UNIVERSITY OF LEEDS

This is a repository copy of Stable U(IV) Complexes Form at High-Affinity Mineral Surface Sites.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127224/

Version: Accepted Version

Article:

Latta, DE, Mishra, B, Cook, RE et al. (2 more authors) (2014) Stable U(IV) Complexes Form at High-Affinity Mineral Surface Sites. Environmental Science & Technology, 48 (3). pp. 1683-1691. ISSN 0013-936X

https://doi.org/10.1021/es4047389

(c) 2014, American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science & Technology, copyright (c) American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see: https://doi.org/10.1021/es4047389

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Stable U(IV) complexes form at high-affinity

mineral surface sites

Drew E. Latta^{*},¹ Bhoopesh Mishra,² Russell E. Cook,³ Kenneth M. Kemner,¹ and Maxim I. Bovanov^{*,1}

¹ Biosciences Division, Argonne National Laboratory, Argonne, IL 60439

² Physics Department, Illinois Institute of Technology, Chicago, Illinois, IL 60616

³ Electron Microscopy Center, Argonne National Laboratory, Argonne, IL 60439

*Corresponding authors

Dr. Maxim I. Boyanov Biosciences Division Argonne National Laboratory 9700 South Cass Avenue, Bldg. 203 Argonne, IL 60439-4843 Phone: (630) 252-8242 Fax: (630) 252-9793 E-mail: <u>mboyanov@anl.gov</u> Dr. Drew E. Latta Biosciences Division Argonne National Laboratory 9700 South Cass Avenue, Bldg. 203 Argonne, IL 60439-4843 Phone: (630) 252-3985 Fax: (630) 252-9793 E-mail: <u>dlatta@anl.gov</u>

1

2 KEYWORDS: uranium, reduction, non-uraninite products, molecular speciation

3 Abstract. Uranium (U) poses a significant contamination hazard to soils, sediments, and 4 groundwater due to its extensive use for energy production. Despite advances in modeling the 5 risks of this toxic and radioactive element, lack of information about the mechanisms controlling 6 U transport hinders further improvements, particularly in reducing environments where U⁴⁺ predominates. Here, we establish that mineral surfaces can stabilize the majority of U as 7 adsorbed U^{4+} species following reduction of U^{6+} . Using x-ray absorption spectroscopy and 8 electron imaging analysis, we find that at low surface coverage U⁴⁺ forms inner-sphere 9 complexes with two metal oxides, TiO₂ and Fe₃O₄ (at <1.3 U nm⁻² and <0.04 U nm⁻², 10 respectively). The uraninite (UO₂) form of U^{4+} predominates only at higher surface coverage. 11 U⁴⁺-TiO₂ complexes remain stable for at least 12 months and U⁴⁺-Fe₃O₄ complexes remain stable 12 for at least 4 months under anoxic conditions. Adsorbed U^{4+} results from U^{6+} reduction by Fe²⁺ 13 or by the reduced electron shuttle AH₂QDS, suggesting that both abiotic and biotic reduction 14 pathways can produce stable U^{4+} -mineral complexes in the subsurface. The observed control of 15 high-affinity mineral surface sites on U⁴⁺ speciation helps explain the presence of non-uraninite 16 U⁴⁺ in sediments and has important implications for U transport modeling. 17

18 Introduction

19 The fate of uranium is an important consideration in the impact of energy systems on 20 environmental quality. Long-term stewardship of spent nuclear fuel and radionuclide waste is an 21 active issue of concern, and several countries have embarked on projects that will entomb spent fuel in geologic repositories.¹ Current environmental issues associated with uranium include 22 releases during the Chernobyl and Fukushima Daiichi accidents,²⁻³ as well as uranium 23 accumulation near former mines and sites of nuclear fuel and weapons production.⁴⁻⁵ Uranium 24 25 contamination is also a concern in emerging energy-related cycles, such as the use of uraniferous black shales for hydrocarbon production⁶ and the development of rare earth element ores for 26 renewable energy production and storage.⁷ Besides environmental issues, detailed knowledge of 27 U chemistry is necessary for understanding uranium ore genesis⁸ and for interpreting the U decay 28 series and associated geochronometers.⁹ 29

The behavior of U in the subsurface is controlled by its interactions with minerals, 30 31 bacteria, and soluble groundwater constituents, yet limited mechanistic understanding of these 32 reactions hinders broad efforts to predict and model U transformations and mobility. A particular knowledge gap is the behavior of U under reducing conditions that are naturally occurring or 33 induced as part of remediation activities. Reduction of U^{6+} (the stable valence state in 34 equilibrium with oxygenated water) to U⁴⁺ can result in a dramatic decrease of U solubility due 35 to precipitation of the mineral uraninite, UO_{2+x}. Previous studies have shown that both bacteria 36 and abiotic reductants can reduce U^{6+} to U^{4+} , resulting in uraninite formation.¹⁰⁻¹³ Extensive 37 research has consequently focused on characterization of the stability of uraninite phases.¹⁴⁻¹⁶ 38 However, recent spectroscopic evidence suggests that U⁴⁺ in sediments does not form uraninite 39 on the time scale of months to years.¹⁷⁻²⁰ Laboratory studies indicate that phosphate or 40

phosphoryl groups complex U⁴⁺ and inhibit uraninite formation. ²¹⁻²⁴ Phosphate-bound U⁴⁺ was 41 found subsequently to be more labile to dissolution or reoxidation than uraninite.^{17,25} 42 Additionally, bacterial strain and physiology appear to have an effect on the nature of U⁴⁺ 43 produced during respiration on U⁶⁺, most likely through control of the chemical conditions at the 44 location of electron transfer.²¹ The identification of various U⁴⁺ species with stabilities different 45 from that of uraninite has profound implications for prediction of U transport, yet none of the 46 current field-scale models account for U⁴⁺ species other than a uraninite phase.²⁶⁻²⁷ Indeed, there 47 is a pressing need to characterize the factors controlling the formation of non-uraninite U⁴⁺ 48 49 species, their molecular-scale structures, and their stability to solubilization and oxidation.

In contrast to (bio)mineralization of U^{4+} , the role of mineral surfaces in U^{4+} speciation 50 has been largely overlooked. Subsurface environments may not always contain high phosphate 51 52 or high biomass concentrations, but typically they have high mineral surface:U ratios. The 53 abundance of mineral surface sites in natural systems suggests a potentially significant role for them in controlling U⁴⁺ speciation and stability. Although the low solubility of uraninite suggests 54 that it may be the thermodynamically stable U⁴⁺ state in many systems, the potential of high-55 affinity mineral sites to complex U⁴⁺ atoms for significant periods of time and thus affect U 56 transport has not been examined. Previous investigations of U⁶⁺ reduction in phosphate-free 57 mineral suspensions have consistently observed the formation of nanoparticulate uraninite.^{23, 28-32} 58 To date, only one study has identified complexed U⁴⁺ species on the surface of a mineral (Ti-59 doped magnetite).³³ 60

61 Here we establish that model minerals can bind U^{4+} in inner-sphere surface complexes 62 that are stable with respect to uraninite formation over extended periods of time. We used 63 synchrotron x-ray spectroscopy and high-resolution transmission electron microscopy to

investigate the speciation of U^{4+} produced (a) in the presence of rutile (α -TiO₂) after reduction of 64 U^{6+} by the soluble electron shuttle AH₂QDS and (b) by the solid-phase reductant magnetite 65 (Fe₃O₄). In both cases, we observed the stabilization of adsorbed U^{4+} species at low U:surface 66 ratios that are more typical of environmental conditions. These findings provide a framework for 67 explaining the observations of non-uraninite U^{4+} in sediments and necessitate a paradigm shift in 68 the modeling of U transport, namely the inclusion of U^{4+} surface complexation reactions in 69 addition to uraninite and U⁴⁺-biomineral formation. The findings also indicate a need for 70 extensive new research on U^{4+} speciation and stability to constrain appropriate reaction pathways 71 72 for reactive transport models.

