine learning
algorithms where it is not) and interfaced with a range of building simulation programs; whether
at the building or the urban scale. To this end and in the first instance, we integrate existing
models of occupants’ activities, metabolic heat gains, use of windows, lights and shading devices
within a bespoke platform that we call NottinghamMulti-Agent Stochastic Simulation (No-MASS).
In common with obFMU, these agents’ interactions are parsed, also using the FMI standard,
to a building simulation program (at present EnergyPlus), which in turn parses environmental
parameters to No-MASS, to impact on future behaviours. This provides a generic way to integrate
existing and future stochastic models, speeding up time from model development to integration
and thus availability of missing models for use by the broader simulation community, increasing
their usefulness. The remainder of this paper is dedicated to describing this new framework, from
population generation, through parameter assignment to simulation (pre and runtime). Use cases
exploring the simulation of No-MASS with EnergyPlus for a house and an office are then presented
to demonstrate its utility. We conclude by summarising the additional functionally that has been
developed for the more comprehensive simulation of building performance, referring the interested
reader to the relevant companion papers.

2. No-MASS

There remain many gaps in our ability to model occupants’ stochastic behaviours (such as their
interactions with heating and cooling systems, hot water devices, curtains, their use of windows
to evacuate pollutants, etc). However we do have a sufficient core set of rigorously formulated
and validated models with which to evaluate the proof of principle of No-MASS as a platform for
addressing type IIIb and IV errors and thus of evaluating the robustness of buildings’ performance.
In this section we introduce No-MASS, the models included and how it is implemented. Also
described is how No-MASS may be coupled with other (than EnergyPlus) simulation programs
using the Functional Mockup Interface (Nouidui, Wetter, and Zuo 2013).

2.1. Concept

The initial family of models integrated with No-MASS includes models of occupants’ activities
(Jaboob 2015), presence and corresponding metabolic heat gains (Page et al. 2008), window inter-
actions (Haldi and Robinson 2009), shading interactions (Haldi and Robinson 2010) and lighting
interactions (Reinhart 2004). These models were chosen as they have been empirically verified, are
well known to the authors of this paper and were readily available. Simulations with No-MASS
follow the process outlined in the conceptual flow-diagram in Figure 1. A number of pre-processes
are first performed. Initially an agent population is created, with each agent assigned a profile that
influences their subsequent behaviours. For example, socio-demographic characteristics influence
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the probabilities with which time dependent activities will take place. Couples may have different
activity profiles than single adults living alone and elderly agents may perform different actions
at different times compared with younger adults: there is a greater chance that an elderly retired
occupant will be present and cook during the day, whereas a younger occupant will more likely
be out at work. Furthermore the probability of being present at a given time step and the corre-
sponding location may vary with socio-demographic characteristics. This location may correspond
to the agents’ office when occupying (and sleeping in) a non-residential building or their bedroom
for sleeping when occupying a residential building.

Figure 1. No-MASS conceptual flow diagram illustrating the sequence of calls to No-MASS models and the parsing of data
between No-MASS and EnergyPlus

Once the agents are defined we can pre-process those models that do not utilise transient environ-
mental inputs, such as models that depend on time only. Here we distinguish between residential
and non-residential buildings. For residential buildings we process the activity that an agent will
perform and the corresponding location at each time step; whereas in non-residential buildings, a
separate presence model is used to calculate whether an agent is present in a given zone at each
time step. The presence and activity profiles are predicted independently for each agent. Once
these pre-processes are complete EnergyPlus is called to simulate the building’s energy flows for
the first time step. At the end of each subsequent time step, No-MASS is called by EnergyPlus.
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Environmental conditions are parsed from EnergyPlus to No-MASS, which then uses these to pre-
dict our agents’ behaviours. Each agent is called independently and at random. For residential
buildings the pre-processed activity and location for the present timestep is retrieved and used
to calculate the metabolic gains for that agent and location. In non-residential buildings only the
pre-processed presence is retrieved to calculate metabolic gains. Next agents’ interactions with
shading devices, windows and lighting are predicted, the sequencing of calls to these models being
randomised. The outputs from all models are then parsed back to EnergyPlus, which resolves the
energy consequences of these interactions when simulating the building’s energy flows during the
next time step, so that there is no within timestep iteration. This process continues until the end
of the simulation period.

2.2. Activity model

The activity model (Jaboob 2015) predicts the time-dependent probability that one of a set of ten
groups of activities will be performed in the home. These activities include sleeping, passive, au-
dio/visual, IT, cooking, cleaning, metabolic, washing appliance use, personal washing and absence
from the building. They are modelled as a time-dependent Bernoulli process using multinomial
logistic regression. As the probabilities are only dependent on time it is possible to generate a 10
by 24 matrix giving the probability of performing each activity at a given hour; though the cor-
responding model can also be re-called within the hour for sub-hourly simulation timestep, using
appropriate interpolation. As well as a model predicting activities for an average member of the
population (estimating model parameters using the entire dataset) models have been estimated
for subpopulations of the time use survey dataset from which they are derived, to give probabili-
ties that depend for example on age, employment status, season or day of the week. The relevant
sub-model used for each agent is assigned when the agent population is generated. This is then
pre-processed, assigning a state to each timestep within the simulation. This is achieved by drawing
a random number at each timestep for each agent. Where that number falls within the range of
probabilities for that hour, the corresponding activity is assigned to the relevant agent. These are
then stored for retrieval at run time.
Note that this process is only considered for residential buildings and does not apply to the

simulation of non-residential buildings, for which the corresponding time use survey data is not
available.

