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a b s t r a c t 

A series of numerical simulations of the dynamo process operating inside gas giant planets has been per- 

formed. We use an anelastic, fully nonlinear, three-dimensional, benchmarked MHD code to evolve the 

flow, entropy and magnetic field. Our models take into account the varying electrical conductivity, high 

in the ionised metallic hydrogen region, low in the molecular outer region. Our suite of electrical conduc- 

tivity profiles ranges from Jupiter-like, where the outer hydrodynamic region is quite thin, to Saturn-like, 

where there is a thick non-conducting shell. The rapid rotation leads to the formation of two distinct 

dynamical regimes which are separated by a magnetic tangent cylinder - mTC. Outside the mTC there 

are strong zonal flows, where Reynolds stress balances turbulent viscosity, but inside the mTC Lorentz 

force reduces the zonal flow. The dynamic interaction between both regions induces meridional circula- 

tion. We find a rich diversity of magnetic field morphologies. There are Jupiter-like steady dipolar fields, 

and a belt of quadrupolar dominated dynamos spanning the range of models between Jupiter-like and 

Saturn-like conductivity profiles. This diversity may be linked to the appearance of reversed sign helic- 

ity in the metallic regions of our dynamos. With Saturn-like conductivity profiles we find models with 

dipolar magnetic fields, whose axisymmetric components resemble those of Saturn, and which oscillate 

on a very long time-scale. However, the non-axisymmetric field components of our models are at least 

ten times larger than those of Saturn, possibly due to the absence of any stably stratified layer. 

© 2018 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The magnetic fields and zonal wind structure of Jupiter and Sat-

rn can be modeled using the anelastic MHD spherical dynamo

quations. A key feature distinguishing Saturn from Jupiter is the

epth where the transition between molecular hydrogen and its

igh-pressure metallic phase occurs ( Lorenzen et al., 2011 ). Jupiter

odels, such as Jones (2014) or Duarte et al. (2013) , which success-

ully reproduce the magnetic field dipolarity and dipole tilt, have

 shallow hydrodynamic layer and a thick dynamo region deeper

own. We therefore extend and generalise these studies by using

he thickness of the deeper dynamo zone as a parameter, con-

idering the resulting differential rotation and magnetic fields. In

articular, we discuss the implications for Saturn. Gas giant plan-

ts have deep atmospheres with a radial outward decay of static

ensity, pressure and temperature, probably overlying a relatively
∗ Corresponding author at: Max Planck Institute for Solar System Research, 
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mall rocky core. This makes a compressible approach, such as the

nelastic approximation, a useful basis on which to build models. 

The main challenge of numerical MHD models covering the

lobal atmospheric dynamics and magnetic field induction process

f gas giants stems from the enormous range of time and length

cales characteristic of a rapidly rotating, planet-sized spherical

uid body. Additionally, electric currents and their associated mag-

etic forces constitute another level of complexity. The nonlinear

nteraction and relative importance of the governing forces (buoy-

ncy, Coriolis, Lorentz, dissipation) leads to characteristic phe-

omena such as predominantly columnar convective flows, deep-

eaching zonal wind systems, and dynamo-generated magnetic

elds. The ratios of those forces are typically quantified by a set of

ondimensional numbers, e.g. the Ekman, Rayleigh, hydrodynamic

nd magnetic Prandtl number. For some of these, e.g the Ekman

umber, the natural value is far beyond that possible in numerical

odels. We must therefore use enhanced diffusivities and surface

eat flux, hoping that the small scales they eliminate are not so

mportant in determining the larger scale flows and fields we are
ost interested in. 
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1.1. Zonal flows 

Both Saturn and Jupiter feature a prograde jet at the equator,

which is broader and more energetic on Saturn, and multiple al-

ternating bands at higher latitudes ( Sanchez-Lavega et al., 20 0 0;