73

74 Experimental

75 Magnetite synthesis and characterization

Details on the synthesis and characterization of the magnetite (Fe₃O₄) nanoparticles are provided in the SI text and in previous work.³⁴ Briefly, a stirred solution of 0.2 M FeCl₃·6H₂O and 0.1 M FeCl₂·4H₂O was titrated under anoxic conditions to a pH of ~9.5 with 10 M NaOH to precipitate magnetite. Characterization showed only stoichiometric magnetite (Fe₃O₄, Fe²⁺/Fe³⁺ $= 0.48 \pm 0.02$) with a particle size of 13.3 ± 5.7 nm (1 σ) and Brunauer-Emmett-Teller (BET) surface area of 67.1 m²/g. The magnetite suspensions were stored under anoxic conditions until use.

83 Rutile characterization

84 The rutile form of TiO₂ (α -TiO₂) was purchased from Alfa-Aesar. Characterization by x-ray 85 diffraction confirmed the presence of only rutile. The particles size measured by scanning 86 electron microscopy (SEM) was 787 ± 479 nm, and the BET surface area was 4.1 m² g⁻¹.

87 Reaction of U^{6+} with Fe₃O₄

Fe₃O₄ suspensions of 5, 30, 60 and 120 g L⁻¹ were prepared under strict anoxic conditions by centrifuging the stock Fe₃O₄ suspension and resuspending the particles in 5 to 15 mL of 2 mM NaHCO₃ buffer or 50 mM MOPS buffer, both prepared in deoxygenated deionized (DI) H₂O (18 M Ω ·cm). Except for the centrifugation step, the Fe₃O₄ solids were not washed to prevent significant changes in the Fe²⁺/Fe³⁺ ratio in the solids.

The pH of the Fe₃O₄ reactors was adjusted to a value of 7.2, as needed, with 0.5 M HCl and 0.5 M NaOH. The reactions with U⁶⁺ were initiated by spiking with 0.5 mM uranyl acetate from a 0.1 M stock dissolved in 0.1 M HCl. The solution pH was readjusted to 7.2 after addition of U. Reactors were shaken periodically over the initial reaction time of 2 to 5 days. Samples for the xray absorption measurements were collected by centrifugation after 2 to 5 days and again after 4 or 6 months of aging at room temperature in the anoxic chamber.

99 Reaction of U^{6+} with TiO2 and AH₂QDS.

Suspensions of 10, 30, and 60 g L^{-1} TiO₂ were prepared under strict anoxic conditions by adding TiO₂ to 15 mL of deoxygenated 2 mM NaHCO₃ buffer or 50 mM MOPS buffer, followed by a spike of 0.5 mM U⁶⁺. The solution pH was adjusted to 7.2, and U⁶⁺ was allowed to sorb to the solids for 2 h. U⁶⁺ reduction was initiated by adding 2 mM AH₂QDS from a 25 mM stock (details in SI text). Reactors were shaken by hand, sealed, and covered with aluminum foil to prevent light-induced redox reactions. Solid samples were collected for x-ray absorption measurements after 3 to 5 days of initial reaction and then after 11.8 months.

107 Transmission electron microscopy.

Samples for TEM imaging were prepared by centrifuging subsamples of the Fe_3O_4 and TiO_2 suspensions and resuspending them in deoxygenated DI water. Drops of the new suspensions were immediately placed on carbon-coated 400 mesh Cu grids with holey carbon supports and dried under anoxic conditions. The samples were kept anoxic until mounting onto the TEM sample holder and insertion into the column of the microscope (<1 min exposure to air). Images were acquired at 200 kV with a FEI CM30T TEM and an FEI Tecnai F20ST scanning TEM. Further details can be found in the SI text.

115 X-ray absorption spectroscopy.

U L_{III} edge (17,166 eV) x-ray absorption spectroscopy was done at the MR-CAT/EnviroCAT insertion device beamline (Sector 10-ID, Advanced Photon Source). The beamline utilizes a LN₂-cooled Si (111) double-crystal monochromator and a Rh harmonic rejection mirror. Fluorescence-mode spectra were collected using an Ar-filled ionization chamber. Samples were kept at -100 °C to prevent photochemical reactions. Sample preparation and analysis procedures are described in detail in the SI text.

122

123 **Results and Discussion**

The conditions and samples are summarized in Table 1. In the first series of experiments, 124 we chose TiO₂ as a redox-inactive substrate and reduced U^{6+} with the soluble reductant 9,10-125 anthradihydroquinone-2,6-disulfonate (AH₂QDS). The AH₂QDS molecule is widely used as a 126 two-electron transfer mediator to simulate the electron shuttle compounds used by 127 microorganisms (oxidized form, AQDS, $E_{pH=7}^{0} = -0.184 \text{ V}$).³⁵ Ti⁴⁺ sites are relevant to U 128 129 speciation in many soils, sediments, and rocks where Ti is typically found in higher 130 concentrations (e.g., ~0.2 % by mass in soils) than known uranophile elements such as P (~0.06 %).³⁶ U⁶⁺ was adsorbed to TiO₂ in suspensions varying from 10 to 60 g L⁻¹ (average surface 131 density of 7.5 to 1.3 U nm⁻²; Table 1), and AH₂QDS was added subsequently. In the second 132

ACS Paragon Plus Environment

133 series of experiments, magnetite (Fe₃O₄) was used as both the reductant and the source of 134 binding sites for U. Fe₃O₄ is a common iron oxide found in geological materials, produced by iron metal corrosion or through microbial respiration of Fe oxy-hydroxide minerals. ^{23, 28} Fe₃O₄ 135 136 conducts and stores electrons in its structure and exchanges them with redox-active solution components (including U⁶⁺) via interfacial electron transfer reactions.^{28, 30, 33-34, 37-38} We studied 137 the reaction of U^{6+} with Fe₃O₄ in suspensions of 5 to 120 g L⁻¹ (U surface density of 0.9 to 0.04 138 U nm⁻²). We also varied the reaction time (from 2 days to 12 months) and the presence/absence 139 of bicarbonate (a strong complexant for U). In all reactors, >99% of the added U^{6+} was removed 140 141 from solution after <2 days.