2.3. Agent states

During a simulation our (residential) agents are assigned one of ten activity-dependent states. No-
MASS uses a state machine, which is a way of defining programmatically the states an agent may
be in and the possible transitions from each state to the next. Dependent on the state, values of
agents’ personal characteristics and location are modified: Table 1. These values are taken from
ISO 7730 (ISO 2005). In the case of the more constrained environments of non-residential buildings
we set the metabolic rate to 116 and Clo to 1. Although daily clothing level choices are known to
vary with mean outdoor temperature (Haldi and Robinson 2011a), in present case, in which our
focus is on the impacts on energy simulation of behavioural models using environmental stimuli
rather than perceived comfort as explanatory variables, this would only impact on variations of
metabolic heat gains (of which more later) - the effect being small enough that we do not take
this into consideration. Rather we dynamically calculate metabolic heat gains using fixed clothing
levels.
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State Location Clo Metabolic rate (W/m2)
Sleeping Bedroom 2.55 46
Passive Living Room 0.7 58
Audio/Visual Living Room 0.7 70
IT Office 0.7 116
Cooking Kitchen 0.7 116
Cleaning Kitchen 0.7 116
Washing self Bathroom 0.3 116
Washing appliance Kitchen 0.7 116
Metabolic Living Room 0.7 93
Absent NA NA NA

Table 1. Agent states with corresponding locations and values

2.4. Presence and location

We have two methods for calculating presence within a building, the choice of which depends on the
type of building. For residential buildings, presence (or rather absence) is predicted directly by the
activity model (as noted above). Furthermore, based on the activity being performed [or the agent’s
state], we can infer a location. For example, if the agent is in the sleeping state it can be assumed
that they are in their bedroom. But this may not always hold true. For example, if an agent is
predicted to sleep during the day (and retired folk do this with relatively higher probability) they
may do so in the living room. Thus we may in the future need archetype-dependent assignment
probabilities to account for such eventualities. To allocate agents to a zone within EnergyPlus
we define an external schedule of occupancy for each zone in the EnergyPlus configuration file.
EnergyPlus then assumes that a value for each schedule will be received by its external interface at
each time step. For the simulation of non-residential buildings a presence model (Page et al. 2008)
predicts when an occupant is present within their office, based on a time-inhomogeneous Markov
chain, using a mobility parameter µ and a time-dependent profile of the probability of presence
p(t) as input. By default No-MASS uses the parameters for p(t) and µ give in (Page et al. 2008).
Since this model uses no environmental parameters, it may be run as a pre-process, generating a
sequence of presences and absences for each agent. For the time being long term absences due to
illnesses, vacations or work related business trips are not stochastically predicted. Page’s Page et al.
presence model does not account for seasonality but the underlying profile could. The residential
locations are based on the activity model (Jaboob 2015) that accounts for both seasonality and
types of day, based on representative time use survey data (in both socio-economic and temporal
terms).

2.5. Metabolic gains

Metabolic gains are calculated using Fanger’s PMV model, as described in ISO 7730 (ISO 2005),
based on the standard physical (air temperature, radiant temperature, relative air velocity and rel-
ative humidity) and personal (clothing level and metabolic rate) parameters. With the exception
of an assumed relative air velocity of 0.1 m/s, the physical parameters are supplied by Energy-
Plus; whereas the state-dependent personal parameters are as defined in Table 1 (with external
work taken to be 0W). As EnergyPlus takes a single metabolic rate for all agents within a zone,
we calculate the zone average for all agents present. We set this within EnergyPlus through the
zone activity schedule, which multiplies this average gain by the number of present occupants to
determine the total metabolic heat gain for all occupants.
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2.6. Window actions

We use the model of Haldi and Robinson (2009) to predict interactions with windows. This is a
hybrid model, predicting transitions in opening status using a presence-dependent Markov chain
and, in the cases of transitions to the open state, predicting the duration for which the window
stays open using a Weibull distribution. The predictors at arrival are indoor temperature, outdoor
temperature, absence duration and rain presence. During occupancy they are indoor temperature,
outdoor temperature, length of presence and rain presence, whilst at departure the predictors are
indoor temperature, daily mean outdoor temperature, length of departure and a dummy parameter
to represent whether the window is at the ground floor level (which reduces the probability of
windows being left open at night). With the exception of the presence-related parameters and
the ground floor parameter the values of these predictors are supplied by EnergyPlus via the
Functional Mockup Interface. No-MASS determines the occupants’ presence status and calculates
the future presence and past absence durations when needed. Absence duration is computed within
No-MASS by rewinding the array of chains of presence and absence from the current timestep; and
the opposite for the duration of departure. For example when modelling the probability with which
window will be closed at departure as a function of the anticipated duration, No-MASS forward-
winds the pre-processed agent-dependent presence array until the next arrival to determine the
absence duration. The ground floor parameter is given as an input to No-MASS at runtime, as a
boolean value per zone, set to true if the zone is at ground level otherwise false. This is defined
in a simulation configuration file, of which more later, as it can not be supplied by EnergyPlus.
By default the model is estimated from data relating to an aggregate population (i.e. using all
empirical data for all members of the population surveyed), so that each agent uses the same
model coefficients to predict window opening behaviour.
Within EnergyPlus we again create an external schedule for windows, setting the value to be