Porco et al., 2003 ). One possible cause for the surface zonal flow

structure are rotationally organised convective motions filling the

whole planetary atmosphere and generating geostrophic differen-

tial rotation. There have been plenty of numerical and theoretical

studies regarding the emergence of differential rotation in rotat-

ing convection. For hydrodynamic models, convection emerges in

accord with the Taylor–Proudman theorem as columnar structures

aligned with the rotation axis ( Busse, 1970 ). The columns exhibit a

consistent tilt leading to Reynolds stress, which pumps zonal an-

gular momentum outwards, e.g. Busse (1976) ; Christensen (2001) ;

Aubert (2005) . This leads to a run-away growth of differential ro-

tation ultimately balanced by the tiny viscosity and hence giving

enormous jet amplitudes. 

More recently, such zonal flows have been successfully mod-

elled in anelastic systems as well (e.g. Jones and Kuzanyan, 2009;

Gastine and Wicht, 2012 ). Those models are usually strongly

geostrophic, and harbour a broad prograde jet close the equator

and a retrograde one at greater depth. Low Ekman number global

3D models can give Jupiter-like zonal flows, but only if the model

is restricted to the non-metallic region, and crucially uses a stress-

free lower boundary ( Heimpel et al., 2005 ). 

The magnetic field created in the deep interior can attenu-

ate the zonal flow and alter its pattern. Earlier models of gi-

ant planet atmospheres including the magnetic field relied on

the simpler Boussinesq approach ( Heimpel et al., 2005; Heimpel

and Aurnou, 2007; Gómez-Pérez et al., 2010 ). More recent stud-

ies used a polytropic perfect gas, or an interior state model cover-

ing the strong radial decline of density, temperature and pressure

in the framework of the anelastic approximation ( Gastine et al.,

2012; Duarte et al., 2013; Jones, 2014 ). Those models indicated

that when the dynamo is active, the main force balance is al-

tered from a geostrophic to a magnetostrophic regime. Then the

run-away growth of differential rotation due to Reynolds stresses

is stopped in the metallic hydrogen region by the influence of

Maxwell stresses. Such models successfully reproduced the mag-

netic field morphology of Jupiter and the equatorial prograde jet

( Jones, 2014 ). However, the high latitude alternating structures in

giant planets are suppressed by the Maxwell stresses, so it is more

likely they are a surface effect not related to the deep interior. Ul-

timately, the depth of the surface zonal flows may be observation-

ally constrained with gravity measurements by the Juno mission

( Hubbard, 1982; Kaspi et al., 2010; Zhang et al., 2015 ). 

1.2. Magnetic fields, parity and classification 

Jupiter’s magnetic field is rather Earth-like in terms of dipo-

larity and mean dipole tilt ( Connerney, 2007 ). However, Saturn’s

field is peculiar as it seems entirely axisymmetric (e.g. Smith et al.,

1980; Cao et al., 2011 ). Stevenson (1982) suggested that zonal

flows in a stably stratified layer could make the surface magnetic

field axisymmetric even if the field generated by the dynamo is

significantly non-axisymmetric. Such a scenario was further ex-

plored in numerical models by Christensen and Wicht (2008) ;

Stanley (2010) ; Stanley and Bloxham (2016) . However, these mod-

els ignored the other main characteristic of Saturn’s atmospheric

interior, the variable radial conductivity and the combination of a

deep dynamo and an outer hydrodynamic shell. In this study, we

exclude the uncertain stably stratified layer that may occur in Sat-

urn, and study the induction of magnetic fields when the electrical

conductivity is a function of radius. Then, from the modeling point
f view, the essential difference between Jupiter and Saturn is the

epth of the conductivity drop-off level. 