142 **Table 1.** Experimental conditions and sample list

Solids Concentration	Buffer	Surface area loading, m ² L ⁻¹	Surface uranium coverage, U nm ⁻²	Reaction time, day (months) ^a
TiO ₂ (rutile)				
10 g L^{-1}	2 mM HCO ₃ ⁻	40	7.5	3.2
30 g L ⁻¹	2 mM HCO ₃ ⁻	120	2.5	4.2
60 g L ⁻¹	2 mM HCO ₃ ⁻	240	1.3	3.7
TiO ₂ (rutile)				
10 g L^{-1}	50 mM MOPS	40	7.5	2.8
30 g L ⁻¹	50 mM MOPS	120	2.5	3.7
60 g L ⁻¹	50 mM MOPS	240	1.3	2.9
TiO ₂ (rutile) -				
Long Term				
30 g L ⁻¹	2 mM HCO ₃ ⁻	120	2.5	358 (11.8)
60 g L ⁻¹	2 mM HCO ₃ ⁻	240	1.3	358 (11.8)
Magnetite				
5 g L ⁻¹	2 mM HCO ₃ ⁻	300	0.9	1.6
30 g L ⁻¹	2 mM HCO3 ⁻	1800	0.2	1.7
60 g L ⁻¹	2 mM HCO3 ⁻	3600	0.08	1.7
120 g L ⁻¹	2 mM HCO ₃ ⁻	7200	0.04	5.0
Magnetite				
5 g L ⁻¹	50 mM MOPS	300	0.9	4.7
30 g L ⁻¹	50 mM MOPS	1800	0.2	4.8
60 g L ⁻¹	50 mM MOPS	3600	0.08	2.1
120 g L ⁻¹	50 mM MOPS	7200	0.04	3.3
Magnetite – Long Term				
30 g L^{-1}	2 mM HCO ₂ -	1800	0.2	190 (6.3)
$60 \text{ g } \text{L}^{-1}$	$2 \text{ mM HCO}_{2}^{-1}$	3600	0.08	190 (6.3)
120 g L^{-1}	$2 \text{ mM HCO}_{2}^{-1}$	7200	0.04	116 (3.8)
a n		00	•	.1 .

^a Reaction time in months in parentheses is calculated by using an average of 30.44
 days/month

158

Electron transfer to U^{6+} was verified by x-ray absorption near-edge spectroscopy (XANES) at the U L_{III}-edge (17,166 eV). Complete reduction to U^{4+} (>95% of solid-phase U) occurred under the experimental conditions in all Fe₃O₄ and TiO₂/AH₂QDS systems (Fig. S1). A control reactor with U^{6+} and TiO₂ but no added AH₂QDS did not produce U^{4+} (Fig. S1). These results are consistent with previous studies where U^{6+} was reduced to U^{4+} by Fe₃O₄ or AH₂QDS, resulting in uraninite formation.^{21, 23, 28, 30, 32} However, the average speciation of U^{4+} in our systems exhibited an unexpected dependence on U:surface ratio, as discussed below.

153 Effect of TiO_2 surface area on U^{4+} speciation

We characterized the molecular structure around U^{4+} by using extended x-ray absorption finestructure (EXAFS) spectroscopy (experimental details in SI text). Trends in the Fouriertransformed EXAFS data with changing TiO₂ mineral loading are illustrated in Figs. 1A and S2A.

Fig. 1. Fourier transform (FT) of the U L_{III} -edge EXAFS data from U⁴⁺ produced by reactions of U⁶⁺ with (A) TiO₂ and 2 mM AH₂QDS and (B) Fe₃O₄ as a solid-phase reductant. Data are from reactors with 2-mM NaHCO₃ at pH 7.2. Lines in color show the data from samples at different U surface densities. Standards are nanoparticulate uraninite and an aqueous solution of U⁴⁺ in 0.5 M H₂SO₄ (dotted and dashed lines, respectively). Arrows show trends with decreasing U density

164 (increasing surface area). The molecular model illustrates the U-U coordination in uraninite. FTs 165 are done over $k = 2.2-10.4 \text{ Å}^{-1}$ with a Hanning window sill 1 Å⁻¹ wide.

166

The salient feature is the doublet peak corresponding to the dioxo-bridging bonds between the 167 U⁴⁺ atoms in uraninite (labeled U-U). The presence and amplitude of the U-U peak indicate that 168 the predominant form of U^{4+} at the high average surface density of 7.5 U nm⁻² is nanoparticulate 169 170 uraninite, whereas the lack of amplitude at 1.3 U nm⁻² indicates the predominance of adsorbed non-uraninite U⁴⁺ species. The spectral features of the adsorbed U⁴⁺ species are different from 171 those of non-uraninite U4+ observed in bacterial systems and in sediments, 17-19, 21-24, 39-40 172 indicating the sensitivity of EXAFS to this distinct form of U⁴⁺. The molecular structure derived 173 from fits of the data indicates inner-sphere complexation between U^{4+} and Ti^{4+} centers (details in 174 175 SI text; Fig. S3). Adsorption geometries on the surface of TiO₂ that are consistent with the EXAFS data are illustrated in Fig. 2A. 176

178

Fig. 2. Molecular models of U^{4+} adsorption. (A) U^{4+} -TiO₂ complexes. The fragment shows the 179 edge-sharing Ti-O₆ octahedra (gray) in rutile. T1 depicts adsorption of U⁴⁺ (yellow) to the edge 180 of a terminal Ti octahedron. T2 depicts adsorption of U⁴⁺ to the corners or the free edges of two 181 edge-sharing Ti octahedra. (B) U^{4+} -Fe₃O₄ complexes. The fragment shows the (111) surface of 182 Fe₃O₄, with some Fe centers removed to illustrate possible adsorption sites. Fe octahedra are in 183 184 orange; Fe tetrahedra are in green. The light-orange Fe octahedra are situated in the layer below 185 the dark-orange octahedra. The symmetric sites M1-M3 were found to be inconsistent with the distances obtained in the EXAFS fits. The likely sites for U⁴⁺ adsorption (M4 and M5) are 186 187 shown.

188

189 The findings from the EXAFS analysis are corroborated by transmission electron microscopy

190 (TEM). Fig. 3A reveals the formation of particles sized 2-4 nm in samples with U:surface density of 7.5 U nm⁻². The particles have lattice fringe spacing of 0.32 nm (Fig. S4), consistent 191 with the (111) lattice spacing in uraninite (0.316 nm).⁴¹ Selected-area electron diffraction 192 193 (SAED) patterns are also consistent with those of uraninite (Fig. S4). In contrast to the 7.5 U nm⁻ ² sample, uraninite particles are absent at the lower 1.3 U nm⁻² coverage (Fig. 3B). Taken 194 together, our EXAFS and TEM results suggest that U⁴⁺ is stabilized as an adsorbed species when 195 the TiO₂ surface loading is high enough to provide a sufficient number of high-affinity binding 196 197 sites.