either 1 for fully open or 0 for fully closed for each time step (in the future it would be useful to
include predictions of opening proportion, based for example on the model described in Schweiker
et al. (2012)).

2.7. External shading actions

The shading action model (Haldi and Robinson 2010) predicts lowering and raising probabilities,
which are also based on Markov chains. Like the window model, predictions are estimated using
data for an aggregate population. Upon an agents’ arrival the first step in this model is to determine
the probability with which a raising or lowering action from the indoor illuminance supplied by
EnergyPlus at a suitable daylight reference point within the zone and the unshaded fraction at
the previous timestep. If the shade is lowered or raised we then predict whether the shade is fully
raised or lowered. If the shades are only partially raised or lowered, we calculate a new unshaded
fraction, using a Weibull distribution whose parameters are dependent on the prior unshaded
fraction. Otherwise, shading remains unchanged. A similar process but with different probabilistic
models occurs whilst occupants are present. The outcomes from these models allow us to set the
shading fraction in EnergyPlus. The current version of EnergyPlus (8) only allows shades to be
either fully open or fully closed. As such, it does not provide a function to overwrite an external
shade fraction value from an external interface such as No-MASS. The EnergyPlus source code was
therefore altered to provide a function that reduces the radiation transmitted through the window
in proportion to the fraction that the shade was closed, this function can now be accessed from an
external interface at each timestep (see Appendix A for the source code changes).

2.8. Lighting

The prediction of the use of lights within No-MASS is based on the Lightswitch-2002 algorithm
(Reinhart 2004). We take the indoor illuminance E of the zone from EnergyPlus for the current
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time step and compute the probability of turning the lights on when the agent arrives or whilst they
are present, and thus whether this action takes place. When all agents vacate the zone we predict
whether the lights will be turned off, as a function of the anticipated duration of their absence,
calculated by forward-winding from the time of departure until the time of return. For absences
below 0.5 hours we assume that lights remain on, where as for absences exceeding 12 hours the
lights are assumed to be turned off (Pigg, Eilers, and Reed 1996). The consequent lighting status
(on-off) is set within EnergyPlus at each timestep as a lighting schedule for each zone within the
building.

2.9. On behavioural diversity and generalisability

The behavioural models that we have described in 2.6 (windows), 2.7 (shading) and 2.8 (lighting),
to demonstrate the utility of No-MASS have each been estimated (or rather their coefficients
have been) for particular circumstances: laboratory offices in the case of windows and shades and
a combination of office and school class rooms in the case of lighting; but in Schweiker et al.
(2012) it was demonstrated that the window opening model of Haldi and Robinson (2009) could
be reliably used to model residences as well as offices. This implication was deemed to be general:
so long as the modes of interaction are similar and the local stimuli are properly accounted for
then a model developed from observed behaviours in one setting can be used to predict those
of another. Thus the models for predicting the use of windows, blinds and lighting should be
applicable to both residential and non-residential cases. The models implemented do not yet cover
all interactions to non-residential cases, so long as the above condition is satisfied. Examples of
where this condition is not satisfied (using the models we currently employ) include the closing of
windows in bathrooms whilst bathing for privacy and their subsequent opening to reject moisture;
the opening of windows while cooking in kitchens or upon awakening in bedrooms to reject odours.
A belief-desire-intention system will be implemented in the future to cover this wider range of
occupant interactions which are relatively habitual in character. For the purposes of this paper we
have only used model coefficients estimated from aggregate datasets in conjunction with these fixed
effects models. However, we do demonstrate the modelling of behavioural diversity in a companion
paper, in which we also account for social interactions between members of our agent population
(Chapman, Siebers, and Robinson 2017), where this capability is more fitting.