The magnetic fields of dynamo models are usually classified

y the percentage contribution of the dipole mode ( Duarte et al.,

013 ). It turned out that dipole dominated fields are rather hard

o isolate in the most advanced Jupiter models ( Jones, 2014 ). They

eem to coexist with other leading order field symmetries in close

roximity in the parameter space explored so far. It is also known

hat strong anelasticity and the use of smaller (more realistic)

ydrodynamic Prandtl numbers yield a rich zoology of dynamos

 Simitev and Busse, 2005; Christensen and Aubert, 2006; Duarte

t al., 2013 ). Though the global magnetic fields of the Sun, the

arth, Jupiter and Saturn are predominantly dipolar, the ice giants

nd also Mercury are found to harbour strong non-dipolar contri-

utions, including a significant quadrupolar component. 

The process of selecting a leading order equatorial symmetry

s not well understood. In terms of the simpler kinematic the-

ry, Roberts (1972) and Proctor (1977) showed that a combina-

ion of α-effect, shear and meridional circulation controls the time-

ependence and leading order field parity. Their results suggest

hat, steady dipolar and quadrupolar dynamos are typically excited

t similar parameter values in α2 -dynamos. The presence of strong

hear gives preference to dipolar waves of α�-type ( Parker, 1955 ).

f there exists additionally a significant meridional circulation, ei-

her quadrupolar or dipolar steady solutions are selected by the

ign of the product of the α-effect and � ( Proctor, 1977 ). Later on,

reenivasan and Jones (2011) proposed that the magnetic field it-

elf enhances the efficiency of the induction process by increasing

he kinetic helicity, leading to a dipolar preference over all. 

Dynamo generated global magnetic fields in natural objects,

uch as planets or stars, can vary substantially in field symme-

ry and time-dependence. Magnetic fields with leading quadrupo-

ar (equatorially symmetric) parity have been observed in stellar

ynamos, e.g. for Bp-type stars ( Thompson and Landstreet, 1985;

ochukhov, 2006 ). These stars are substantially more massive than

he Sun ( M > 1.5 M �) hence they are convectively unstable in the

ore and stably stratified in the radiative outer region, which is

nown to develop differential rotation ( Triana et al., 2015 ). Fur-

her the quadrupolar magnetic moment of the Sun can be sub-

tantial at periods during the solar cycle, and was suggested to

ominate over the axial and equatorial dipole components at the

ime of grand solar minima ( Knobloch et al., 1998; Beer et al.,

998; DeRosa et al., 2011 ). The magnetic fields of the ice giants

re best described with a strong contribution from the equato-

ial dipole mode ( Holme and Bloxham, 1996; Stanley and Blox-

am, 2004 ). Hence they have substantial equatorially symmetric

nd non-axisymmetric components. Finally, the dynamos in low-

ass dwarfs generate an azimuthal magnetic structure harbouring

 wide variability of axisymmetric and non-axisymmetric modes

 Donati, 2011 ). 

.3. Radially variable electrical conductivity 

In Jupiter and Saturn the transition from metallic to molecu-

ar hydrogen leads to a steep decrease in the electrical conduc-

ivity ( Chabrier et al., 1992; French et al., 2012 ). The conductivity

rofile then follows an exponential decay in the metallic hydro-

en region deeper inside accompanied by a super-exponential de-

ay outside the metallic hydrogen region ( Jones, 2014 ). This implies

n active magnetic field generation process deep inside the planet

here hydrogen exhibits metallic electrical conductivity. The drop-

ff radius separating the hydrodynamic outer shell from the mag-

etic interior shell is closer to the surface for massive Jupiter (at

0% of the planetary radius), but is much deeper for Saturn (at

5%-70%). From the modeling perspective, this leads to an inner

onducting shell where the magnetic field dominates the dynam-
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Fig. 1. Schematic model setup denoting the inner, no-slip and outer, free slip wall. 