Fig. 3. Transmission electron microscopy images from the TiO_2/AH_2QDS and Fe_3O_4 reactors with U⁶⁺ at high and low U surface density. (A) A bright-field image of a TiO₂ suspension with 7.5 U nm⁻² showing 2- to 4-nm particles with lattice fringe spacing of 0.32-nm, which are more clearly displayed in Fig. S4. (B and inset) Bright-field images of TiO₂ particles containing 1.3 U nm⁻². No UO₂ nanoparticles are observed. (C) High-angle annular dark-field (HAADF) STEM, showing Z-contrast between Fe₃O₄ and brighter uraninite (red arrows) nanoparticles (0.9 U nm⁻

Environmental Science & Technology

205²). (D) Representative bright-field image of 0.04 U nm⁻² sample, indicating the absence of
206 uraninite nanoparticles. Additional TEM images are included in the SI.

207

208 Effect of Fe₃O₄ surface area on U⁴⁺ speciation

The trends in the U^{4+} EXAFS spectra with changing U:Fe₃O₄ surface loading are 209 illustrated in Figs. 1B and S2B. At the highest average density of 0.9 U nm⁻², the EXAFS 210 spectrum is identical to that of the uraninite standard (Fig. 1B). Formation of UO₂ during U^{6+} 211 reduction by Fe₃O₄ has been observed consistently in previous studies carried out at similarly 212 high U:surface ratios.^{23, 28, 30, 32} Upon decreasing the average U surface coverage to 0.2, 0.08, and 213 0.04 U nm⁻² we observe significantly smaller amplitudes of the U-U doublet (Fig. 1B and S2B). 214 215 This trend is accompanied by an increase in the amplitude and distance of the peak corresponding to O coordination (R + $\Delta \sim 1.8$ Å; Fig. 1B). Consistent and significant changes 216 with U surface density can also be observed in the $k^3 \chi(k)$ data (Fig. S5B). Fits of the data from 217 the sample at the lowest coverage (0.04 U nm⁻²) indicate a larger O coordination number (10 vs. 218 8) and a larger U⁴⁺-O distance (2.43 vs. 2.35 Å) relative to uraninite (SI text; Figs. S5, S6; Table 219 S1). Coordination numbers of 9-10 and longer U4++O bonds of 2.41-2.45 Å have been 220 determined previously for non-uraninite U⁴⁺ species in solution and in solids.⁴²⁻⁴³ The longer U-221 O bonds observed here at 0.04 U nm⁻² coverage suggest a predominantly non-uraninite U^{4+} 222 speciation. Shell-by-shell fits of the features up to $R + \Delta = 4.2$ Å produced a best fit with 10 O 223 atoms around U^{4+} at 2.43 Å, ~1.5 Fe atoms at 3.59 Å, and ~5 O atoms at 4.30 Å (Table S1). 224 Models with a U shell at R ~3.9 Å resulted in lower-quality fits and inconsistent reproduction of 225 226 the data at different k-weights of the Fourier transform (SI text; Figure S6).

227 Despite the presence of a peak where the U shell contributes in uraninite (Fig. 1B), the 228 analysis above indicates that this peak is not due to U-U coordination in uraninite for samples with low U coverage. The peak from the Fe shell and its distance from U^{4+} suggest inner-sphere, 229 bidentate complexation of U^{4+} to =FeO sites. Possible edge-sharing complexes at the (111) 230 surface of Fe_3O_4 are illustrated in Fig. 2B. The low surface coverage at which these U⁴⁺ 231 complexes are predominant (0.04 U nm⁻²) suggests that these mononuclear U^{4+} species are 232 formed at defect sites or at lattice step/kink sites on the Fe₃O₄ surface, possibly in chelate-type 233 234 complexes (e.g., M5 in Fig. 2B).

TEM corroborates the presence of UO_2 nanoparticles at 0.9 U nm⁻² average surface 235 density (Fig. 3C). Images collected in high-angle annular dark-field mode emphasize high-Z 236 237 elements in the sample and indicate that the sub-10 nm particles of uraninite form clusters with 238 other uraninite particles. Our observation of uraninite clusters detached from the iron oxide is 239 unusual. Previous studies observed association of individual uraninite particles with the edges of green rust³¹ or with large crystals of Fe₃O₄.³⁰ Reasons for the segregation of uraninite may relate 240 241 to the mechanisms of reduction, which we discuss further down, together with other findings. In 242 contrast to the samples at high U:surface ratio, extensive TEM imaging of the 0.04 U nm⁻² sample revealed no evidence for U-rich particles (Fig. 3D), supporting the conclusion of 243 adsorbed U^{4+} from the EXAFS analysis. 244

245 Effect of bicarbonate on U⁴⁺ speciation

Our experimental design included parallel systems with and without bicarbonate to test for its effects on redox reactivity or on U^{4+} speciation. An additional consideration was to test whether carbonate associated with the adsorbed U^{4+} atoms and was thus responsible for the stabilization of the non-uraninite U^{4+} species. Carbonate has been shown to complex U^{4+} , but at

Environmental Science & Technology

significantly higher carbonate:U ratios than we used.⁴² Fig. S7 compares spectra between our systems with and without bicarbonate for different U surface densities on TiO₂. The presence of 2 mM bicarbonate has little or no effect on the EXAFS spectrum of the reduced U⁴⁺ species. At the U:mineral loading of 7.5 U nm⁻² in the TiO₂ system, the features corresponding to uraninite appear slightly more pronounced in the absence of bicarbonate and indicate a slightly more abundant or a slightly more ordered uraninite phase in that sample. For the lower surface coverages of 2.5 and 1.3 U nm⁻² the spectra with or without bicarbonate are identical.

As for the TiO₂ system above, the absence of bicarbonate in the Fe₃O₄ reactors results in slightly larger amplitude of the U-U features relative to the corresponding systems with added bicarbonate (Fig. S7). Although these spectral trends appear consistently for loadings of 0.9, 0.2, and 0.08 U nm⁻², numerical analysis of the data could not establish a statistically significant increase in the average O or U coordination numbers, suggesting that bicarbonate does not have a significant effect on the average U⁴⁺ speciation at the surface (i.e., <10% of total U may be affected).

The results indicate that carbonate does not affect the adsorption mechanism of U^{4+} to TiO₂ or Fe₃O₄ surfaces and that carbonate is not the reason for the stabilization of non-uraninite U^{4+} . Indeed, both shell-by-shell modeling of the EXAFS and the independence of the spectra on bicarbonate suggest that the non-uraninite U^{4+} species are stabilized by inner-sphere complexation to binding sites on the TiO₂ or Fe₃O₄ surfaces.

