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Abstract1

Spatially-explicit approaches have been widely recommended for various applications2

of ecosystem management. In practice, the quality of the data involved in the manage-3

ment decision-making, such as presence/absence or habitat maps, affects the manage-4

ment actions recommended, and therefore it is a key to management success. However,5

available data is often biased and incomplete. Although previous studies have advanced6

ways to effectively resolve data bias and missing data, there still remains a question7

about how we design the entire ecological survey to develop a dataset through field sur-8

veys. Ecological survey may inherently have multiple spatial scales to be determined9

beforehand, such as the spatial extent of the ecosystem under concern (observation10

window), the resolution to map the individual distributions (mapping unit), and the11

area of survey within each mapping units (sampling unit). In this paper, we develop a12

theory to understand ecological survey for mapping individual distributions applying13

spatially-explicit stochastic models. Firstly, we use spatial point processes to describe14

individual spatial placements drawn using either random or clustering processes. An15

ecological survey is then introduced with a set of spatial scales and individual de-16

tectability. Regardless of the spatial pattern assumed, the choice of mapping unit17

largely affects presence mapped fraction, and the fraction of the total individuals cov-18

ered by the presence mapped patches. Tradeoffs between these quantities and the19

resolution of the map are found, associated with an equivalent asymptotic behaviors20

for both metrics at sufficiently small and large mapping unit scales. Our approach21

enables us to directly discuss the effect of multiple spatial scales in the survey, and22

estimating the survey outcome such as the presence mapped fraction and the number23

of individuals situated in the presence detected units. The developed theory may sig-24

nificantly facilitate management decision-making and inform the design of monitoring25

and data gathering.26
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1 Introduction27

Understanding the spatial characteristics of ecosystems is one of the central challenges in28

ecology [1]. Such knowledge forms a prerequisite for effective ecosystem management due to29

an increasing need for spatially explicit approaches in fisheries and wildlife management [2–4]30

and for the establishment of terrestrial and marine protected areas [5–7].31

In ecosystem management, the quality of the data involved in the management decision-32

making, such as presence/absence or habitat maps, affect the management actions recom-33

mended [8–10]. Therefore, creating an ecologically and statistically adequate dataset is key34

to management success. However, available data is often biased and incomplete [8, 9], due35

to, for example, different accessibility to sites [8], existence of the favored study sites [8], and36

imperfect detectability of individuals [11, 12]. These biases hinder the effective implemen-37

tation of management actions, and may lead to perverse outcomes or wasted management38

resources. Hence it is important to discuss and benchmark the quality of the spatially explicit39

data that underlies management decisions.40

There is a body of literatures to tackle the challenges of data gathering, including sam-41

pling designs for effectively allocating the survey effort under the time and budgetary con-42

straints [13–15], methods for reducing the bias of occurrence data by estimating the de-43

tectability of species [12, 16–18], and mathematical theory for ecological sampling [19, 20].44

Although these researches have significantly advanced our insight into ecosystem monitoring45

and ecological survey, there still remains a question about how we actually design the entire46

ecological survey to systematically develop dataset through a field survey, as the spatial scale47

issue, such as how to chose the resolution of a map, is often omitted. This is perhaps because48

many existing studies consider the space to be sampled implicitly. Presence/absence or habi-49

tat map is widely used in ecosystem management [16], where at least three different spatial50

scales may exist; the spatial extension of the ecosystem under concern, resolution to map51
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the individual distributions, and minimum size of survey units. To systematically gather52

the spatial data, manager should explicitly take into consideration these three spatial scales,53

because the manner of the sampling and management outcomes depend on the resolution of54

a map. For example, in fisheries management, finely implemented fishing quota allocations55

may result in better management outcomes [7, 21], and this can be done with the distri-56

bution map with a high degree of resolution. However, surveying an area at a fine spatial57

scale is often impractically expensive in the large scale survey, and the choice of resolution58

itself faces a budgetary constraint. Hence, quantitatively estimating the performance of a59

sampling method in advance facilitates survey decision making.60

In this paper, we develop a theory of ecological survey method for systematically mapping61

individual distributions by making use of the spatial point processes (SPPs), a spatially62

explicit stochastic model. The SPPs is widely applied to the study of plant community63