The imaginary cylindrical boundary attached to the inner boundary is termed the 

tangent cylinder (TC). The red line denotes the radial position of the conductivity 

drop-off ( r d ) separating an inner magnetic shell with high electrical conductivity 

harbouring the dynamo process from an outer hydrodynamic one. The red dashed 

line gives the position of the cylindrical magnetic tangent cylinder (mTC). (For in- 

terpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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cs surrounded by an outer hydrodynamic shell where the strong

oriolis force reigns. For Saturn, it has been suggested that a stably

tratified region is formed underneath the conductivity drop-off, as

e might become immiscible ( Stevenson and Salpeter, 1977 ). How-

ver, more recently it was shown that the He-droplets sink down

owards the solid core and may not build up a stratifying composi-

ional gradient between the deep-seated dynamo and non-metallic

hallower regions ( Püstow et al., 2016 ). Hence we do not include

ny stable stratification in the models and focus on the effect of a

adially varying electrical conductivity. 

A non-constant electrical conductivity has been investigated

n Boussinesq systems ( Gómez-Pérez et al., 2010; Heimpel and

ómez Pérez, 2011 ) and recently in anelastic models ( Duarte et al.,

013; Jones, 2014; Gastine et al., 2014 ). These studies focused on

upiter, hence the effect of a deeper metallicity region has not

et been fully explored. Our models are based upon the study of

ones (2014) , but investigate a deeper conductivity drop-off, more

pplicable to Saturn-sized planets, and cover a broader range in

odel parameters. Gómez-Pérez et al. (2010) and Heimpel and

ómez Pérez (2011) found that models with thick non-conducting

egions have much stronger zonal flows than those which are mag-

etic almost everywhere. An important issue is at what radius the

agnetic field first becomes dynamically important. A spherical

oundary termed the ‘planetary tachocline’ at a depth of r d was

uggested to separate the hydrodynamic outer from the magnetic

nner region ( Gómez-Pérez et al., 2010; Heimpel and Gómez Pérez,

011 ). We give a precise definition of r d below, but it coincides

oughly with the transition from the non-magnetic H/He region

o the metallic hydrogen region. Our results suggest the boundary

etween the hydrodynamic and the magnetically controlled region

as cylindrical geometry, a ‘magnetic tangent cylinder’ - mTC (see

ig. 1 ) due to the strong rotational influence. This virtual cylinder

s attached to r d at the equator. 

This indicates that surface zonal flows outside the mTC are deep

eaching, geostrophic differential rotation systems, whereas the al-

ernating jet structures observed at higher latitudes on Saturn and

upiter are rather shallow phenomena ( Jones, 2014 ). 

Varying r d effectively changes the geometry of the dynamo re-

ion. This shares some similarities with models featuring constant

onductivity, but where the aspect ratio is changed. Goudard and

ormy (2008) found in a Boussinesq model that when the dynamo

spect ratio exceeds r d /r i = 0 . 65 , the previously preferred steady

ipole solutions are replaced by oscillating dipolar or quadrupolar
olutions. Interestingly, the dynamos are reported to jump between

he dipolar and quadrupolar branch over their temporal evolution

 Goudard and Dormy, 2008 ). 

We start off the paper by discussing the implementation of a

adially variable electrical conductivity in Section 2 . There follows

he introduction of the MHD model and the computational aspects

 Section 3 ). Section 4 then provides a detailed description of the

esults subdivided into an analysis of zonal flows and their main-

enance ( Section 4.1 ), the kinetic helicity ( Section 4.2 ), a classifica-

ion of the emerging dynamo solutions in terms of butterfly dia-

rams ( Section 4.3 ) and the ‘magnetic trigram’ ( Section 4.4 ). The

esults are compared to Saturn in Section 4.5 , before the paper

oncludes in Section 5 . 