3. Implementation

No-MASS was built from the ground up, having tested a number of current multi-agent simulation
development platforms, including Repast Simphony and Anylogic. Although these platforms are
very useful they come with significant overheads, typically requiring a large library of graphical
user interface routines to be imported, making it more difficult to package a No-MASS equivalent
with simulation tools such as EnergyPlus and the DesignBuilder interface to it. C++ was chosen as
the development language as it is simple to integrate with EnergyPlus, our (first) chosen building
simulation tool, which is also developed in C++. Using the same language allows for easy communi-
cation between the two tools. EnergyPlus is well tested and well documented, allowing us to readily
understand how to connect to it. There are also two interfaces that allow other tools to interact
with it, without altering the EnergyPlus source code. The first is through the building controls
virtual test bed (BCVTB) and the second is through the Functional Mockup Interface (FMI). The
No-MASS platform connects to EnergyPlus using FMI (Nouidui, 2014), which is an open standard
so that No-MASS could in principle be integrated with any other FMI compliant simulation tool.
We chose this over the BCVTB as it allows direct communication through C++ double arrays
using predefined calling points. The calling points are well documented, with No-MASS only using
the initialise function, the receive an array of doubles function for the environmental variables and
the send an array of doubles function for the occupant interactions.
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The array of values that No-MASS receives at each time step is defined in the XML file ModelDe-
scription.xml. At the beginning of the time step the following environmental variables are received:
horizontal sky illuminance, rain status, outdoor drybulb air temperature, zone drybulb air tem-
perature, zone relative humidity, indoor radiant temperature and indoor illuminance. Returned to
EnergyPlus are the number of occupants in a zone, their metabolic gains, the window status, the
blind shading fraction and the lighting status.
Following a timestep sensitivity study (Figure 2), we use by default a simulation timestep of 5

minutes. Time steps greater than 5mins tend to lead to unstable control actions and corresponding
indoor temperatures in the case of window openings, whilst indoor/outdoor temperature differences
are relatively large. Note that this timestep length has no impact on the the behavioural (window
shading and lighting) models, for these are time (though not occupancy status) homogeneous, but
the presence/ activity models do require interpolation the corresponding probabilities within the
timestep to then predict the corresponding presences/ activities.
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Figure 2. Time Step Sensitivity Analysis: a comparison of predicted annual heating demand for different simulation timestep

lengths. Performance predictions tend to stabilise at a timestep of 5 minutes.
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No-MASS has been developed as both a Linux shared object and as a Microsoft Windows dy-
namic link library. Figure 3 shows how the system connects to EnergyPlus. In the same way that
EnergyPlus reads in the building configuration and weather data from the IDF file and the EPW
file, No-MASS reads in data from an XML file called NoMassConfig.xml. This file contains informa-
tion relating to the occupants that is used to build and attribute the agent population, facilitating
the subsequent processing of an agent activity profile that is used to calculate the probability of an
activity taking place at each timestep, as well as the bedroom and office that agent will belong to.
This allows No-MASS to assign an agent to a zone for when they are in an office or to a bedroom
when their activity is sleeping. As new models are integrated into No-MASS, the configuration file
will need extending to include the inputs of the new models.

Figure 3. No-MASS Data Flow Diagram

In principle No-MASS could be readily adapted to also read Hong et al’s 2015b obXML, should
this be further developed in the future to be No-MASS compatible.

4. Case study

To demonstrate the application of No-MASS and its coupling with EnergyPlus (Version 8.4) we
examine two different buildings in two locations. A hypothetical house and a shoe box office are
simulated in Geneva, Switzerland and in the more temperate location of Nottingham, UK. Results
from No-MASS are compared to the results arising from standard deterministic schedules and
rules for the relevant house/ office typology (or template) used by the DesignBuilder interface. The
layouts of the buildings are shown in Figure 4.
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Figure 4. Residential ground floor (left), Residential 1st floor (middle), Office (Right)

Details such as heating set-points, glazing ratios, etc. are given in Tables 2 and 3. For simplicity,
both buildings adopt the same constructions as in Table 4. The weather files are taken from
DesignBuilder giving the locations Geneva, Switzerland (+46◦25′, 6◦13′) and a location about 40
miles from Nottingham, UK (+53◦28′,−1◦0′) called Finningley. To help judge the utility of No-
MASS we also simulate our use cases based on deterministic representations of occupants. To this
end our offices are assumed to be occupied according to the following fractional schedule during the
weekdays: [0.0] 00:00 until 07:00, [0.25] until 08:00, [0.5] until 09:00, [1.0] until 12:00, [0.75] until
14:00, [1.0] until 17:00, [0.5] until 18:00, [0.25] until 19:00, [0.0] until 24:00. During the weekend
offices are assumed to be vacant. Interactions with external shades and lights operate on the same
schedule, with the windows being open when occupants are present and the indoor temperature
exceeds 24◦ C. In Nottingham we consider only heating demand, whereas in Geneva we also consider
cooling demand.

Zone
Area
[m2]

Volume
[m3]

Gross Wall
Area[m2]

Glazing
ratio%

Lighting
[W/m2]

Setpoint
Temp[c]

Livingroom 13 46 36 7 7.5 21
Halldownstairs 4 15 6 0 5 20
Kitchen 15 52 39 8 15 18
Bathroom 3 10 12 11 7 18
Hall 4 19 10 0 5 18
Residential Of-
fice

3 12 13 10 5 22

Second bedroom 9 34 22 15 5 18
Master bedroom 10 37 24 16 5 18
Attic 37 26 7 0 0 -
Total 101 255 172 68 5 -

Table 2. Residential Building Zone Details

Zone
Area
[m2]

Volume
[m3]

Gross Wall
Area[m2]