269 Stability of adsorbed U⁴⁺ over time

We investigated the stability of surface-complexed U^{4+} species under anoxic conditions by characterizing a subsample of the reactors after ~3 days of reaction and then after several months (Table 1). Only the sample series with 2 mM bicarbonate was examined. The EXAFS data from the TiO₂ reactors with 3.5 and 1.2 U nm⁻² (low U coverage) (Fig. 4A) show identical spectra after 3 days and after 11.8 months of reaction, suggesting that the TiO₂-complexed U⁴⁺ species are not transformed to uraninite over at least a year, even with a minor uraninite component present in the 3.5 U nm⁻² sample to provide nucleation sites. Notably, the nonuraninite U⁴⁺ species are stable in the presence of bicarbonate, which presumably accelerates solubilization of monomeric U⁴⁺ and facilitates migration between sites on the TiO₂ surface and the sites of uraninite nucleation.²⁵

280

281

Fig. 4. U L_{III}-edge EXAFS showing the effect of aging on the U⁴⁺ speciation in (A) TiO₂ suspensions and (B) Fe₃O₄ suspensions. TiO₂ suspensions were allowed to react for 3 days (dotted line) and 11.8 months (solid line). Fe₃O₄ suspensions were aged for 2-5 days (dotted lines) and 6 months (solid lines, 0.2 U nm⁻² and 0.08 U nm⁻²) or 4 months (solid line, 0.04 U nm⁻²) in 2-mM NaHCO₃ solution, pH 7.2. U⁴⁺ standards are shown in the lower portion of panel A for comparison. Arrows indicate the growth of the U-U peak with time in the magnetite samples with higher U coverage.

Environmental Science & Technology

To test whether formation of uraninite in the TiO_2 system was kinetically or thermodynamically inhibited, we reacted pre-formed uraninite with TiO_2 at the same U⁴⁺:mineral ratios as in the 1.2 U nm⁻² sample (details in SI text). We did not observe evolution of the starting uraninite to U⁴⁺ adsorbed to TiO_2 after 1 month at 70 °C (Fig. S8). The question of kinetic or thermodynamic limitation therefore remains open. Regardless of whether uraninite or the TiO₂-adsorbed U⁴⁺ species is thermodynamically more stable, progress towards equilibrium appears to be slow.

The U^{4+} species in the Fe₃O₄ system exhibit different stabilities relative to the TiO₂ system 297 (Fig. 4B). The non-uraninite U⁴⁺ species in the 0.04 U nm⁻² system (low U coverage) remained 298 unaltered after 4 months, indicating significant stabilization of adsorbed U⁴⁺ at high-affinity 299 binding sites on the Fe_3O_4 surface. In contrast, the predominantly non-uraninite U⁴⁺ speciation in 300 the 0.08 and 0.2 U nm⁻² system shifted toward nanoparticulate uraninite after 6 months of 301 reaction time, suggesting that the U⁴⁺ species on the Fe₃O₄ surface are less stable than non-302 uraninite U^{4+} stabilized on the TiO₂ surface. The growth of uraninite in the Fe₃O₄ system may be 303 due to a weaker bond between the U⁴⁺ atoms and the Fe₃O₄ surface relative to the surface of 304 TiO₂. An alternative explanation may be the known role of Fe_3O_4 as a reservoir for electrons,²⁸, 305 $^{34, 37}$ which would allow for temporary oxidation of U⁴⁺ to U⁵⁺ or U⁶⁺. The consequent increase in 306 U mobility and transport to a U^{6+} reduction site that is closer to a uraninite nucleation site could 307 308 promote uraninite growth over time (Fig. 5).

Fig. 5. Conceptual model for U^{6+} reduction at TiO₂ and Fe₃O₄ surfaces. The soluble shuttle (for TiO₂) and interfacial electron transfer (for Fe₃O₄) pathways are illustrated with the U⁶⁺ atom to the top left. The initially adsorbed U⁶⁺ atoms are depicted at the top, the reduced U⁴⁺ species at the bottom. At low surface coverage, reduced U⁴⁺ atoms are stabilized individually at the highaffinity sites (left). At high surface coverage, the more labile U⁴⁺ atoms at the low-affinity sites combine to form uraninite (right). A possible U⁵⁺ disproportionation pathway is also illustrated. The axial O atoms of U⁶⁺ or U⁵⁺ are emphasized in dark blue.

318

310

319 Uranium dynamics at the mineral surface

Uranium is known to undergo two single-electron transfer steps during reduction: UO_2^{2+} to 320 UO_2^+ and UO_2^+ to U^{4+44} . Depending on solution conditions, two UO_2^+ (U^{5+}) molecules can 321 undergo a disproportionation reaction, producing U^{4+} and $UO_2^{2+,45}$ Ample evidence exists to 322 suggest that U^{5+} disproportionation reactions are kinetically hindered at the surface of Fe-bearing 323 minerals.^{9, 37-38, 46} However, reports are conflicting as to whether the formation of U⁴⁺ involves 324 (a) disproportionation of U^{5+} at the surface⁹ or (b) two subsequent electron transfers from Fe²⁺ 325 (shown conceptually in Fig. 5).^{37, 47} In either case, the processes operative in our systems must be 326 consistent with the observed valence state, localization, and speciation of U, as well as the 327 observed aging of U^{4+} surface complexes to uraninite. 328

329 While it is tempting to conclude that the segregated nanoclusters of uraninite (Fig. 3C) observed in the Fe_3O_4 sample with 0.9 U nm⁻² result directly from U⁵⁺ disproportionation 330 reactions (Fig. 5, right side), our observation of U⁴⁺-Fe surface complexes aging to uraninite 331 suggest that precipitation of uraninite may be due to solubilization of adsorbed U^{4+} in the Fe₃O₄ 332 samples with 0.2 and 0.08 U nm⁻². Alternatively, formation of uraninite nanoparticles from 333 adsorbed U^{4+} may also be explained through a dynamic redox equilibrium between U^{4+}/U^{5+} and 334 Fe^{2+}/Fe^{3+} , whereby the electron exchange between Fe^{3+} and U^{4+} controls the solution activity of 335 U^{5+} and hence the formation of uraninite via the disproportionation pathway (Fig. 5). Another 336 337 possible mechanism for uraninite formation may be Ostwald ripening on the surface of Fe₃O₄, with subsequent detachment and agglomeration of the uraninite particles. Regardless of the 338 pathway for uraninite formation, our results suggest that the process begins with single U⁴⁺ 339 atoms complexed at the Fe₃O₄ surface and that the predominant U^{4+} speciation is controlled by 340 341 the availability of high-affinity surface sites.

Significant stabilization of adsorbed U^{4+} is observed when TiO₂ is present as the mineral 342 substrate. Soluble AH_2QDS has been shown to reduce U^{6+} in solution, leading to nanoparticulate 343 uraninite.²¹ This result, together with the lack of reaction between TiO₂ and pre-formed UO₂ in 344 our aging experiments, suggests that TiO₂-sorbed U⁴⁺ is not formed after reduction of aqueous 345 U⁶⁺ species. Instead, electron transfer likely occurs between AH₂QDS and adsorbed U⁶⁺ species 346 (left side, Fig. 5). Studies of U^{6+} adsorption to TiO₂ have shown that U^{6+} forms primarily inner-347 sphere complexes at low U coverage (<~1 U nm⁻²) and outer-sphere complexes at higher U 348 coverage.⁴⁸ The correlation with the dependence of U^{4+} speciation on U surface coverage 349 determined in our study (adsorbed U⁴⁺ at 1.3 U nm⁻² and nanoparticulate uraninite at 7.5 U nm⁻²) 350 suggests that reduction of outer-sphere-sorbed U⁶⁺ results in uraninite, whereas reduction of 351

inner-sphere-sorbed U^{6+} results in surface-complexed U^{4+} . The lack of aging of the U^{4+} -Ti complexes indicates that sorption to high-affinity Ti sites (left side, Fig. 5) provides significant stabilization of U^{4+} against desorption or Ostwald ripening and subsequent uraninite formation.