[22–25], coral community [26], and avian habitat selection [27]. Therefore, they are potential64

target species of the developed theory. However, the method developed here may be suitable65

for any organism or the location used by an organism (e.g., nesting site) that is relatively66

sedentary on a time and spatial scale of the field survey where its spatial distributions can be67

described by SPPs [28]. In this study, the SPPs describes individual spatial locations by two68

different processes accounting random or clustering patterns. An ecological survey is then69

introduced with a set of spatial scales and detectability of individuals. Our spatially-explicit70

approach is capable of revealing a series of questions important for ecological survey, such71

as effect of the choice of the spatial scales and spatial distribution patterns of individuals on72

accuracy of the distribution map. This knowledge enables one to determine the design of an73

ecological survey beforehand given accuracy of a map required. The developed theory may74

significantly facilitate management decision making and give solid bases of data gathering.75
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2 Methods76

2.1 Models of spatial distribution of individuals77

To develop a theory of ecological survey to map individual distributions, we explicitly model78

the spatial distribution patterns of individuals. Spatial point processes (SPPs) [22, 25] pro-79

vide models to describe such patterns with high flexibility and analytical tractability [24].80

Here, we apply the homogeneous Poisson process and the Thomas process, a family of81

the Neyman-Scott process (Fig. 1). One of the simplest SPPs is the homogeneous Poisson82

process where the points (i.e. individuals) are randomly distributed and the number of points83

of a given region A, N(A), is according to the Poisson distribution with an average µA:84

Prob(N(A) = k) =
µk
A

k!
e−µA , (k = 0, 1, . . . ) (1)

where, µA is also regarded as the intensity measure [22, 25] described as85

µA = λν(A), (2)

where, λ = (total points)/(area of concerned region A) is the intensity in the given region,86

and ν(A) is the area of A.87

The Neyman-Scott process [22, 25] provides us more general framework to analyze spa-88

tial ecological data and characterize the clustering pattern of individuals [22–25]. By the89

following three steps, the Neyman-Scott process is obtained:90

• Parents are randomly placed according to the homogeneous Poisson process with an91

intensity λp.92

• Each parent produces a random discrete number c of daughters, realized independently93

and identically for each parent.94

5



• Daughters are scattered around their parents independently with an identical spatial95

probability density, f(y), and all the parents are removed in the realized point pattern.96

The intensity of the Neyman-Scott process is [25]97

λ = c̄λp, (3)

where, c̄ is the average number of daughters per parent. The probability generating functional98

(pgfl) of the number of daughters within a given region of the Neyman-Scott process is [22,25]99

G(v) = exp

(

−λp

∫

Rd

[

1−Gn

(
∫

Rd

v(x+ y)f(y)dy

)]

dx

)

, (4)

where, Gn

(∫

Rd v(x+ y)f(y)dy
)

is the probability generating function (pgf) of the random100

number c, the number of daughters per parent.101

The Thomas process is a special case of the Neyman-Scott process, where f(y) is an102

isotropic bivariate Gaussian distribution with the variance σ2 [25]. We also assume that the103

number of daughters per parent follows the Poisson distribution with the average number, c̄.104

The pgfl of the Thomas process, Eq. (4), within a given region A is obtained by substituting105

the pgf of the number of daughters per parent Gn in Eq. (4). It is obtained, by the given106

assumptions, as107

Gn

(
∫

Rd

v(x+ y)f(y)dy

)

=
∞
∑

k=0

(
∫

Rd

v(y)f(y − x)dy

)k
c̄k

k!
e−c̄, (5)

= exp

[

−c̄

(

1−

∫

Rd

v(y)f(y − x)dy

)]

,

= exp

[

−c̄(1− t)

(
∫

A

f(y − x)dy

)]

,

where, to obtain the last line, v(y) = 1−(1−t)1A(y) is used, and here 1A(y) is the indicator108

function. Therefore, the pgfl of the number of daughters within the region A of the Thomas109
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process is110