Glazing
ratio%

Lighting
[W/m2]

Setpoint
Temp[c]

Office 11 39 47 6 20 21
Table 3. Non-Residential Building Zone Details

13



December 6, 2017 Journal of Building Performance Simulation main

Location Layer Thickness (m) Material
External Wall Outer 0.1 Brick
External Wall 2 0.07 XPS extruded
External Wall 3 0.1 Concrete Block
External Wall Inner 0.01 Gypsum Plaster
U-Value 0.37

Internal Partition Outer 0.02 Gypsum Plaster
Internal Partition 2 0.1 Air Gap
Internal Partition Inner 0.02 Gypsum Plaster
U-Value 2.86

Ground Floor Outer 0.13 Urea Formaldehyde Foam
Ground Floor 2 0.1 Cast Concrete
Ground Floor 3 0.07 Floor Screed
Ground Floor Inner 0.03 Timber Flooring
U-Value 0.26

Floor Outer 0.10 Cast Concrete
U-Value 4.7

Pitched Roof Outer 0.02 Clay Tile
Pitched Roof 2 0.02 Air Gap
Pitched Roof Inner 0.005 Roofing Felt
U-Value 4.97

Table 4. Construction Materials

Repeated simulations help us to understand the likely distribution of the output parameters
of interest and thus the corresponding robustness of alternative design proposals. But the extra
simulation time needed for replicates can be seen as a weakness, especially with large models.
The form of the model and demographics of population are kept the same, the stochastic models
are seeded with a different numbers at the start of each simulation thus causing variations in the
outputs of the random number generator and this in the choices each agent makes. It is therefore
important then to calculate the minimum number of simulations we need to perform to achieve
a converged solution, as judged by a cumulative mean convergence graph (Stewart 2004). To this
end, the heating demand at each simulation is taken and added to a cumulative mean and plotted,
with the results converging on the number of simulation replicates needed (Figure 5). Using a t-test
we find that the results do in fact converge at 97 replicates with a 95% confidence interval and at
55 replicates at a 90% confidence interval. Since these cases are rather different from one another,
adopting 55 replicates, at which the variance has also stabilised, would appear to be a robust choice
for future similar studies.
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Figure 5. Convergence of mean heating demand: Geneva Office (left) and House (right)

5. Comparison of deterministic simulation and No-MASS

Depending upon the assumptions made in the choice of deterministic rules and schedules, per-
formance results can deviate significantly from those arising from the stochastic representation
of people. The predicted median heating demand for our office located in Nottingham obtained
using No-MASS was 118.4 kWh/m2, compared with 93.3 kWh/m2 when assuming determinis-
tic behaviours. Meanwhile, for Geneva we predict 103.9 kWh/m2 (No-MASS) and 83.8 kWh/m2

(deterministic) and 6.3 kWh/m2 (No-MASS) and 5.6 kWh/m2 (deterministic) for cooling.
Our predicted energy demands are considerably closer in the case of our house. For the house

located in Nottingham for heating we predict 68.5 kWh/m2 (No-MASS) and 66.1 kWh/m2 (deter-
ministic), whilst for the Geneva house we predict a demand of 60.4 kWh/m2 (No-MASS) and 58.3
kWh/m2 (deterministic) for heating and 2.6 kWh/m2 (No-MASS) and 4.9 kWh/m2 (deterministic)
for cooling.
In this case study the default deterministic rules and schedules assigned to the office build-

ing by DesignBuilder under predict (with respect to that predicted using our empirically derived
stochastic models) the heating demand by 15 to 25 kWh/m2. The use of windows during periods
of heating causes the principle increase in demand; as the deterministic rules would not allow this
to happen. Relative to the office the house encloses a much larger volume of space, so dampening
the effects of occupants’ interactions compared to the office, so that interactions per zone cause a
smaller difference of approximately 2 kWh/m2 between the deterministic and stochastic results.
This close agreement also suggests that the deterministic representation of occupants’ interactions
in DesignBuilder is coincidentally close to that predicted using No-MASS, where models are esti-
mated from observed data. No-MASS predicts a lower cooling demand in the house than in the
deterministic representation but a marginally higher demand in the office. The difference in both
cases is approximately 2 kWh/m2.
In addition to more reliably estimated (median) energy demands, repeated stochastic simulations

enable the likely range of possible energy demands arising from occupant interactions (our type
IIIb and type IV errors) to be quantified.
Repeated stochastic simulations enable the likely range of possible energy demands arising from

occupant interactions to be quantified. For example, in the case of our office 90% of our predicted
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heating demand results lie in the range 100 kWh/m2 to 109 kWh/m2 (see also Figure 6, in which
we also plot the deterministic value as a point for comparison).
In line with the adaptive principle that upon experiencing discomfort people act in ways which

tend to restore their comfort, we may assume that in No-MASS our agents’ interaction are similarly
motivated. Our agents sense their environment, calling stochastic models that predict interactions
that are motivated by the agents’ (or strictly speaking the population from which these models
were derived) desire to restore their comfort. It is interesting to determine whether our agents’
interactions have been successful. To this end, we aggregate thermally discomforting stimuli by
calculating the degree hours for which a threshold of 25◦ C has been exceeded, as an indicator
of overheating risk (Robinson and Haldi 2008). We predict for the Nottingham office 3% (No-
MASS) and 3.5% (deterministic). Predictions for the Geneva office are 15% (No-MASS) and 14%
(deterministic), which in both cases are similar. For the house the percentage of time above 25◦