355

356 Environmental implications

This study significantly expands the diversity of U⁴⁺ species that may control the transport of 357 U in environmental systems and underscores the need for improved description of U⁴⁺ 358 speciation. Although several studies have now observed non-uraninite U⁴⁺ species in sediments 359 and soils, $^{18-20, 49}$ the molecular structure and the mechanisms leading to these U⁴⁺ species remain 360 uncertain. Transformations in sediments are governed by highly coupled biotic-abiotic 361 interactions, and the pathway through which an observed U^{4+} species is produced can be difficult 362 to ascertain. Our study demonstrates that =TiO and =FeO sites can stabilize non-uraninite, 363 surface-adsorbed U^{4+} species, which are distinct chemically and spectroscopically from the 364 carbonate- or phosphate-bound U⁴⁺ complexes observed during enzymatic reduction of U^{6+, 21-22,} 365 ^{24, 50} It is likely that many other subsurface minerals have high-affinity sites (e.g., at steps or 366 kinks on their surface) that can stabilize adsorbed U⁴⁺ at sufficiently low U coverage. Our results 367 also suggest that U^{4+} can be stabilized on mineral surfaces both as a result of abiotic reduction by 368 Fe²⁺ (e.g., U⁶⁺ reduction by Fe₃O₄) and in coupled biotic-abiotic reduction pathways involving an 369 electron shuttle (e.g., U^{6+} reduction by AH₂QDS in the presence of TiO₂). These observations 370 provide a basis for establishing a connection (or lack thereof) between observed U^{4+} speciation 371 and reduction pathways of U^{6+} in future studies. 372

373 The discovery of an array of non-uraninite U^{4+} species here and in previous studies^{18, 20-22,} 374 ^{24, 49-50} points to significant gaps in our understanding of U^{4+} biogeochemistry. Such gaps have 375 immediate bearing on the ability of geochemical models to predict the behavior of U over the short and long term. If U⁴⁺ surface-complexes are less stable than uraninite, then the common 376 assumption of reductive precipitation of U⁴⁺ as uraninite will under-predict the mobility of U in 377 groundwaters and vice versa. The lack of thermodynamic parameters (e.g., ΔG_f^0 or $E^{0'}$) for the 378 formation of U⁴⁺-mineral complexes hinders modeling efforts focused on determining U stability 379 380 with redox conditions, and additional complications arise for modeling the kinetics of these reactions. While our study suggests that U⁴⁺-Fe complexes are a relatively stable but likely a 381 transitory phase in the formation of uraninite, the lack of U⁴⁺-Ti complex transformations over 382 nearly a year indicates that U⁴⁺-Ti complexes may be important in U dynamics over time scales 383 relevant to the remediation of contaminated sediments. U^{4+} complexes to =TiO sites may be 384 precursors to the naturally-occurring mineral brannerite (U⁴⁺Ti₂O₆) and help explain its 385 formation. Also lacking is information on the stability of U⁴⁺ surface complexes to oxidation by 386 common groundwater oxidants such as dissolved O_2 and nitrite (NO₂⁻). Uraninite and U⁴⁺ 387 complexes to =FeO sites are likely to be less susceptible to oxidation when in contact with 388 Fe₃O₄, given that Fe₃O₄ is capable of U^{6+} reduction even when its Fe²⁺/Fe³⁺ ratio is significantly 389 more oxidized than the stoichiometric 0.5.^{28, 51} 390

The strong complexation between U^{4+} and =TiO sites may be useful for technological applications related to water purification. The TiO₂ surface appears to have high density of sites for U^{4+} complexation (~1 U nm⁻²). If reduction of U^{6+} to U^{4+} leads to lower aqueous U concentrations regardless of the speciation of U^{4+} , sequestering U as adsorbed U^{4+} species rather than nanoparticulate uraninite might be advantageous. Strong adsorption of U^{4+} to large TiO₂coated particles can lower the risk of colloidal U transport.

398 Acknowledgements

399 We thank Michael McCormick at Hamilton College for graciously providing BET surface area 400 analysis for the materials used in this study. We also thank Edward O'Loughlin for insightful discussions and Karen Haugen for editing. This research is part of the Subsurface Science 401 402 Scientific Focus Area at Argonne National Laboratory supported by the DOE Subsurface 403 Biogeochemical Research Program, Office of Biological and Environmental Research, Office of 404 Science. Use of the Electron Microscopy Center at Argonne and the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy 405 406 Sciences. MRCAT/EnviroCAT operations are supported by DOE and the MRCAT/EnviroCAT 407 member institutions. All work at Argonne was under Contract DE-AC02-06CH11357.

408 Supporting Information. More details on the experimental methods, TEM imaging, and

409 EXAFS data analysis are included in Supporting Information. This material is available free of

410 charge via the Internet at http://pubs.acs.org.

412 **Table of Contents (TOC) Art**

414 **References**

- 415
- 416 (1) Macfarlane, A., It's 2050: Do you know where your nuclear waste is? Bull. Atom. Sci.
 417 2011, 67 (4), 30-36.
- 418 (2) Cuddihy, R. G.; Finch, G. L.; Newton, G. J.; Hahn, F. F.; Mewhinney, J. A.; Rothenberg,
 419 S. J.; Powers, D. A., Characteristics of radioactive particles released from the Chernobyl nuclear
- 420 reactor. Environ. Sci. Technol. **1989**, 23 (1), 89-95.
- 421 (3) Burns, P. C.; Ewing, R. C.; Navrotsky, A., Nuclear Fuel in a Reactor Accident. Science
 422 2012, 335 (6073), 1184-1188.
- 423 (4) Ahearne, J. F., Radioactive waste: The size of the problem. Phys. Today 1997, 50 (6), 24424 29.
- 425 (5) Gavrilescu, M.; Pavel, L. V.; Cretescu, I., Characterization and remediation of soils 426 contaminated with uranium. J. Hazard. Mater. **2009**, 163 (2-3), 475-510.
- 427 (6) Barbot, E.; Vidic, N. S.; Gregory, K. B.; Vidic, R. D., Spatial and Temporal Correlation
 428 of Water Quality Parameters of Produced Waters from Devonian-Age Shale following Hydraulic
- 429 Fracturing. Environ. Sci. Technol. **2013**, 47 (6), 2562-2569.
- 430 (7) Long, K. R.; Gosen, B. S.; Foley, N. K.; Cordier, D. The principal rare earth elements
 431 deposits of the United States: A summary of domestic deposits and a global perspective; 2010.
- 432 (8) Richard, A.; Rozsypal, C.; Mercadier, J.; Banks, D. A.; Cuney, M.; Boiron, M.-C.;
 433 Cathelineau, M., Giant uranium deposits formed from exceptionally uranium-rich acidic brines.
 434 Nat. Geosci. 2012, 5 (2), 142-146.
- 435 (9) Renock, D.; Mueller, M.; Yuan, K.; Ewing, R. C.; Becker, U., The energetics and kinetics
 436 of uranyl reduction on pyrite, hematite, and magnetite surfaces: A powder microelectrode study.
 437 Geochim. Cosmochim. Acta 2013, 118 (0), 56-71.
- 438 (10) Wall, J. D.; Krumholz, L. R., Uranium Reduction. Annu. Rev. Microbiol. **2006**, 60 (1), 439 149-166.
- 440 (11) Suzuki, Y.; Kelly, S. D.; Kemner, K. M.; Banfield, J. F., Radionuclide contamination 441 Nanometre-size products of uranium bioreduction. Nature 2002, 419 (6903), 134-134.
- 442 (12) Lovley, D. R.; Phillips, E. J. P.; Gorby, Y. A.; Landa, E. R., Microbial reduction of 443 uranium. Nature **1991**, 350 (6317), 413-416.
- 444 (13) O'Loughlin, E. J.; Boyanov, M. I.; Antonopoulos, D. A.; Kemner, K. M., Redox
 445 Processes Affecting the Speciation of Technetium, Uranium, Neptunium, and Plutonium in
 446 Aquatic and Terrestrial Environments. American Chemical Society: 2011; Vol. 1071, p 477-517.
- 447 (14) Campbell, K. M.; Veeramani, H.; Ulrich, K.-U.; Blue, L. Y.; Giammar, D. E.; Bernier-448 Latmani, R.; Stubbs, J. E.; Suvorova, E.; Yabusaki, S.; Lezama-Pacheco, J. S.; Mehta, A.; Long,