G(t) = exp

(

−λp

∫

R2

[

1− exp

{

−c̄(1− t)

(
∫

A

k(∥x− y∥)dy

)}]

dx

)

, (6)

where, k(∥x− y∥) is an isotropic bivariate Gaussian distribution with variance σ2,111

k(∥x− y∥) =
1

2πσ2
exp

(

−
∥x− y∥2

2σ2

)

. (7)

In order to reasonably compare the results of Thomas process with those of the homo-112

geneous Poisson process, we chose the intensity of the Thomas process so as to have, on113

average, the same number of points within the concerned region. Namely, the parameters114

λp and c̄ satisfy115

c̄λp = λ, (8)

where, the left hand side (lhs) is the intensity of the Thomas process and the right hand side116

(rhs) is the intensity of the homogeneous Poisson.117

2.2 Design of ecological survey118

2.2.1 Survey rules and basic properties119

Let us consider the situation where an ecological survey takes place for the purpose of120

creating a presence/absence map of a given region. A presence/absence map is characterized121

by the three spatial scales: the observation window (W ), the spatial scale of ecological survey122

conducted, the spatial scale of the mapping unit (M) defining the resolution of the map, and123

the spatial scale of the sampling unit (S) determining the sampling density within each124

mapping unit (Fig. 2). We assume the following three key sampling rules.125

• The observation window, resolution of map (i.e., scale of the mapping unit), and sam-126
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Figure 1: Example of point patterns within a observation window 1024m × 1024m. (a)
Homogeneous point process with the intensity λ = 10−3; (b) Thomas process with the
same intensity value as the homogeneous Poisson process λpc̄ = λ, where λp = 10−4 and
c̄ = 10. The variance of the bivariate normal distribution σ2 = 100. See the text for the
interpretations of the parameters.

pling unit, are arbitrary determined, but single resolutions are allowed for each of the127

spatial scales.128

• Every mapping unit is assessed by sampling unit, and sampling location is determined129

randomly within the mapping unit.130

• A mapping unit is recorded as presence if at least one individual is detected regardless131

of the number of miss detections. If there is no individual or all individuals are miss132

detected within the mapping unit, the mapping unit is recorded as absence.133

Through the second and third assumptions, changing the scale of the mapping unit affects134

the obtained presence/absence map (Fig. 3).135

2.2.2 Modeling the ecological survey136

Here, we model the ecological survey with the three main assumptions listed above. Let, on137

average, N individuals of a species be distributed over a given window W , which is the region138
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Spatial scale

S

M

W

Figure 2: Multiple spatial scales in ecological survey. Each scale is arbitrary determined by
managers.

under concern (i.e., N = N(W )). The manner of individual distribution follows either the139

homogeneous Poisson process or the Thomas process. The resolution of the presence/absence140

map is defined by the scale of mapping unit M , and every mapping unit is sampled with the141

sampling unit S (Fig. 3). The survey is associated by the sampling error for each individual142

at a probability γ := 1 − β, which is the probability at which individuals are not detected143

despite being present, and where, β is the detectability of an individual. For simplicity, we144

assume that the areas of each mapping unit is 1, 2, 4, . . . , or 2n times smaller than the area145

of a given window W . Let ν(X) be the area of a region X. With the definitions detailed146

above, we obtain147

ν(M) = ν(W )/2m, (m = 0, 1, . . . , n) (9)

where, the superscript m represents the number of subdivisions of the window W . From Eq.148

(9), the number of mapping units within a given window W , is149

Number of mapping units = ν(W )/ν(M) = 2m. (10)
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As the record for each mapping unit is based on an survey within the mapping unit, we150

obtain151

ν(S) = αν(M) ≤ ν(M), (0 < α ≤ 1) (11)

where, α is the sampling density within a mapping unit. Combining Eq. (9) and Eq. (11),152

we obtain153

ν(S) ≤ ν(M) ≤ ν(W ). (12)

Let the intensity of the points within a given window W be [22, 25]154

λ =
N(W )

