
This is a repository copy of Human sperm swimming in a high viscosity mucus analogue.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/127452/

Version: Accepted Version

Article:

Ishimoto, Kenta, Gadelha, Hermes Augusto Buarque orcid.org/0000-0001-8053-9249, 
Gaffney, Eamonn A. et al. (2 more authors) (2018) Human sperm swimming in a high 
viscosity mucus analogue. Journal of theoretical biology. pp. 1-10. ISSN 1943-5193 

https://doi.org/10.1016/j.jtbi.2018.02.013

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Human sperm swimming in a high viscosity mucus analogue

Kenta Ishimoto1,2,3, Hermes Gadêlha4,7, Eamonn A. Gaffney1,
David J. Smith5,6,7 and Jackson Kirkman-Brown6,7

1Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
2The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan

3Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
4Department of Mathematics, University of York, York YO10 5DD, UK

5School of Mathematics University of Birmingham, Birmingham B15 2TG, UK
6Institute for Metabolism and Systems Research, College of Medical and Dental Sciences, University of

Birmingham, Birmingham B15 2TG, UK
7Centre for Human Reproductive Science, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TG,

UK

Abstract

Remarkably, mammalian sperm maintain a substantive proportion of their progressive swimming

speed within highly viscous fluids, including those of the female reproductive tract. Here, we

analyse the digital microscopy of a human sperm swimming in a highly viscous, weakly elastic

mucus analogue. We exploit principal component analysis to simplify its flagellar beat pattern,

from which boundary element calculations are used to determine the time-dependent flow field

around the sperm cell. The sperm flow field is further approximated in terms of regularized point

forces, and estimates of the mechanical power consumption are determined, for comparison with

analogous low viscosity media studies. This highlights extensive differences in the structure of

the flows surrounding human sperm in different media, indicating how the cell-cell and cell-

boundary hydrodynamic interactions significantly differ with the physical microenvironment.

The regularized point force decomposition also provides cell-level information that may ulti-

mately be incorporated into sperm population models. We further observe indications that the

core feature in explaining the effectiveness of sperm swimming in high viscosity media is the loss

of cell yawing, which is related with a greater density of regularized point force singularities along

the axis of symmetry of the flagellar beat to represent the flow field. In turn this implicates

a reduction of the wavelength of the distal beat pattern – and hence dynamical wavelength

selection of the flagellar beat – as the dominant feature governing the effectiveness of sperm

swimming in highly viscous media.

Keywords: sperm motility, principal component analysis, low-Reynolds-number flow, boundary
element method

1



1 Introduction

Viewed in slow motion, the sperm flagellum reveals a graceful choreography, concealing the complex
regulation of thousands of dynein molecular motors converting ATP into mechanical work and
ultimately travelling waves of curvature along the flagellum [1, 2, 3]. This movement, and its
interaction with the surrounding fluid, induces local fluid flows [4], propels the cell forward [5]
and, most remarkably, the progressive velocity is relatively conserved even as the viscosity of the
surrounding media increases by multiple orders of magnitude [2].

Such resilience is poorly understood for sperm, but vital in navigating numerous highly viscous
microenvironments en-route to the egg in the female reproductive tract [6]. Nonetheless, one
hypothesis for this resilience is that with increased resistance, whether viscous or structural, the
flagellum curvature is less so that the hypothesized geometric clutching of dyneins is reduced, as
detailed extensively by Lindemann [7]. In particular, more dyneins contract in a flagellum bend as
it is of longer wavelength [7], at least in the proximal region of the flagellum [2]. This mechanism
thus in turn suggests that there are more dynein contractions per unit time on average for a sperm
swimming in a highly viscous medium and also, because the flagellum does slowdown at least a
certain amount, there may be a greater force per contraction given the observed monotonic increase
in contractile force with reduced dynein contraction velocity [8]. However such concepts for the
mechanisms that govern the remarkable ability of sperm to swim in highly viscous media, and their
relative importance in the sperm response, remain at the level of hypothesis. As a consequence,
there is extensive further scope for comparative studies of sperm in different rheologies, especially
as viscosity extensively regulates sperm behaviour in vivo [9].

Similarly, differences in the fluid flows induced by sperm flagellar beating with changes in the
surrounding medium are likely to inform our understanding of how the physical microenvironment
influences the mechanical interaction of sperm with each other, obstacles, surfaces and even the
egg. Such differences may also be important in appreciating how the local transport of signalling
molecules changes with different rheologies [4]. With the exception of a low-resolution study
comparing the fluid flow induced by activated and hyperactivated hamster sperm [10], only the fluid
flows surrounding an activated swimming human sperm cell in a low viscosity in vitro fertilization
medium have been analysed in detail [11]. This study revealed a remarkably simple approximation
to the fluid flow structure. In particular, in the reference frame of the swimming cell an oscillatory
flow was induced, approximately corresponding to two triplets of regularised forces offset to either
side of the flagellum turning on and off in a manner corresponding to a principal and reverse wave
propagating down the flagellum. This prospectively allows simple, verified, analytical expressions
to be used to represent the flow fields associated with sperm swimming. As a first consideration,
this would in turn enable the integration of single cell dynamics and sperm-sperm interactions in
population models of sperm, as well as motivating analogous studies for the flows induced by sperm
and other microswimmers, in fluid media with different rheologies.