- P. E.; Bargar, J. R., Oxidative Dissolution of Biogenic Uraninite in Groundwater at Old Rifle,
 CO. Environ. Sci. Technol. 2011, 45 (20), 8748-8754.
- (15) Ulrich, K.-U.; Ilton, E. S.; Veeramani, H.; Sharp, J. O.; Bernier-Latmani, R.; Schofield,
 E. J.; Bargar, J. R.; Giammar, D. E., Comparative dissolution kinetics of biogenic and
 chemogenic uraninite under oxidizing conditions in the presence of carbonate. Geochim.
 454 Cosmochim. Acta 2009, 73 (20), 6065-6083.
- 455 (16) Ulrich, K. U.; Singh, A.; Schofield, E. J.; Bargar, J. R.; Veeramani, H.; Sharp, J. O.;
 456 Bernier-Latmani, R.; Giammar, D. E., Dissolution of biogenic and synthetic UO₂ under varied
 457 reducing conditions. Environ. Sci. Technol. **2008**, 42 (15), 5600-5606.
- (17) Sharp, J. O.; Lezama-Pacheco, J. S.; Schofield, E. J.; Junier, P.; Ulrich, K. U.; Chinni, S.;
 Veeramani, H.; Margot-Roquier, C.; Webb, S. M.; Tebo, B. M.; Giammar, D. E.; Bargar, J. R.;
 Bernier-Latmani, R., Uranium speciation and stability after reductive immobilization in aquifer
 sediments. Geochim. Cosmochim. Acta **2011**, 75 (21), 6497-6510.
- 462 (18) Kelly, S. D.; Wu, W.-M.; Yang, F.; Criddle, C. S.; Marsh, T. L.; O'Loughlin, E. J.;
 463 Ravel, B.; Watson, D.; Jardine, P. M.; Kemner, K. M., Uranium transformations in static
 464 microcosms. Environ. Sci. Technol. 2010, 44 (1), 236-242.
- (19) Kelly, S. D.; Kemner, K. M.; Carley, J.; Criddle, C.; Jardine, P. M.; Marsh, T. L.;
 Phillips, D.; Watson, D.; Wu, W. M., Speciation of uranium in sediments before and after in situ
 biostimulation. Environ. Sci. Technol. 2008, 42 (5), 1558-1564.
- 468 (20) Bargar, J. R.; Williams, K. H.; Campbell, K. M.; Long, P. E.; Stubbs, J. E.; Suvorova, E.
 469 I.; Lezama-Pacheco, J. S.; Alessi, D. S.; Stylo, M.; Webb, S. M.; Davis, J. A.; Giammar, D. E.;
 470 Blue, L. Y.; Bernier-Latmani, R., Uranium redox transition pathways in acetate-amended
 471 sediments. Proc. Natl. Acad. Sci. USA 2013, 110 (12), 4506-4511.
- 472 (21) Boyanov, M. I.; Fletcher, K. E.; Kwon, M. J.; Rui, X.; O'Loughlin, E. J.; Löffler, F. E.;
 473 Kemner, K. M., Solution and microbial controls on the formation of reduced U(IV) species.
 474 Environ. Sci. Technol. 2011, 45 (19), 8336-8344.
- 475 (22) Fletcher, K. E.; Boyanov, M. I.; Thomas, S. H.; Wu, Q. Z.; Kemner, K. M.; Loffler, F. E.,
 476 U(VI) reduction to mononuclear U(IV) by Desulfitobacterium species. Environ. Sci. Technol.
 477 2010, 44 (12), 4705-4709.
- 478 (23) Veeramani, H.; Alessi, D. S.; Suvorova, E. I.; Lezama-Pacheco, J. S.; Stubbs, J. E.;
 479 Sharp, J. O.; Dippon, U.; Kappler, A.; Bargar, J. R.; Bernier-Latmani, R., Products of abiotic
 480 U(VI) reduction by biogenic magnetite and vivianite. Geochim. Cosmochim. Acta 2011, 75 (9),
 481 2512-2528.
- 482 (24) Bernier-Latmani, R.; Veeramani, H.; Vecchia, E. D.; Junier, P.; Lezama-Pacheco, J. S.;
 483 Suvorova, E. I.; Sharp, J. O.; Wigginton, N. S.; Bargar, J. R., Non-uraninite Products of
 484 Microbial U(VI) Reduction. Environ. Sci. Technol. 2010, 44 (24), 9456-9462.

485 (25) Alessi, D. S.; Uster, B.; Veeramani, H.; Suvorova, E. I.; Lezama-Pacheco, J. S.; Stubbs,
486 J. E.; Bargar, J. R.; Bernier-Latmani, R., Quantitative separation of monomeric U(IV) from UO₂
487 in products of U(VI) reduction. Environ. Sci. Technol. **2012**, 46 (11), 6150-6157.

488 (26) Yabusaki, S. B.; Fang, Y.; Long, P. E.; Resch, C. T.; Peacock, A. D.; Komlos, J.; Jaffe, P.
489 R.; Morrison, S. J.; Dayvault, R. D.; White, D. C.; Anderson, R. T., Uranium removal from
490 groundwater via in situ biostimulation: Field-scale modeling of transport and biological
491 processes. J. Contam. Hydrol. 2007, 93 (1–4), 216-235.