ν(W )
. (13)

As we noted above, the parameters for the Thomas process are chosen so as to satisfy Eq.155

(8).156

2.3 Assessing accuracy of presence/absence map157

Given the spatial point pattern, sampling density, α, detectability of an individual, β, and158

scale of mapping unit, M , we calculate two main quantities of the ecological survey. That159

is, the presence mapped fraction (PM fraction), and, the fraction individuals covered by160

presence mapped patches (IC fraction):161

PM fraction =
# presence units mapped

# presence units exists
, (14)

IC fraction =
# individuals in mapped units

# total individuals
. (15)

The presence mapped fraction is the fraction to map presence units correctly and it is162

connected with type II error (i.e., 1− (PM fraction) is the probability of type II error in the163

obtained map). Instead, the IC fraction, although this measure has not been investigated164
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to our knowledge, connects the PM fraction with population abundance in the observation165

window W . For example, let us assume that we find the values of PM and IC fraction are 0.8166

and 0.95 respectively given a survey scenario. In that situation, we would expect that 95%167

of the total individuals in the observation window are situated within the presence mapped168

units. Therefore, the IC fraction also provides useful information for conservation. Examples169

of PM and IC fraction values are shown in Fig. 3. It is also expected that the difference170

between the average PM fraction and IC fraction increases as the degree of clustering in the171

distribution patterns increases, since the individual number is biased to certain (moderate-172

sized) mapping units and such sites are more likely to be mapped as presence.173

The type II error is often a concern in ecological monitoring to estimate how the monitor-174

ing is accurate (e.g., [13]). Nevertheless, we apply the PM fraction in the following analysis175

to facilitate a comparison of the two measures, since PM and IC fractions have similar curves176

as we will see below. As noted above, however, the type II error is easily obtained from the177

PM fraction.178

The presence mapped fraction is obtained by179

EΛ,(β,S,M)[PM] =
1− p(find 0 individual in S | β)

1− p(N(M) = 0)
, (16)

where, Λ indicates the underlying point pattern. On the other hand, the form of the fraction180

of total individual situated within presence-mapped units is described as181

EΛ,(β,S,M)[IC] =
2m

µW

∞
∑

k=1

p(find at least 1 individual in S | N (M ) = k , β) (17)

×kp(N(M) = k),

where, 2m is the number of mapping units as Eq. (10). Since the IC fraction is rather182

cumbersome to derive analytically for the Thomas process, we only provide an analytical183
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expression of the IC fraction for the homogeneous Poisson process, and give numerical results184

for the Thomas process.185

2.4 Numerical settings186

In addition to the IC fraction of Thomas process, we conduct numerical simulations to check187

our analytical results by our own C code (available on request). Implementing numerical188

simulations is straightforward by taking first two steps (a) and (b) as shown in Fig. 3, and cal-189

culate PM and IC fraction values by counting the detected habitats and individuals therein.190

We repeat 1000 times this simulation to obtain the 5, 25, 50, 75, and 95 percentile values.191

We set a observation window to 1024m × 1024m, and mapping unit is 21, 22, · · · , 217 times192

smaller than the observation window. We also set the sampling density and detectability to193

0.5 and 0.9, respectively. The other parameter values are the same as in Fig. 1.194

3 Results195

3.1 Ecological survey with individual distributions based on the196

homogeneous Poisson process197

Where individuals are distributed in space based on the homogeneous Poisson process, pres-198

ence mapped fraction from Eq. (16) is199

Epo,(β,S,M)[PM] =
1− e−βλν(S)

1− e−λν(M)
=

1− e−αβλν(M)

1− e−λν(M)
, (18)

where, the equality ν(S) = αν(M) is used. Eq. (18) has rather simple form and, thus, we200

can easily see the parameter dependence. The intensity of the points λ (Eq. 13) defines the201

average number of individuals existing within a given the observation window, W , and since202
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dEpo[PM]/dλ ≥ 0, Epo[PM] increases as the average number of individuals increase, and vice203

versa. Especially, when the intensity becomes λ → ∞, Epo[PM] becomes 1 regardless of the204

scale of mapping units. Intuitively, as the sampling density α and detectability β increase,205