Hence, in this paper we will firstly recapitulate the digital capture of the flagellum waveform for a
human sperm swimming in a dilute solution of methylcellulose, which has a viscosity of about 150
times that of water and in vitro fertilization media [2]. Following a standard principal component
analysis (PCA) of the flagellar waveform to reduce its kinematics to a low dimensional expansion
of PCA modes [12, 13], as detailed in section 2, we will use boundary element computational fluid
dynamics [14] to determine the surrounding flow field.
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We will proceed to also reduce the fluid flow to a low dimensional expansion of PCA modes, which
can be subsequently approximated by the flow fields associated with a small number of regularized
point force solutions [11]. Further analyses are performed to document mechanical measures, such
as the rate of viscous dissipation. In turn, these mechanical measures and their associated flow
fields will be compared to those emerging from human sperm swimming in low viscosity in vitro

fertilization media, to further document and describe how sperm swimming and its associated
mechanics is altered with a substantive increase in the viscosity of the surrounding media.

Finally, we will also discuss our comparative observations in the context of potential mechanisms
governing the quite remarkable observation that progressive sperm swimming speeds are roughly
maintained despite multiple order of magnitude increases in the surrounding fluid viscosity.

2 Methods

2.1 Flagellar waveform

2.1.1 Image acquisition

Further details of the experimental method may be found in Smith et al. [2]. To summarise, human
samples were collected from a normozoospermic research donor and sperm with the highest progres-
sive motility, sufficient to penetrate approximately 2 cm into a capillary tube on the timescales of
the experiment, were imaged in detail. This imaging took place approximately 10-20 µm from the
capillary tube inside surface, using an Olympus (BX-50) microscope, together with a positive phase
contrast lens (20 × /0.40 ∞/0.17 Ph1 and depth of field ∼ 5.8µm) and a Hamamatsu Photonics
C9300 CCD camera.

In particular, the Smith et al. [2] study firstly reported that the characteristics of these analysed
cells differed extensively for different penetration media. In addition the study observed that with a
fixed penetration medium, the sperm flagellum beat and swimming behaviour of these highly motile
sperm were well-represented by an individual cell. Thus, analogously, we analyse a representative
individual sperm, whose swimming and flagellum beat was captured in the above study as part
of observations for 19 cells swimming within a sperm penetration medium based on supplemented
Earle’s Balanced Salt Solution and an addition of 1% methylcellulose. This is referred to as high
viscosity medium (HVM) below. These observations and subsequent analysis will also be contrasted
with those for a representative individual sperm, whose swimming and flagellum beat was captured
in the Smith et. al. study [2] as part of observations for 16 cells swimming within a watery – low
viscosity – medium (LVM).

Measurements of the high viscosity medium’s properties were conducted with a Bohlin CVO120
HR cone-and-plate rheometer yielded a storage modulus of G′ = 0.76Pa and a shear modulus of
G′′ = 4.16Pa at a frequency of f = 5 Hz, i.e. an angular frequency of ω = 2πf = 10π rad s−1.
Fitting with a linear Maxwell fluid model in turn revealed a fluid relaxation time of λ = 0.006 s and
an effective viscosity of 0.14Pa·s, with a small Deborah number of De= 2πfλ = ωλ = 0.19 ≈ 0.2
and thus the fluid exhibits a similar magnitude of viscosity compared to midcycle mucus, though
with significantly less elasticity [15, 2].

The location of the flagellum in the microscope focal plane, as a function of arclength s, measured

3



Figure 1: The sperm flagellar waveform and its reconstruction, presented with the length and
timescales nondimensionalised by the flagellar length, L, and the beat period time, T . (a)
Superimposed snapshots of the digitally captured flagellar waveform with its head translated to
the origin. (b) The flagellar tangent angle, ψ(s, t). Note that approximately 10% of the distal
flagellum data is lost during image capture. (c) The first three PCA modes of the flagellum angle,
ψ, with ψ̄(s) denoting the temporal average of ψ(s, t). (d) The trajectory of the first two PCA
mode coefficients (blue), with the associated limit cycle orbit, in the phase space (red).

from the cell head, and time t was extracted from the imaging data via bespoke MATLAB c© soft-
ware [2]. Hence the angle between the flagellum tangent and the sperm head, denoted ψ(s, t) is
readily extracted. These digitised waveforms, which are essentially planar, do not exhibit extensive
curvature in the proximal region of the flagellum but possess a distal meander (Fig. 1a,b), and this
dynamics is generally associated with the tapering accessory structures of the mammalian flagellum
with increasing arclength [16, 7, 17].

2.1.2 Dimensional reduction of the flagellar waveform

As previously implemented for bull spermatozoa by Ma et al. [12] and human spermatozoa in
our previous study [11], and reviewed in Werner et al. [13], principal component analysis (PCA)
is used to decompose the angle ψ for the data-set acquired by the digital capture of the human
sperm flagellum waveform, as summarised in Fig. 1. In detail, with a uniform discretisation of the
arclength s1, . . . , sm, and time, t1, . . . , tn, one can construct the n×m angle matrix ψiα = ψ(ti, sα),
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its temporal average

ψ̄α =
1

n

n
∑

p=1

ψpα

for any i ∈ {1, . . . , n} and the covariance matrix,

Sαβ =
1

n

n
∑

i=1

(ψiα − ψ̄α)(ψiβ − ψ̄β).

The eigenvectors of the latter m×m matrix provide an m-dimensional basis for the flagellar wave,
which we order by the size of the associated eigenvalues λ1 ≥ . . . ≥ λm. Each eigenvector, also
known as a PCA mode, thus corresponds to a set of angles at the discretised values of s, and thus
effectively a flagellum shape. The PCA decomposition then approximates the flagellum angles ψ(s, t)
as a time dependent weighted linear sum of these shapes. The first three eigenvectors, associated
with eigenvalues λ1, . . . , λ3, are plotted in Fig. 1c. In particular, truncating the PCA decomposition
to include only the first two PCA modes nonetheless captures 96.9% of the cumulative variance,
that is (λ1+λ2)/trace(S) = 0.969, while truncating with only the first three modes captures 97.6%.
Thus, respectively there is a 3.1% and 2.4% variation in the flagellar shape that is not accounted
for on restricting the PCA mode decompositions. Hence using the first two or three PCA mode
terms in the PCA decomposition leads to an extensive reduction and simplification of the data-set
but yet with highly limited error.