492 (27) Li, L.; Steefel, C. I.; Williams, K. H.; Wilkins, M. J.; Hubbard, S. S., Mineral
493 Transformation and Biomass Accumulation Associated With Uranium Bioremediation at Rifle,
494 Colorado. Environ. Sci. Technol. 2009, 43 (14), 5429-5435.

495 (28) Latta, D. E.; Gorski, C. A.; Boyanov, M. I.; O'Loughlin, E. J.; Kemner, K. M.; Scherer,
496 M. M., Influence of magnetite stoichiometry on U^{VI} reduction. Environ. Sci. Technol. 2012, 46
497 (2), 778-786.

498 (29) Veeramani, H.; Scheinost, A. C.; Monsegue, N.; Qafoku, N. P.; Kukkadapu, R.;
499 Newville, M.; Lanzirotti, A.; Pruden, A.; Murayama, M.; Hochella, M. F., Abiotic Reductive
500 Immobilization of U(VI) by Biogenic Mackinawite. Environ. Sci. Technol. 2013, 47 (5), 2361501 2369.

(30) Singer, D. M.; Chatman, S. M.; Ilton, E. S.; Rosso, K. M.; Banfield, J. F.; Waychunas, G.
A., Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the
magnetite (111) surface. Environ. Sci. Technol. 2012.

505 (31) O'Loughlin, E. J.; Kelly, S. D.; Cook, R. E.; Csencsits, R.; Kemner, K. M., Reduction of
506 uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): Formation of UO₂ nanoparticles.
507 Environ. Sci. Technol. 2003, 37 (4), 721-727.

(32) O'Loughlin, E. J.; Kelly, S. D.; Kemner, K. M., XAFS investigation of the interactions of
 U^{VI} with secondary mineralization products from the bioreduction of Fe^{III} oxides. Environ. Sci.
 Technol. 2010, 44 (5), 1656-1661.

- (33) Latta, D. E.; Pearce, C. I.; Rosso, K. M.; Kemner, K. M.; Boyanov, M. I., Reaction of U^{VI}
 with Titanium-Substituted Magnetite: Influence of Ti on U^{IV} Speciation. Environ. Sci. Technol.
 2013, 47 (9), 4121-4130.
- 514 (34) Gorski, C. A.; Scherer, M. M., Influence of magnetite stoichiometry on Fe^{II} uptake and 515 nitrobenzene reduction. Environ. Sci. Technol. **2009**, 43 (10), 3675-3680.

516 (35) O'Loughlin, E. J., Effects of electron transfer mediators on the bioreduction of
517 lepidocrocite (gamma-FeOOH) by Shewanella putrefaciens CN32. Environ. Sci. Technol. 2008,
518 42 (18), 6876-6882.

(36) Garrett, R. G., Relative spatial soil geochemical variability along two transects across the
United States and Canada. Appl. Geochem. 2009, 24 (8), 1405-1415.

521 (37) Skomurski, F. N.; Ilton, E. S.; Engelhard, M. H.; Arey, B. W.; Rosso, K. M., 522 Heterogeneous reduction of U^{6+} by structural Fe^{2+} from theory and experiment. Geochim. 523 Cosmochim. Acta **2011**, 75 (22), 7277-7290.

(38) Ilton, E. S.; Boily, J.-F.; Buck, E. C.; Skomurski, F. N.; Rosso, K. M.; Cahill, C. L.;
Bargar, J. R.; Felmy, A. R., Influence of dynamical conditions on the reduction of U^{VI} at the
magnetite-solution interface. Environ. Sci. Technol. 2009, 44 (1), 170-176.

- 527 (39) Lee, S. Y.; Baik, M. H.; Choi, J. W., Biogenic formation and growth of uraninite (UO₂). 528 Environ. Sci. Technol. **2010**, 44 (22), 8409-8414.
- (40) Rui, X.; Kwon, M. J.; O'Loughlin, E. J.; Dunham-Cheatham, S.; Fein, J. B.; Bunker, B.;
 Kemner, K. M.; Boyanov, M. I., Bioreduction of Hydrogen Uranyl Phosphate: Mechanisms and
 U(IV) Products. Environ. Sci. Technol. 2013, 47 (11), 5668-5678.
- 532 (41) Wyckoff, R. W. G., Crystal Structures. Interscience: New York, 1960; Vol. 2.
- 533 (42) Hennig, C.; Ikeda-Ohno, A.; Emmerling, F.; Kraus, W.; Bernhard, G., Comparative 534 investigation of the solution species $[U(CO_3)_5]^{6-}$ and the crystal structure of 535 Na₆[U(CO₃)₅]·12H₂O. Dalton Trans. **2010**, 39 (15), 3744-3750.
- (43) Hennig, C.; Kraus, W.; Emmerling, F.; Ikeda, A.; Scheinost, A. C., Coordination of a
 Uranium(IV) Sulfate Monomer in an Aqueous Solution and in the Solid State. Inorg. Chem.
 2008, 47 (5), 1634-1638.
- (44) Harris, W. E.; Kolthoff, I. M., The Polarography of Uranium. III. Polarography in Very
 Weakly Acid, Neutral or Basic Solution1. J. Am. Chem. Soc. **1947**, 69 (2), 446-451.
- (45) Kern, D. M. H.; Orlemann, E. F., The Potential of the Uranium (V), Uranium (VI)
 Couple and the Kinetics of Uranium (V) Disproportionation in Perchlorate Media. J. Am. Chem.
 Soc. **1949**, 71 (6), 2102-2106.
- 544 (46) Ilton, E. S.; Haiduc, A.; Cahill, C. L.; Felmy, A. R., Mica surfaces stabilize pentavalent 545 uranium. Inorg. Chem. **2005**, 44 (9), 2986-2988.
- (47) Boyanov, M. I.; O'Loughlin, E. J.; Roden, E. E.; Fein, J. B.; Kemner, K. M., Adsorption
 of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of speciation on
 uranyl reduction studied by titration and XAFS. Geochim. Cosmochim. Acta 2007, 71 (8), 18981912.
- 550 (48) Müller, K.; Foerstendorf, H.; Meusel, T.; Brendler, V.; Lefèvre, G.; Comarmond, M. J.; 551 Payne, T. E., Sorption of U(VI) at the TiO2–water interface: An in situ vibrational spectroscopic
- 552 study. Geochim. Cosmochim. Acta **2012**, 76 (0), 191-205.
- Latta, D. E.; Boyanov, M. I.; Kemner, K. M.; O'Loughlin, E. J.; Scherer, M. M., Abiotic reduction of uranium by Fe(II) in soil. Appl. Geochem. **2012**, 27 (8), 1512-1524.

(50) Cologgi, D. L.; Lampa-Pastirk, S.; Speers, A. M.; Kelly, S. D.; Reguera, G., Extracellular
reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc.
Natl. Acad. Sci. USA 2011, 108 (37), 15248-15252.

558 (51) Huber, F.; Schild, D.; Vitova, T.; Rothe, J.; Kirsch, R.; Schäfer, T., U(VI) removal 559 kinetics in presence of synthetic magnetite nanoparticles. Geochim. Cosmochim. Acta **2012**, 96, 560 154-173.

561