Epo[PM] increases, and vice versa. The asymptotic behavior M → 0 of Eq. (18) is obtained206

by expanding about ν(M)207

lim
M→0

Epo,(β,S,M)[PM] ≃ αβ. (19)

Since the zero probabilities p(N(S) = 0 | β) and p(N(M) = 0) approach to 0 as M → W208

given the observation window, W , is sufficiently large, we obtain209

lim
M→W

Epo,(β,S,M)[PM] ≃ 1. (20)

These results show good agreement with the numerical results (Fig. 4a).210

For the homogeneous Poisson process, we can derive an analytical form of the average211

fraction of individuals covered within presence mapped patches (IC) as follows:212

Epo,(β,S,M)[IC] =
2m

µW

∞
∑

k=1

{

1−

(

1− β
ν(S)

ν(M)

)k
}

k
(λν(M))k

k!
e−λν(M),

=
2m

µW

∞
∑

k=1

{1− (1− αβ)k}k
(λν(M))k

k!
e−λν(M),

=
2mλν(M)

µW

∞
∑

k=1

{1− (1− αβ)k}
(λν(M))k−1

(k − 1)!
e−λν(M), (21)

= 1− (1− αβ)e−λν(M)

∞
∑

k=0

((1− αβ)λν(M))k

k!
,

= 1− (1− αβ)e−αβλν(M),

where, on the first line of rhs, 2m is the number of mapping units within the given window213

W , inside of the curly brackets is the probability that none of k points are detected by a214

survey given a mapping unit M , and the remaining term is the expected number of points215
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within the mapping unit. The second line is obtained by using the fact ν(S) = αν(M). To216

derive the fourth line, we used µW = 2mλν(M), and this equality is easily obtained by Eqs.217

(2) and (9). The dependences of the parameters λ, α, and β are qualitatively the same as218

those of Eq. (18). In addition, the asymptotic behaviors of Eq. (21) are equivalent to Eqs.219

(19) and (20). Fig. (4b) confirms the analytical evaluations of Epo[IC].220

Difference between PM and IC fractions appears with an intermediate mapping unit (see221

Fig. A.1 for a direct comparison), but the deviations are relatively small and these curves222

have similar forms, suggesting that the degree of clustering is not large.223

3.2 Ecological survey with individual distributions based on the224

Thomas process225

Here we consider the situation where individuals are distributed according to the Thomas226

process. By Eq. (16), we calculate the presence mapped fraction for the Thomas process:227

Eth,(β,S,M)[PM] =
1− pth(N(S) = 0 | β)

1− pth(N(M) = 0)
, (22)

where, the probability of each event of the Thomas process is obtained by the pgfl Eq. (4):228

pth(n|A) = 1/n!(dnG(t)/dtn)|t=0. Therefore, pth(N(A) = 0) is229

pth(N(A) = 0) = exp

(

−λp

∫

Â

[

1− exp

{

−c̄

(
∫

A

1

2πσ2
exp

(

−
∥x− y∥2

2σ2

)

dx

)}]

dy

)

,(23)

where Â is the surrounding region of A where parents potentially provide daughters to the230

region A. Specifically, the second term inside the square brackets for pth(N(M) = 0) in Eq.231

(22) becomes exp(−c̄
∫

M
1

2πσ2 exp(−∥x− y∥2/2σ2)dx) and that of pth(0|β, S) becomes232

exp(−αβc̄
∫

M
1

2πσ2 exp(−∥x− y∥2/2σ2)dx), due to the sampling density and the detectabil-233

ity. Although Eq. (22) with Eq. (23) is not easy to interpret, we can calculate its asymptotic234
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behaviors by the similar manner to the derivations of Eqs (19) and (20):235

lim
M→0

Eth,(β,S,M)[PM] ≃ αβ, (24)

lim
M→W

Eth,(β,S,M)[PM] ≃ 1, (25)