The first p time-dependent coefficients of a PCA decomposition for a beating flagellum also define
a trajectory in a p-dimensional phase space and for p = 2 with the current waveform, we find
an approximately circular phase trajectory as plotted in Fig. 1d. Furthermore, by using a phase
parameter to describe this time dependent trajectory, a phase space limit cycle can be determined,
as given by the red curve in Fig. 1d [18, 12]. In particular, note that this limit cycle averages the
dynamics over multiple flagellar beat patterns, and does not deviate extensively from individual
data points. Hence fluctuations within a single flagellum beat of an individual cell are not large and
the use of the limit cycle also reduces the impact of such fluctuations on the analysis pursued later.

It is also immediately apparent that these approximately circular limit-cycle trajectories contrast
markedly with the dumbbell-like phase-trajectories and limit cycles associated with human sperm
flagellar beating in a low viscosity in vitro fertilisation medium (see [11]). A further difference
between the low and high viscosity data for a human sperm is that the addition of the third PCA
mode in the high viscosity case does not lead to marked improvement in capturing the flagellum
shape, due to the absence of extensive deformation in the proximal region of the flagellum. Hence the
first two PCA modes are sufficient to capture the characteristic properties of the flagellar waveform.
Hence, hereafter, we consider the flagellum beat associated with the p = 2 dimensional PCA phase
plane trajectory of Fig. 1d and the corresponding angle, denoted ψrec(s, t) is given as a heat map
in Fig. 2a and via a plot of this angle as a function of arclength for numerous fixed snapshots of
time in Fig. 2b. The latter highlights the curvature in the distal region of the flagellum due to
the rapid angle changes in this region. The Fourier spectrum of ψrec(s, t) with respect to the time
is also displayed in Fig. 2d, which highlights a dominant first Fourier mode. This, together with
the structure of Fig. 2a, emphasises that a dominant single temporal frequency propagates in a
travelling wave along the flagellum.
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Figure 2: The reconstructed approximation to the flagellar waveform as the limit cycle of the
closed trajectories in the 2-dimensional flagellar shape PCA phase space. (a) The reconstructed
flagellar tangent angle, ψrec(s, t) during one beat cycle. The timescale and lengthscale are non-
dimensionalised by the beat cycle period T and the flagellar length L. (b) Superimposed snapshots
of the reconstructed flagellar tangent angle, non-dimensionalised as in (a). (c) Superimposed
snapshots of the computational sperm with this waveform freely swimming during one beat cycle.
(d) The Fourier spectrum for the reconstructed flagellar tangent angle, which emphasises a dominant
frequency in the flagellum beat. (e) The swimming trajectory for the head-tail junction over one beat
period of the virtual sperm, with the reconstructed flagellar waveform moving in the high-viscosity
medium (HVM), is plotted in green, with coordinates provided in the Supporting Material. The
associated net displacement during one beat cycle is shown via the dotted arrow. For comparison,
the analogous trajectory for the low viscosity medium (LVM) is given in purple, together with the
net displacement via the associated dotted arrow [11].
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2.2 Hydrodynamics of Stokes and linear Maxwell flow

As characterized by a very small Reynolds number, the fluid flow around a swimming sperm is
essentially inertialess. Hence, with σ denoting the stress tensor one has the momentum balance
∇ · σ = 0, which is supplemented by incompressibility ∇ · u = 0 for the velocity field u. We also
have no-slip conditions on the sperm and the glass surface, estimated to be roughly 15 microns
below the swimming sperm [2, 11], together with suitable boundary conditions at spatial infinity.
The latter conditions here are simply that of no-flow. To detail the boundary conditions, let the
region external to the swimmer be denoted by Ω(t), with a time-dependent sperm cell boundary S,
and let any fixed boundary surfaces be denoted by S∗. Thus

u(x, t) = uS(x, t) for x ∈ S, u = 0 for x ∈ S∗, and u → 0 as |x| → ∞,

where uS(x, t) is the velocity at point x and time t on the surface of the sperm cell. In particular,
this can be written in terms of the velocity, U , and angular velocity Ω of a cell fixed reference
frame, without loss defined by an origin at the head-flagellum junction and axes fixed in the cell
body, together with the known, arclength and time dependent, velocity of the flagellum relative to
this cell fixed frame. A constitutive relation is required to close these equations. For a Newtonian
fluid, the stress tensor is given by

σij = −pδij + τij , i, j ∈ {1, 2, 3},

for a pressure field p, the Kronkecker delta δij , and a deviatoric stress tensor

τ = 2µD, where Dij =
1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

with µ the constant viscosity of the fluid. In contrast for a linear Maxwell fluid the deviatoric stress
tensor is instead given by

λ
∂τ

∂t
+ τ = 2µD,

where λ is the elastic relaxation time. The presence of a time derivative entails that the memory-less
property of Stokes flow is not inherited by the dynamics of a linear Maxwell fluid and thus one must
also give initial conditions. For definiteness we assume that sufficiently in the past, at t ≤ t0, the
sperm and flow are stationary and the pressure constant, without loss zero, though the impact of
the initial conditions decays on a timescale of λ , so that once t− t0 ≫ λ the impact of the initial
conditions is negligible.