C are lower for No-MASS compared to the deterministic case. For the UK we predict 0.01% (No-
MASS) and 2% (deterministic), whilst for the Geneva house we predict 6% (No-MASS) and 8.5%
(deterministic).
The improved performance here in the case of No-MASS suggests that our empirically derived

stochastic models better emulate occupants’ behaviours (they are more effective) than the assumed
deterministic rules.
Breaking the simulations down into monthly box plots (Figure 7) enables us to further understand

the variations in building performance arising from occupants’ interactions over the course of a
year. During January and December the heating demand is higher for the stochastic simulations,
as occupants can interact with the windows at a range of temperatures (e.g. to refresh the indoor
air). During the summer months the deterministic simulations register no heating demands, whereas
the stochastic simulations allow the temperature to drop below the heating setpoint as windows
can now be left open over night and so may have inadvertently cooled the interior. This is shown in
Figure 8, where during the summer windows can be open for as much as 20% of the month (with
the proportion of time that lights are on following the inverse of this trend). Similar monthly box
plots for the rooms of the house (Figure 9) demonstrate that windows are proportionately more
open during the summer months.
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Figure 8. Monthly average window state, Geneva Office (Left), Nottingham Office (Right)
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Figure 9. Monthly window and heating usage for the rooms of the Geneva House

6. On the utility of No-MASS and its core behavioural models

Relatively few of the stochastic behavioural models, that have been developed thus far, have been
subjected to rigorous and comprehensive validation exercises. Of those that have, the focus has
been on the models’ ability to reproduce observed behaviours, expressed as discrete states. Through
careful parameter selection, the best of these models have retained a parsimonious number of
parameters and their coefficients estimated, for the purpose of emulating reality. But these models
may be more complicated than they need to be, for the purposes of energy performance prediction
or for design decision making support. It may be that for such purposes less complicated forms of
model would suffice. Chapman (2017) has studied this issue using No-MASS, firstly to determine
whether our stochastic models are useful (have a significant impact on building performance) and
then whether these models really are parsimonious, as their authors claim them to be; for the
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purpose of building performance prediction. This was achieved by comparing predictions from 100
replicates with and without a model or with and without a parameter of a model, and performing
a t-test to determine whether the two datasets are significantly different from one another. For all
use cases (house, office, Geneva, Nottingham) the models (p-value < 0.05) were found to be useful;
but that in the case of window openings both the rain and presence parameter can be removed.
This simplifies somewhat the form of the model needed for building simulation purposes.

7. Future developments

This is the first of three papers focussing on the development and application of No-MASS. This
first paper is a straightforward introduction to No-MASS; a proof-of-concept for this new software
integration technology. The first of the two companions (Chapman, Siebers, and Robinson 2017) to
this paper extends No-MASS to the modelling of social interactions amongst diverse members of a
building population and the enrichment of our capabilities to model phenomena that are important
but for which data is scarce. In this we employ two techniques: i) Belief-Desire-Intention rules for
relatively simple habitual behaviours, such as the closing of curtains whilst preparing for bed or
the opening of curtains and then of windows upon awakening, and ii) machine learning techniques
for more complex behaviours, such as time-varying choices to regulate heating systems. The second
companion paper (Sancho-Tomás et al. 2017) addresses the extension of the No-MASS framework
to simulate (device-to-device) interactions between electrical demand, storage and supply devices
and the machine learning of strategies to maximise rewards (e.g. to minimise cost or maximise
some other measure of utility). Finally, we demonstrate how these two agent “world views” can
be combined to simulate occupant-to-device and vice-versa interactions, for example to simulate
occupants modifying their use of energy-related services in response to tariff forecasts or social
norms. These extensions to No-MASS could in the future be further enriched through the mod-
elling of long absences (due to vacations, illness or business trips); the probabilistic generation of
household compositions given the house type, location and size; the use of cold and hot water, given
the underlying activities; the prediction of comfort and overheating risk, accounting for feedback
from the specific adaptive behavioural actions that have been exercised. In addition to extending
the scope of No-MASS it would also be highly desirable to compare performance predictions from
its application to the results from high quality field surveys of whole building performance. This
ensemble validation would usefully be conducted with a focus on Passivhaus buildings (as in Blight
and Coley (2013)), as the stringent constraints imposed by the Passivhaus standard minimise Type
II errors in performance prediction; so that predicted deviations should arise mainly from stochastic
weather and occupant influences.