They are equivalent to the asymptotic behaviors of the homogeneous Poisson process Eqs.236

(19) and (20). Fig. (4a) plots analytical and numerical results, showing the theoretical value237

has a good agreement with the numerical calculation.238

To obtain an explicit form for IC fraction of the Thomas process is cumbersome as the239

pgfl of the Thomas process Eq. (6) is rather complex. Therefore, we only show the numerical240

value for the IC fraction of the Thomas process (Fig. 4b). The IC for the Thomas process241

increases faster than Eq. (18) as the mapping scale increases. The asymptotic behavior242

shows similar trends to the other results.243

Like in the case of the homogeneous Poisson process, difference between PM and IC244

fractions appears outside the region where asymptotic behavior occurs (Fig. A.1). However,245

the deviations are larger in this case, and it occurs with a wider range of the mapping unit246

size. This is an effect of clustering distributions as discussed above.247

4 Discussion248

By explicitly accounting for the spatial distribution patterns of individuals through spatial249

point processes (SPPs) and multiple spatial scales of field survey, we develop a theory for250

ecological survey to map individual distributions. The theory quantifies two metrics, the251

presence mapped fraction (PM fraction) and the fraction of individuals covered by the pres-252

ence mapped patches (IC fraction), and thus allows us to predict the outcome of an ecological253

survey under certain survey designs. When both the sampling density α and the detectability254
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β are not equal to 1, we find a tradeoff between the value of the PM and IC fractions and the255

resolution of the map. The PM and IC fractions show the equivalent asymptotic behaviors256

for both the homogeneous Poisson process and the Thomas process where αβ and 1 are the257

outcomes of the small and large asymptotic limit of mapping units, M , respectively. In fact,258

these asymptotic limits are the same for any distribution patterns if an observation window259

holds a sufficiently large number of individuals, which ensures that the probability to miss all260

the individuals becomes zero. The fine limit of all these asymptotic behaviors are understood261

as follows: as the mapping unit scale goes to sufficiently small, each mapping unit can hold262

at most one individual. In such a situation, the probability to detect the single individual is263

αβ. The asymptotic behavior suggests that there is a certain scale of the mapping unit above264

or below which the performance of an ecological survey does not change. Thus, in practice,265

we need to choose a scale of the mapping unit between these limits. The PM fraction of the266

Thomas process first increases faster than that of the homogeneous Poisson process, because267

the Thomas process produces mapping units holding clustered individuals which are more268

likely to be found. However, the PM fraction of the homogeneous Poisson process approaches269

to its asymptotic limit faster than that of the Thomas process. Because the Thomas process270

also produces mapping units, due to the clustering pattern, holding a few individuals which271

is difficult to map as a presence until the mapping unit becomes sufficiently large to hold272

a sufficient individuals to make a chance of causing a false negative zero. This explanation273

may be used to any distribution patterns. For example, if individual distributions show274

highly clustered patterns, the PM fraction becomes steep firstly and becomes gentle as the275

PM fraction approaches to the asymptotic value 1.276

Spatial extension of the ecosystem that SPPs accounting individual aggregations de-277

scribes could be large enough to cover a wide range of spatial scales. For example, Azaele et278

al. [24] showed that a Thomas model fitted to the distribution map of British rare vascular279

plant species (see the detailed description of the data set [29]) with three coarse resolutions280
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(40000, 10000, and 2500 km2) can outperform many existing spatially-implicit models in281

terms of the down-scaling predictions of the species occupancy probability. In addition,282

Grilli et al. [30] showed that a special case of the Poisson clustering processes, a group of the283

point processes where parents locations are followed by a Poisson process [25] such as the284

Neyman-Scott process, recovers the species-area relationship at a local scale to continental285

scale as predicted by various existing models (e.g., [31]). Hence, even though we used a ob-286

servation window ν(W ) = 1024m× 1024m as an example, it can be generalized by changing287

its scale and the sampling intensity. In addition, it is worth noting that albeit individuals of288

most species are typically aggregated [32,33] the Thomas process could be approximated by289

the homogeneous Poisson process under a certain condition: when the intensity of individu-290

als is large, the PM fraction of the Thomas process comes close to that of the homogeneous291