2.3 The computational virtual sperm

In the Appendix we firstly demonstrate that, in the absence of inertia, predictions for the velocity
and trajectories of the sperm cell are unchanged between linear Maxwell and Newtonian fluids. Thus,
given the high viscosity medium is characterised by a linear Maxwell fluid with De ≈ 0.2, boundary
element methods can be used to calculate the linear and angular velocities of the cell, together with
its trajectory and surrounding flow field given the flagellar waveform of Fig. 2 [19, 20, 21, 22].

However, boundary element methods cannot be used analogously to exactly determine the mechan-
ical power consumption [20] for sperm swimming in HVM. The exact expression is given by

P =

∫

S
fhyd(x

′) · u(x′) dSx′ , (1)
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Figure 3: The tapering flagellum used for the power calculations, where in contrast to velocity
field and trajectory calculations, which are insensitive to such details, the flagellum profile has a
non-trivial, but modest, influence on the modelling predictions.

where fhyd is the surface traction on the cell surface S and its exact determination by boundary
element methods is limited to Newtonian media. Nonetheless, as demonstrated in the Appendix
via scaling relationships, using Newtonian theory as a proxy for linear Maxwell theory results in
estimates for the power, P , that are accurate to a relative error of about 100De% ≈ 20%, which is
sufficient for our purposes.

The computational human spermatozoon has a prolate ellipsoidal head which is deformed to generate
a typical human sperm cell body shape, with analytical expressions for the shape of the sperm head
given in previous studies [19, 20]. For many simulations, the cell body is connected to a cylindrical
flagellum of length L = 56µm (e.g. [23]) and diameter d = 250nm, as shown in Fig. 2c. The latter
is clearly an underestimate in the proximal region of the mammalian sperm flagellum, where the
diameter is about 1 micron (e.g. Fig. 5 in [24]) and an overestimate in the distal region where the
mammalian flagellum loses its accessory structures [16, 25]. However, previous studies show that
there is essentially no difference in modelling predictions of velocities with the boundary element
method and a prescribed waveform for flagellar diameters in the range of 0.1-1 microns, e.g. Fig. 4
of [19]. This is also observed here for the predicted fluid flows and therefore the simpler, cylindrical,
flagellum is used for flow calculations below. However, for power calculations the flagellum profile
can have a modest but non-trivial impact and hence for such calculations below we work specifically
with a tapering flagellum, as depicted in Fig. 3, where the most proximal flagellum diameter is 1µm.

3 Results

3.1 Time-averaged flow field

For simplicity, the fluid velocity field relative to the sperm head-tail junction is determined via BEM
in the absence of external boundaries. The magnitude of the resulting time-averaged velocity field
is presented in the flagellar beat plane (defined as the xy plane), and in a plane perpendicular to
the beat plane (defined as the yz plane) in Fig. 4 via the colourbar, with the projected streamlines
in white. Since the swimmer is force-free, the magnitude of the velocity field associated with sperm
swimming scales with r−2 in the far-field (Figure not shown), where r is the distance from the
head-flagellum junction. Hence the multipole expansion for the far flow field is not proportional
to a Stokeslet but instead a Stokeslet-dipole, λGd, where G

d is a Stokeslet-dipole, oriented such
that the forces lie on the time-averaged symmetry axis and push fluid away from the cell along this
axis. Thus when λ > 0 [26] the one can observe fluid moving away from the cell along its long
axis and the sperm is a pusher swimmer; the converse with λ < 0 is defined as a puller swimmer.
Unsurprisingly, one can infer the time-averaged swimming of the sperm corresponds to a pusher,
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Figure 4: The time-averaged fluid flow around a human sperm swimming in high viscosity medium
(HVM), relative to the sperm head-tail junction. The velocity magnitude is given in units of L/T
via the colourbar. (a) The time-averaged flow field magnitude is given by the colourbar and the
projections of the streamlines in the beating plane of the flagellum, which is defined as the xy plane,
are given in white. (b) The analogous plot for the time-averaged flow field in the plane perpendicular
to the beating plane, defined as the yz plane.

by inspection of Fig. 2, as also observed for sperm swimming in a low viscosity in vitro fertilisation
medium [11].

3.2 Coarse-graining the flow field

3.2.1 Dimensional reduction of the time-dependent flow field

The time dependent flow field surrounding the sperm has been calculated using the reconstructed
flagellar waveform, and is presented in a reference frame co-moving with the sperm as a movie
in the Supporting Material. Its complexity is illustrated by the changes in the direction of the
flow ahead of the sperm and hence we apply PCA to the fluid flow field to simplify its structure,
without an extensive loss of accuracy or information. Consider a uniform discretisation of time,
t1, . . . , tn and let m denote the number of mesh points in a spatial discretisation of the physical
domain, with α ∈ {1 . . . 3m} indexing the set (eq1(α),xq2(α)). Here, respectively, q1(α) ∈ {1, 2, 3} is
the axis associated with α, and q2(α) ∈ {1, . . . ,m} is the mesh point associated with α. Defining
uiα = eq1(α) · u(ti,xq2(α)), and the velocity field time average

ūα =
1

n

n
∑

p=1

upα, i ∈ {1 . . . n},

one can construct the covariance matrix

Svel
αβ =

1

n

n
∑

i=1

(uiα − ūα)(uiβ − ūβ),
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Figure 5: The first five PCA modes of the time-dependent fluid velocity field. With the same units
of L/T for velocity used in Fig. 4, the velocity magnitude of the flow projected on the flagellum
beat plane, the xy plane, is given by the colourbar, with the projection of the streamlines onto the
beat plane given in white.

of dimension 3m × 3m, thus allowing the implementation of PCA. Hence, we have a collection of
spatially homogeneous, temporally constant velocity fields for the PCA modes, the first five of which
are plotted in Fig. 5. Furthermore, the PCA expansion for the velocity field is simply a weighted
sum of such PCA modes, with time dependent coefficients, and the cumulative variances for the
first n terms, denoted cn, are given by c1 = 0.628, c2 = 0.901, c3 = 0.935, c4 = 0.956, c5 = 0.969.
Hence, even just an expansion with first two modes captures more than 90% of the variation in the
flow field.