8. Conclusions

In this paper we have introduced the Nottingham Multi-Agent Stochastic Simulation platform
(No-MASS) for coupling stochastic modelling of occupants’ behaviours with dynamic building
simulation programs; its applications and forthcoming features. Coupled with EnergyPlus two test
cases were studied, with the range of results being compared to deterministic representations. We
have shown through these applications (a single occupied office building and a house occupied by
two adults who do not have children) that No-MASS provides a convenient, comprehensive and
rigorous basis for representing occupants’ stochastic behaviours in EnergyPlus (and other software
using FMI); providing designers with means to evaluate the performance of their designs in response
to the range of expected behaviours and thus to evaluate the robustness of their design solutions
that is not possible using current simplistic deterministic representations.
In terms of the usefulness of the models integrated into No-MASS and their composition we have

found that each of the window, lighting and shading models can significantly effect the simulation
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results, but that the window model within No-MASS can be simplified by removing the rain
presence and duration of absence from a room at departure. This simplifies the calculations taking
place, and the processing of inputs to No-MASS.
Using No-MASS in conjunction with EnergyPlus to perform a single simulation of the house

described in this paper increases the simulation time by 50% relative to EnergyPlus simulating in-
dependently in conjunction with deterministic occupancy representations; but this relative increase
varies depending on the choice of occupant behaviour models used and the number of occupants
to be simulated. Simulating replicates carries a further computational penalty in proportion to the
number of replicates, but this can be handled through hardware acceleration. We would argue that
this manageably small cost is considerably more than offset by the additional information provided
to evaluate the robustness of design solutions, given the likely distribution of predicted outcomes
that replicated simulations provides.
The lack of variance between repeated simulations in this paper is due to a combination of the

following factors: (i) the moderately performing buildings are located in temperate climates in
which shading has a modest impact and window use is curtailed to some extent by the systems, (ii)
in the residential case, the relative moderate impacts of occupants behaviours (and metabolic heat
gains) in individual rooms is dampened at the whole house level, as results are normalised over
the entire house footprint, (iii) exclusion of models of heating (indeed HVAC) system settings, hot
water use, electrical appliances, (iv) exclusion of explicit modelling of behavioural diversity. More
comprehensive models of diverse populations accommodated in buildings of higher performance
located in more extreme climates would lead to considerably greater variance.
We show in a companion to this paper that we can readily change input coefficients for each

model, allowing us to test multiple occupant use cases. This can be done automatically at each
simulation iteration, enabling users to more fully explore the robustness of their design to uncertain
future populations of occupants and the diversity in behaviours amongst members with similar
characteristics.
We demonstrate in that paper how BDI rules and machine learning techniques can be employed

to more comprehensively simulate agents’ behaviour and how a social interaction framework can be
employed to emulate negotiated decision making between agents, achieved through a vote casting
process. Finally, in a second companion paper we show how No-MASS can simulate populations
within multiple buildings and the modelling of interactions between different typologies (demand,
storage and supply) of electrical devices and indeed the interactions between appliances and oc-
cupants within a smart grid context; resolving device to device interactions through a contract
negotiation system and occupant to device interactions through BDI rules.
To improve the accessibility of No-MASS, the source code will be released at no-mass.io; and a

prototype of No-MASS has already been integrated into the DesignBuilder graphical user interface
to EnergyPlus. This will allow users to quickly set up their stochastic occupancy representations for
future simulations with No-MASS, and enable them to take advantage of the simulation manager
that allows for repeated simulations, either locally or in the cloud.
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Appendix A. EP Source code changes

EnergyPlus differences for allowing shading interactions.

−−− EnergyPlus/ s r c /EnergyPlus/DaylightingManager . cc
+++ EnergyPlusNoMass/ s r c /EnergyPlus/DaylightingManager . cc
@@ −5744 ,7 +5745 ,10 @@

}
+
+ i f ( SurfaceWindow ( IWin ) . ShadingFractionEMSOn ){
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+ VTRatio = VTRatio ∗ SurfaceWindow ( IWin ) . ShadingFractionEMSValue ;
+ }

−−− EnergyPlus/ s r c /EnergyPlus/ SolarShading . cc
+++ EnergyPlusNoMass/ s r c /EnergyPlus/ SolarShading . cc
@@ −5180 ,6 +5197 ,16 @@

CosInc = CosIncAng ( TimeStep , HourOfDay , SurfNum2 ) ;
SunLitFract = Sun l i tFrac ( TimeStep , HourOfDay , SurfNum2 ) ;

+ // ! Set t rans to shading f r a c t i o n
+ // ! EMS Actuator Point : ov e r r i d e s e t t i n g i f ems f l a g on
+ i f ( SurfaceWindow (SurfNum ) . ShadingFractionEMSOn ){
+ SunLitFract = SunLitFract −
+ ( 1 − SurfaceWindow (SurfNum ) . ShadingFractionEMSValue ) ;
+ i f ( SunLitFract < 0 . 0 ){
+ SunLitFract = 0 . 0 ;
+ }
+ }
+