Poisson process (c̄λp = {10−2, 10−1} in Fig. A.2). This is due to increased parent intensity292

decreasing spatial heterogeneity over the region concerned, suggesting potential applicability293

of the simpler model to an abundant ecosystem.294

For simplicity, we consider a situation where each mapping unit is sampled with the same295

sampling density, α, and detectability, β, and the location of the sampled unit within a map-296

ping unit is chosen randomly. These are rather idealized assumptions and may be further297

generalized. For example, it may be reasonable to assume that the sampling density, α, and298

the detectability, β, become almost 1 at a certain fine scale of the mapping unit. Although299

such a fine scale may not be achieved because of budgetary constraints, explicitly taking into300

account the spatial effect on α and β gives us better understanding about the fine scale of301

asymptotic behavior. In practice, the location of the sampling unit may be determined by302

more strategic manner depending on ones purpose. Indeed, previous studies had proposed303

several sampling strategies which emphasize, for example, a spatially contiguous placement304

of the sampling units to correctly capture ecological patterns (e.g. [34]), a systematic place-305

ment to efficiently reflect spatially structured ecological processes [35,36], or a representative306
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design for major environmental gradients to maximize per effort information of organism’s307

distribution [37, 38]. While these strategies have been compared empirically using actual308

dataset (e.g. [36]), the developed theory in this paper may provide a theoretical base to309

evaluate the effectiveness and efficiency of such purpose-dependent sampling strategies.310

311

Connection to occupancy area and population abundance312

Presence/absence map is often used to estimate the occupancy area or population abun-313

dance [24, 39, 40]. Since our map contains estimated inaccuracy, we need to take into314

account this effect to estimate these quantities. In our framework, occupancy area is315

straightforward to obtain using the number of occupancy units. The number of occu-316

pancy units is calculated from the PM fraction and the presence/absence map from a317

ecological survey, since we have the relationship: (# presence mapped units) = E[PM] ×318

(# total occupancy units). We can also derive the number of occupancy units using the319

following relationship: (# total occupancy units) = 2m(1− p(N(M) = 0)), where 2m is the320

number of mapping units. Unlike the tradeoffs between mapping resolution and PM or IC321

fraction, this estimation is improved with a survey with a finer mapping unit since the shape322

of an occupancy region is better mapped by a finer resolution, but with a certain finer limit.323

Population abundance is also estimated by using the fact that each mapping unit at most324

can hold one individual at a sufficiently small mapping scale. In this limit, the estimate325

number of total occupancy units corresponds to the total population N(W ). In fact, we326

have the following relationship, for example with the homogeneous Poisson process, N(W ) =327

limM→0 2
m(1 − p(N(M) = 0)) = λν(W ), by the equality 2m = ν(W )/ν(M) and the same328

expansion as in Eq. (19). λν(W ) is the unbiased estimator of the total population due to329

the definition Eq. (13). This estimation is, however, possible only if we have estimated330

parameter values of the target species.331

332
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Application to conservation/ecosystem management333

For the decision making on field survey designs, mapping resolution must be determined334

to balance accuracy (i.e., the PM and/or IC fraction) and resolution of the map. Our results335

show that accuracy of the map is improved with larger mapping resolution. However, it is336

clear that presence/absence map with too coarse resolution is not practical for many ecolog-337

ical studies and conservation/management practices. In addition, Takashina and Baskett [7]338

showed that fisheries management with a coarse management unit inevitably increases in-339

efficient efforts. Therefore, it may be reasonable to start first determining required map340

accuracy, and secondly finding the finest possible mapping resolution which an expect PM341

or IC fraction satisfies the requirement. To see this, let us discuss a rather simple and342

ideal situation where we have estimations of each parameter value the population abun-343

dance within a observation window. We assume that all the parameter values are the same344

as in Fig. 4, and the target species has a clustering distribution pattern, which is described345

by Thomas process (it corresponds to Fig. 4b. Let us further assume the situation where,346

through the population viability analysis, we found 55% of the population in the region347

must be protected to satisfy a 95% chance of persistence next 100 years. Therefore, the348

minimum requirement of the ecological survey is to obtain the presence/absence map with349

at least 55% of the total population covered within the presence mapped units. Then, by350

making use of Fig. 4b, we find that the size of mapping resolution M is required to be about351