3.2.2 Regularized Stokeslet decomposition

Following our previous study [11], we approximate the steady PCA modes with regularized Stokeslets
[27], which are more convenient than point singularities as they allow the representation of forces
that manifest over different lengthscales without large numbers of singularities. We proceed by
expanding the velocity field of PCA mode s, denoted ũs(x), via

ũs(x) =

Ks
∑

k=1

f (s,k) ·Gǫ(s,k)(x,x
(s,k)
0 ),

where

Gǫ =
(r2 + 2ǫ2)I + rr

(r2 + ǫ2)3/2

is a regularized Stokeslet [27], with r = x − x
(s,k)
0 , r = |r|, and I denotes the identity tensor.

Least squares fitting is used to determine the position of each singularity x(s,k) together with the
associated magnitude f (s,k) and regularization parameter ǫ(s,k), with the latter representing the
lengthscale over which each force contribution acts in the regularized Stokeslet decomposition. The
number of singularities in the summation, Ks, is determined by the minimal number that yield a
reasonable fit for each flow PCA mode, in this case K1 = 3, K2 = 4 for the lowest 2 modes and the
resulting coefficients for this decomposition of PCA modes are detailed in the Supporting Material.

To generate an approximation of the velocity field using regularised singularities, we project the
3m dimensional vector uiα of the original velocity field onto the span of the velocity vectors ũsα =
eq1(α) · ũ

s(xq2(α)), s ∈ {1, . . . , Q} for each time point i ∈ {1, . . . , n}. The resulting projection
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Figure 6: (a) The regularised Stokeslet approximation for the first two PCA modes of the velocity
field induced by sperm swimming in high viscosity medium. The origin, size and direction of
the arrows give the location, magnitude and direction of the force singularities. The circle radius
corresponds to the regularization parameter, ǫ. (b) The phase space of the first two PCA modes for
the velocity field associated sperm swimming in the high viscosity medium, with the colour evolving
with increasing time, from blue at early time to yellow. (c) A time plot of the coefficients for the first
two PCA modes in the phase space trajectory depicted by (b) in terms of the non-dimensional time,
t/T , where T is the beat period. (d)(e)(f) For comparison, the regularised Stokeslet approximation
for the first two PCA modes of the velocity field due to a sperm swimming in a low viscosity medium,
as determined by [11] are presented in (d) with the low viscosity analogues of (b)(c) given by (e),(f).
Reproduction of (d)(e)(f) with permission from [11].

at timepoint i is thus a weighted linear summation of the ũsα, and hence also a weighted linear
summation of regularised Stokeslets. For the latter summation the coefficients in general vary with
the timepoint i but are the same for each collection of regularised Stokeslets approximating a given
PCA mode.

This approximation to the original velocity field at timepoint i, at meshpoint q2(α) and in the
direction q1(α) is denoted u∗Qiα and can be used to construct the 3m× 3m covariance matrix

S∗Q
αβ =

1

n

n
∑

i=1

(u∗Qiα − ū∗Qα )(u∗Qiβ − ū∗Qβ ), (2)

with the temporal average ū∗Qα defined analogously to the average of the observed velocity field.
Then the ratio trace (S∗Q)/trace(Svel) is a measure of the proportion of the variance in the original
flow that is captured by regularized Stokeslet approximation of the Q-level PCA mode expansion. In
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turn, the cumulative contribution rate for the regularised Stokeslet approximation to the Q = 2 PCA
expansion is 0.878, which is very close to the cumulative variance of the Q = 2 PCA decomposition,
namely c2 = 0.901.

Therefore, the lowest two flow PCA modes are each well approximated by a regularized forces, with
no net force acting on the sperm with three and four lateral forces along the flagellum, corresponding
to K1 = 3, K2 = 4, as summarized in Fig. 6a. Focusing on the forces active along the flagellum,
the two modes of lateral forces in the high viscosity medium are oscillatory and out of phase with
respect to arclength variation, as observed in Fig. 6a. Their respective time-dependent coefficients
are given in the Supporting Information and exhibit both an oscillation and a phase-lag, as seen in
the phase plane trajectory of Fig. 6b and the plot of coefficients with time in Fig. 6c. In addition
the arclength and temporal phase lags are such that these two standing waves combine to give a
travelling wave along the flagellum to good approximation.

For instance, mode 2 has a time-dependence in phase with sin(ωt) from Fig. 6c, while mode 1 is
approximately in phase with − cos(ωt). Noting that y in this plot decreases along the flagellum, the
spatial dependence of the mode 2 contribution is in phase with sin(k(y + ξ)), with ξ ∼ 0.55, while
mode 1 has a spatial dependence in phase with − cos(k(y + ξ)). This may be as inferred by noting
that mode 2 is of zero magnitude at y = −ξ, and increasing as y decreases from y = −ξ, while
mode 1 is of peak negative amplitude at y = −ξ. There is clearly also an arclength modulation
of the wave amplitude, summarised by the function A(y), and so we have that the sum of the two
standing waves is approximately

A(y) [cos(ωt) cos(k(y + ξ))− sin(ωt) sin(k(y + ξ))] = A(y) cos(k(y + ξ) + ωt),

which is an amplitude-modulated travelling wave in the negative y-direction, towards the distal
flagellum. Associated with this wave are the corresponding lateral forces on the sperm cell body, as
given by the regularized stokeslets near y = 0 in Fig. 6a.