@@ −9534 ,6 +9563 ,89 @@

+ voidComputeWinShadeAbsorpFactorsFor ( i n t SurfNum)
+ {
+ in t WinShadeCtrlNum ; // Window shading con t r o l number
+
+ in t ConstrNumSh ; // Window con s t ru c t i on number with shade
+ in t TotLay ; // Total l a y e r s in a con s t ruc t i on
+ in t MatNumSh ; // Shade l ay e r mate r i a l number
+ Real64 AbsorpEff ;
+ // E f f e c t i v e absorptance o f i s o l a t e d shade l ay e r ( f r a c t i o n o f
+ // o f i n c i d en t r ad i a t i on remaining a f t e r r e f l e c t e d por t i on i s
+ // removed that i s absorbed
+
+ i f ( Sur face ( SurfNum ) . Class == SurfaceClass Window
+ && Sur face ( SurfNum ) . WindowShadingControlPtr > 0 ) {
+ WinShadeCtrlNum = Sur face ( SurfNum ) . WindowShadingControlPtr ;
+ i f ( WindowShadingControl ( WinShadeCtrlNum ) . ShadingType
+ == WSC ST InteriorShade
+ | | WindowShadingControl ( WinShadeCtrlNum ) . ShadingType
+ == WSC ST ExteriorShade
+ | | WindowShadingControl ( WinShadeCtrlNum ) . ShadingType
+ == WSC ST BetweenGlassShade ) {
+ ConstrNumSh = Sur face ( SurfNum ) . ShadedConstruction ;
+ TotLay = Construct ( ConstrNumSh ) . TotLayers ;
+ i f ( WindowShadingControl ( WinShadeCtrlNum ) . ShadingType
+ == WSC ST InteriorShade ) {
+ MatNumSh = Construct ( ConstrNumSh ) . LayerPoint ( TotLay ) ;
+ } e l s e i f ( WindowShadingControl ( WinShadeCtrlNum ) . ShadingType
+ == WSC ST ExteriorShade ) {
+ MatNumSh = Construct ( ConstrNumSh ) . LayerPoint ( 1 ) ;
+ } e l s e i f ( WindowShadingControl ( WinShadeCtrlNum ) . ShadingType
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+ == WSC ST BetweenGlassShade ) {
+ i f ( Construct ( ConstrNumSh ) . TotGlassLayers == 2 ) {
+ MatNumSh = Construct ( ConstrNumSh ) . LayerPoint ( 3 ) ;
+ } e l s e {
+ MatNumSh = Construct ( ConstrNumSh ) . LayerPoint ( 5 ) ;
+ }
+ }
+ // ! Set t rans to shading f r a c t i o n
+ // ! EMS Actuator Point : ov e r r i d e s e t t i n g i f ems f l a g on
+ i f ( SurfaceWindow (SurfNum ) . ShadingFractionEMSOn ){
+ Mater ia l (MatNumSh ) . Trans =
+ SurfaceWindow (SurfNum ) . ShadingFractionEMSValue ;
+ }
+
+ AbsorpEff = Mater ia l ( MatNumSh ) . AbsorpSolar /
+ ( Mater ia l ( MatNumSh ) . AbsorpSolar
+ + Mater ia l ( MatNumSh ) . Trans + 0.0001 ) ;
+ AbsorpEff = min ( max( AbsorpEff , 0 .0001 ) , 0 .999 ) ;
+ SurfaceWindow ( SurfNum ) . ShadeAbsFacFace ( 1 ) =
+ ( 1 .0 − std : : exp ( 0 .5 ∗ std : : l og ( 1 . 0 − AbsorpEff ) ) ) / AbsorpEff ;
+ SurfaceWindow ( SurfNum ) . ShadeAbsFacFace ( 2 ) =
+ 1.0 − SurfaceWindow ( SurfNum ) . ShadeAbsFacFace ( 1 ) ;
+ }
+ }
+
+ }

−−− EnergyPlus/ s r c /EnergyPlus/WindowManager . cc
+++ EnergyPlusNoMass/ s r c /EnergyPlus/WindowManager . cc
@@ −2886 ,6 +2890 ,9 @@

i f ( ShadeFlag == IntShadeOn | | ShadeFlag == ExtShadeOn
| | ShadeFlag == IntBlindOn | | ShadeFlag == ExtBlindOn
| | ShadeFlag == BGShadeOn | | ShadeFlag == BGBlindOn
| | ShadeFlag == ExtScreenOn ) {

ng l f a c ep = ng l f a c e + 2 ;
+
+ EnergyPlus : : So larShading : : ComputeWinShadeAbsorpFactorsFor (SurfNum ) ;
+

ShadeAbsFac1 = SurfaceWindow ( SurfNum ) . ShadeAbsFacFace ( 1 ) ;
ShadeAbsFac2 = SurfaceWindow ( SurfNum ) . ShadeAbsFacFace ( 2 ) ;
AbsRadShadeFace ( 1 ) = ( SurfaceWindow ( SurfNum ) . ExtBeamAbsByShade +
SurfaceWindow ( SurfNum ) . ExtDiffAbsByShade ) ∗ ShadeAbsFac1 +
( SurfaceWindow ( SurfNum ) . IntBeamAbsByShade +
SurfaceWindow ( SurfNum ) . IntSWAbsByShade ) ∗ ShadeAbsFac2 ;
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