64m2 or larger to satisfy the requirement, which an expected value of the IC fraction is352

Eth[IC] = 0.57. That is to say, we are expected to get a presence/absence map within which353

57% of the total population is situated within the presence-mapped units. Of course this354

example oversimplifies the ecological survey program, since we often do not have parameter355

values of target species. However, the concept discussed above is rather general and hence356

applicable to wide variety of ecological surveys. The core of this idea is to clearly set the357

feasible goal, with time and budgetary constraints, of conservation practice or motivation of358
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ecological study in advance.359

In practice, the developed theory for ecological survey should be, to an extent, com-360

plemented by an estimation of the existing number of individuals within the observation361

window, W since the intensity affects PM and IC fractions (Fig. A.2). An estimation of the362

population abundance could be done by using historical or surrogate data. Statistical and363

theoretical methods such as species distribution modeling [41] estimating the occurrence of364

plant species across scale [24,42] or predicting the population abundance in a coral reef envi-365

ronment [43] may complement these methods. Conducting a pilot survey is one alternative366

way to estimate the population abundance with a required estimation accuracy. Takashina et367

al. [28] recently developed a framework for the pilot sampling providing a required minimum368

sampling effort to satisfy the required accuracy. Complemented by these steps, the theory369

developed here has a potential to significantly improve survey frameworks.370
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Figure 3: (color online) Ecological survey scheme within the observation window W . (a)
Given the individual distributions in the observation window W , (b) ecological survey is
conducted with a certain mapping resolution M (Middle left, for example) and sampling
unit S = αM (blue regions). Each column represents the result of an ecological survey
with a different mapping resolution M (M ′,M ′′). 22 (21, 20) in the parentheses represents
the number of mapping unit within the observation window. (c) With the survey outcome,
a presence/absence map is created. If at least one individual is found in a mapping unit
(Middle: represented by red point), regardless of miss detecting other individuals situated
therein (represented by purple or orange), the unit is mapped as presence, absence otherwise.
In this step, PM fraction and IC fraction (see main text for the definitions) are calculated
by simply counting the number of presence patches or the number of individuals situated
within the (mapped) presence patches. Although the same individual distributions and
survey outcome are used, obtained map differs if another mapping resolution is used.
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Figure 4: (color online) Analytical and simulated (candlestick) values of (a) the presence
mapped fraction (PM fraction); and (b) the fraction of individuals covered within presence
mapped patches (IC fraction) across mapping unit scales. x-axis is the area of mapping unit
(m2). Each candlestick shows, from the bottom, 5, 25, 50, 75, and 95 percentile values of
1000 simulation trials. The values of the sampling density and detectability are α = 0.5 and
β = 0.9, respectively. The other parameter values are the same as in Fig. 1.
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Figure A.1: (color online) Analytical and simulated (only IC fraction of Thomas process)
values of (a) the homogeneous Poisson process; and (b) Thomas process. All the values are
the same as in Fig. 4 in the main text, but different presentation to facilitate the comparison
of PM and IC fractions of each process.
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Figure A.2: Effect of the intensity (λ, c̄λp) in the observation window, W , on the theoretical
presence mapped (PM) fraction, Eqs. (18), (22). The intensity of the Thomas process
is manipulated by changing the parent intensity λp. Individual distribution patters are
according to the (a) Homogeneous Poisson process and (b) Thomas process. For the Thomas
process, the curves for PM fraction converge as the intensity becomes small, and come
close to the corresponding curve of the homogeneous Poisson process as the intensity of the
Thomas process increases. This is an effect that the increased parents intensity decreases
spatial heterogeneity over the concerned region. For both panels, the order of the intensity
monotonically decreases from left to right.
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