A further, perhaps counter-intuitive, feature of high viscosity swimming is that the majority of
the forces in the regularized Stokeslet expansion are predominantly lateral. In particular, the
proportion of the forces along the axis of symmetry of the sperm cell are small in comparison to a
sperm swimming in a low viscosity, in vitro fertilization, medium as may be inferred by comparing
Fig. 6a, with Fig. 6d, with the latter taken from [11]. Hence even though the forces along the
flagellum ultimately are responsible for progressive motility, they are sub-dominant within the local
forces exerted the sperm flagellum in high viscosity media. A final contrast with the low viscosity
results is that in high viscosity swimming, the coefficient for the leading order Stokeslet-dipole in
the far-field multipole expansion is always positive throughout the beat cycle in a high viscosity
medium. This is pusher swimming, in contrast to low viscosity human sperm motility, where the
cell periodically behaves like a puller, even though its beat period averaged behaviour is that of a
pusher [11].

3.3 Swimming velocity, power and efficacy

We use the limit cycle reduction of the digitally captured flagellar wave in a high viscosity medium
(see Fig. 2c). Denoting the time-average during one beat period as a bracket, 〈 〉, the progressive
swimming velocity and hydrodynamic power consumption are respectively given by

|〈VHVM 〉| = 5.1× 10−2 L

THVM
, 〈PHVM 〉 = 3.1× 10−2 µ

HVML3

(THVM )2
,
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where V is the swimming velocity, L is the flagellum length, T the beat period and µ the viscosity
with the label HVM referring to high viscosity media. These values can be contrasted with the
values for the human sperm in a watery low viscous medium [11], for which we have

|〈VLVM 〉| = 1.2× 10−1 L

TLVM
, 〈PLVM 〉 = 2.3× 10−2 µ

LVML3

(TLVM )2
,

where the label LVM refers to low viscosity media.

Note that the viscosity scales by a factor of about 155 between the high and low viscosity media
and the beat period is 2.3 times as long in the high viscosity medium [2]. Hence we have the ratio
of average dimensional velocities and powers are given by

|〈VHVM 〉|

|〈VLVM 〉|
≈
TLVM

THVM

5.1× 10−2

1.2× 10−1
= 0.18,

〈PHVM 〉

〈PLVM 〉
≈

(

TLVM

THVM

)2
µHVM

µLVM

9.89× 10−5

1.1× 10−3
= 3.9.

Note that despite an increase in viscosity of over 150 times, the progressive velocity reduces only
by a factor of ≈ 5, with an increase in the power output of only a factor of ≈ 4.

Further note that the ratio of progressive velocities is strongly influenced by the fact that in low
viscosity, there is extensive sperm cell yawing as reported in [2, 11], and also shown in Fig. 2e.
In contrast, if velocity magnitudes are taken before averaging and comparison, which takes into
account the lateral movements of the cell in low viscosity media due to cell yawing, the ratio of
dimensional velocities is given by

〈|VHVM |〉

〈|VLVM |〉
≈ 0.048.

In particular, this change in velocity is due to cell yawing in the low viscosity medium since
〈|VLVM |〉 ≈ 3.8|〈VLVM 〉|.

Swimming efficiency is regularly considered in theoretical studies, and is defined via the ratio of
the power needed to push a sphere of the same volume as the cell to the mechanical power of the
swimming motion at the same mean speed. It is thus proportional to the ratio of the square velocity
to power [28]. However, our focus does not concern mechanical energy usage relative to driving a
sphere, which addresses the impact of morphology for instance, but rather a comparison of the
progression distance of a sperm cell for each unit of mechanical energy for motility in low and high
viscosity media. Given power is energy per unit time and velocity is distance per unit time, we thus
require the ratio of velocity to power to access the distance travelled per unit of mechanical energy,
which is equivalent to the reciprocal of the “cost of transport” used in allometric scaling studies (e.g.
[29]). Hence we define efficacy as the progressive swimming speed per unit of power consumption
for the swimming sperm explicitly by

ζ =
|〈V〉|

〈P 〉
, (3)

where the brackets denote beat cycle averaging and we explore how this efficacy changes between
swimming in high and low viscosity media.

First we note that with uf (s, t) denoting the flagellum velocity, as a function of flagellum arclength
and time and relative to the reference frame fixed in the sperm cell body, the underlying equations
and boundary conditions for the fluid flow exhibit the invariance

(µ, p,u,σ,uf ) → (Λµ,Λp,u,Λσ,uf ).
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Hence, if the viscosity increases by a factor of Λ and the flagellum waveform is the same, then a
solution of the sperm swimming problem is obtained with the same swimming speed and the power
expenditure increased by a factor of Λ. Thus for fixed kinematics, that is a fixed flagellum waveform,
and an increase in the viscosity by a factor of Λ we have the efficacy ζ reduces by factor of Λ and
the viscosity-efficacy ratio

η :=
µHVMζHVM

µLVMζLVM

is unity.

Of course, the waveform does not remain unchanged with changes in viscosity. If on increasing
the viscosity by a factor of Λ, the resulting changes of the flagellum result in an efficacy that is
higher than the scaling result with fixed kinematics, then η will be greater than one. In other
words, on comparing swimming in two viscosities differing by a factor of Λ = µHVM/µLVM , then a
viscosity-efficacy ratio of η > 1 characterises a change in waveform that produces more progressive
velocity per unit of mechanical power consumption in the higher viscosity medium relative to the
1/Λ reduction associated with keeping the waveform fixed.

Explicitly calculating η from the data we find

η =
µHVM

µLVM

|〈VHVM 〉|

|〈VLVM 〉|

〈PLVM 〉

〈PHVM 〉
≈ 155× 0.18×

1

3.9
≈ 7.2.

Hence, the change in the sperm flagellum waveform results in substantially greater efficacy in moving
through a viscous fluid compared to swimming with the same waveform. A fundamental question
is whether the data presented here can also suggest why the waveform change might lead to this
improvement of progressive velocity per unit power and we explore this further below.

In particular, the absence of cell-yawing in the high-viscosity medium does not appear to be sufficient
to explain this observation in isolation, as taking the velocity magnitude before averaging yields a
viscosity-efficacy ratio of

µHVM

µLVM

〈|VHVM |〉

〈|VLVM |〉

〈PLVM 〉

〈PHVM 〉
≈ 155× 0.048×

1

3.9
≈ 2 > 1.

Consequently, a contribution to the above improvement observed in the efficacy associated with
the flagellum waveform change is observed even when examining averaging only after taking the
velocity magnitude and thus accounting for yaw. Hence, the loss of cell yawing cannot fully explain
the relatively increased efficacy that accompanies the change in flagellar waveform for high viscosity
swimming. Other factors thus contribute, such as the change in internal mechanics of the flagellum
associated with the changed waveform. Nonetheless, these scales also indicate that the loss of cell
yawing is the most important factor in the relative improvement of progressive swimming speed per
unit of mechanical power imparted to the surrounding fluid with waveform change for a sperm, on
comparing the mechanics of swimming in a low viscosity and a high viscosity medium.

4 Discussions and Conclusions

We have first of all examined the flow field generated by a sperm swimming in a high-viscosity, weakly
elastic, medium of dilute methylcellulose. Using techniques that have been previously reported
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[12, 13] we used principal component analysis (PCA) to simplify the beating pattern of the flagellum,
via a limit cycle in the PCA phase space, and this simplified beat pattern was then used to determine
the velocity field surrounding the sperm using boundary element method (BEM) calculations and
this field was then also approximated in terms of velocity PCA modes [11]. This velocity field was
further approximated using a small number of regularized Stokeslets and we confirmed that such
approximations nonetheless capture most of the variance of the flow field.

Even a superficial inspection of the high viscosity flows compared to the low viscosity flow, for
instance by comparing Fig. 6a, with Fig. 6b, confirms the many previous observations that the
surrounding fluid is a major regulator of sperm behaviour [30, 31, 2, 9]. Considering this contrast in
more detail, we have from previous studies [11] that in low viscosity media, the overall impact of the
sperm on the surrounding fluid is effectively blinking dynamics, associated with turning the PCA
modes on and off in time, which gives rise to phase trajectories that are approximately cross-like
with only one mode active at most timepoints during the beat cycle (Fig. 6e,f and [11]). In contrast
for the flows induced by high viscosity swimming we have, to a good approximation, a temporally
phase-lagged sum of two spatially phase-lagged standing waves, which is equivalent to a travelling
wave of forces propagating down the flagellum. Such differences far exceed the fluctuations observed
in the data for an individual cell, as emphasised by the small differences between the phase plane
points and the average limit cycle.

There are also further differences, for example in high viscosity media the sperm has always been
observed to be a pusher, whilst sperm swimming in low viscosity media are pullers at certain points
in the beat cycle. Finally, in high viscosity media the forces induced by sperm on the surrounding
fluid are predominantly lateral only, in contrast to low viscosity swimming but the extent of cell
yawing is greatly reduced in high viscosity media, with the latter observation reported in [9].

These observations emphasize that the mechanics of sperm interactions with their surrounding
fluid, and the surrounding flow fields, are fundamentally altered with changes in rheology. Thus
the hydrodynamic interactions of sperm with each other, obstacles and boundaries differ in high
viscosity media, as is the means by which a sperm exerts its influence and experiences the influence
of surrounding cells and boundaries via the surrounding flow field. Hence, for example, a physical
understanding of sperm populations or sperm behaviours in confined geometries will fundamentally
differ with the rheology of the surrounding media. While such observations have been made
previously [30, 9], the results presented here provide a means of quantifying and predicting the
impact of such differences. For example, the regularised Stokeslet expansion may be used to
upscale individual behaviours into population level models and thus provide a prospective means
for predicting how population level sperm behaviour depends on rheology. In turn this will allow
predictive modelling for the consideration of how sperm population behaviours are altered by their
physical microenvironment. Furthermore, if such a predictive framework proves to be informative,
it can increase our understanding of how population behaviours within the low viscosity media of
standard clinical diagnostics and prospective sperm handling microdevices [32, 33, 34] translate to
the in vivo setting.

Despite the increase in viscosity by two orders of magnitude, we observe that the progressive
swimming velocity and mechanical power output of the flagellum in low and high viscosities are
still within an order of magnitude between the media. Furthermore, the viscosity-efficacy ratio, η
increases by a factor of about 7 on comparing high and low viscosity media. In turn, this indicates
that the changes of the sperm flagellum waveform induce a greater efficacy, that is velocity per unit
of mechanical power or distance per unit of mechanical energy, than would occur if the flagellum
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waveform was the same in the two media. Such observations are also consistent with prior modelling
observations of improved mean sperm velocity per unit of mean mechanical power in high viscosity
Newtonian media, deduced by simulating across a two-parameter family of waveforms constructed
with cubic splines and adaptive knots to capture approximations of both low and high viscosity
beat patterns [35].

In this study we proceeded to demonstrate that a factor of approximately 4 in the viscosity-efficacy
ratio arises from the loss of yawing in the high viscosity medium. Thus, while there clearly is
about a factor of two increase in the viscosity-efficacy ratio arising from the internal mechanics
of the flagellum, as might ultimately be explained by changes in the numbers and rates of dynein
contractions and the force-velocity curves of dynein contraction [8, 7], the dominant contribution
to the relative improvement in progression per unit of power appears to be the loss of yawing. This
is despite the observation that the forces exerted by the flagellum on the fluid are predominantly
lateral for the waveform in high viscosity. Instead, the loss of yaw might be anticipated by the high
wavenumber of the distal flagellum beat in a more viscous medium, leading to a cancellation of
lateral forces along the flagellum at any given instant, compared to low viscosity swimming where
the flagellum is significantly less than two wavelengths. The changes in beat pattern wavelength
can also be inferred from the increase in regularised Stokeslet density along the time-averaged
symmetry axis of the cell, on comparing Fig. 6(b) with Fig. 6(a). However, one must recognise
that conclusions drawn on such observations arise from comparing the observations of two sperm
flagellum waveforms, albeit waveforms that are representative of the most highly motile human
sperm in the respective low and high viscosity media, as reported previously [2].

Subject to such caveats, this study therefore highlights that understanding the dominant mechanism
governing the counter-intuitive effectiveness of progressive sperm swimming in very viscous media
requires a focus on wavelength selection. In particular, one should consider the reduction of the
wavelength associated with the distal waveform (Fig. 1a) in models of beat pattern formation and
dynein regulation. In turn this suggests that flagellar self-organisation models incorporating motor-
control mechanisms [36, 37, 38, 39, 40, 41, 42] have the prospect of probing and predicting the
conditions for when sperm do, and do not, yaw and thus when the dominant mechanism observed
here for maintaining progression in high viscosity media given a limited power output will be
present. While current models of flagellar beating may need refinement and further study to address
such questions, one can nonetheless observe that increasing viscosity decreases the wavelength (e.g.
Fig. 2d[inset] of [42]), further indicating that the required waveform behaviour may emerge from
relatively simple biophysics.

In summary, using PCA data reduction and boundary element methods we have highlighted that
with an increase in viscosity by two orders of magnitude the human sperm flagellum induces a fluid
flow that is well approximated by travelling wave of regularized points forces along the flagellum,
in contrast to blinking, that is pulsing, force singularities in low viscosity media [11]. Such results
are likely to find application in developing population level models of sperm dynamics that upscale
individual level information. Furthermore, a consideration of efficacy for sperm swimming in high
and low viscosity media emphasises that the loss of cell yawing is the dominant feature in explaining
how sperm can progress effectively with a limited power output despite very large increases in
viscosity. In turn, this loss of yawing is anticipated to be due to the increase in the density of
regularized forces along the time averaged symmetry axis of the cell in PCA approximations, thus
indicating that understanding the dominant features of sperm progression at high viscosity might
be reduced to a problem of wavelength selection in the complex self-organisation of the beating
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pattern in the mammalian flagellum.
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A On the relation between Stokes flow and linear Maxwell theory

A.1 Velocity fields and cell trajectories

The Newtonian momentum equations reduce to

−
∂p

∂xi
+ µ∇2ui = 0.

With pM and uM hereafter referring specifically to the linear Maxwell solution, one has that applying
the operator L := (1 + λ∂/∂t) to the linear Maxwell fluid momentum equations gives

−
∂

∂xi
LpM + µ∇2uMi = 0

Hence setting
uMi = ui, pM = L−1p,

solves the bulk equations and satisfies all boundary conditions. Given the sperm is also be imposed
to be at rest for t ≤ t0 the above initial conditions are also satisfied, and the inverse operator L−1

is unique and we have a solution of the linear Maxwell problem with velocities identical to those of
the Newtonian flow field problem. Since the velocity fields are predicted to be identical, so is the
boundary velocity at all points on the rigid cell body and hence the cell body motion is identical,
which fixes the predictions for the velocity and angular velocity of the cell fixed frame relative to
the inertial frame, that is U and Ω, to be identical. Noting the flagellum motion relative to the
cell fixed frame is identical by model construction, we have that the motion of the cell and thus its
trajectory are identical. An alternative, more formal, proof of this result can also be found in recent
work detailing the construction of a viscoelastic boundary element algorithm for microswimming
[22]. However, the pressure differs between the linear Maxwell and Newtonian predictions and more
generally so do the predictions of forces, stresses, power and efficacy.
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A.2 Power calculations

Noting that predicted velocities are indistinguishable, the mechanical power for the Newtonian and
linear Maxwell theory are respectively given by

P =

∫

S
uiσijnjdS, PM =

∫

S
uiσ

M
ij njdS,

with nj the jth component of the unit normal. Further, the Newtonian and linear Maxwell stress
are related via

σij = −pδij + 2µDij = −LpMδij + LτMij = LσMij = σMij + λ
∂σMij
∂t

,

and hence

P − PM =

∫

S
ui(σij − σMij )njdS =

∫

S
uiλ

∂σMij
∂t

njdS.

However, as we have seen from Figs. 1b,2a,2d, there is a single dominant angular frequency ω, such
that

∂

∂t
∼ ω

and the Deborah number is given by De = λω ≈ 0.2. Hence the scale of the relative error in using
the Newtonian power, P , to approximate the linear Maxwell power, PM , is given by

∣

∣

∣

∣

P − PM

PM

∣

∣

∣

∣

∼ O

(
∫

S uiλωσ
M
ij njdS

∫

S uiσ
M
ij njdS

)

∼ O (De) ,

and thus the relative error is of the scale of the Deborah number, as used and stated in the main
text.
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