. Variable electrical conductivity and magnetic Reynolds 

umber 

To model the radially varying magnetic diffusivity ( λ−1 = μ0 σ,

ith σ the electrical conductivity), a hyperbolic fitting formula

 Jones, 2014 ) 

(r) = exp 

(
u + 

√ 

u 

2 + v 
)

, (1) 

here u and v are 

 = 

1 

2 

[ ( g 1 + g 2 ) r − g 2 − g 4 ] (2) 

 = ( g 1 r − g 2 ) ( g 3 r − g 4 ) − g 5 , (3) 

 being radius in metres, was used. With the values g 1 = −4 . 279 ·
0 −6 , g 2 = 274 , g 3 = −2 . 55 · 10 −8 , g 4 = 1 . 801 , g 5 = 20 . 28 this gives

 close fit to the electrical conductivity of the Jupiter model of

rench et al. (2012) . For our models g 2 and g 5 are changed to alter

 d , the conductivity drop-off. The others are kept constant. The five

ifferent profiles with g 2 = 274 , 240 , 210 , 195 and 180 are plot-

ed in Fig. 2 , top panel. Additionally, g 5 = 20 . 28 for all cases, with

he exception of the ( g 2 = 180 )-model, where g 5 = 10 . 0 to keep

he diffusivity in the dynamo region comparable to the other pro-

les. The model with g 2 = 274 (green profile) closely resembles the

upiter-profile used in Jones (2014) . Whereas for Saturn the phase

ransition from molecular to metallic hydrogen is assumed at the

 Mbar-level at 0.67 r S ( Nettelmann et al., 2013 ), so the orange pro-

le is the closest to Saturn. For numerical reasons, we set the gra-

ient of λ to d λ/d r = 10 6 if the formula value is larger, assuming

hat this gives a diffusivity sufficiently large to yield a current-free

egion for r > r d . Finally, all conductivity profiles are normalised to

heir respective mid-depth values ( λm 

). 

To roughly indicate the top of the dynamo region, located at

he conductivity drop-off r d , we quantify the induction of magnetic

eld by estimating the magnetic Reynolds number, Rm . The diffu-

ivity is non-constant hence the magnetic diffusion consists of two

arts: 

 × λ(r) ∇ × B = λ(r) ∇ × ∇ × B + 

λ

d λ
ˆ e r × ∇ × B , (4) 

here [ d λ] −1 = 1 /λ d λ/d r. In the transition region between the

agnetic interior and the hydrodynamic outer shell, the second

erm dominates the magnetic diffusion and hence we use 

m 

� (r) = U eq (r ) d λ/λ(r ) = U eq (r) 

[
dλ

dr 

]−1 

, 

here U eq ( r ) is the rms flow strength in the equatorial plane for

he models in group 2 in Table 1 . Because the zonal flows are

trongly damped in the magnetic region, they do not significantly

ffect U eq there. Fig. 2 , bottom panel (solid lines) shows Rm 

∗ as a
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Fig. 2. Top: Radial decay of normalised inverse magnetic diffusivity. All curves are 

scaled version of the profile used in Jones (2014) , where the drop-off radius r d is 

varied. Bottom: Magnetic Reynolds number Rm 

� = U eq [ d λ/d r ] 
−1 

(solid) compared to 

the generic definition Rm = U eq D/λ (dashed) along radius. The vertical, dashed lines 

denote the r d values defined by Rm 

� = 1 and hence the upper border of the mag- 

netically active region. 
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b  
function of r . It can be seen that Rm 

∗ roughly resembles the con-

ductivity profile (top panel); values of Rm 

∗ < 10 −2 are effectively

zero in our work. Following Heimpel and Gómez Pérez (2011) , the

upper border of the dynamo region r d for each profile is defined

roughly where Rm 

� crosses unity ( Fig. 2 , bottom panel). Note that

above r d the magnetic field is approximately a potential field as

there are no significant electrical currents there. We also show

in Fig. 2 (bottom panel) the dashed curves derived from setting

Rm = U eq (r) D/λ(r) , which would be obtained if the second term in

(4) were ignored. The profile of Rm is significantly larger, showing

that the additional dissipation due to the variation of λ is signifi-

cant. 

3. Models and methods 

We model the unstably stratified and partially electrically con-

ducting atmosphere of a gas giant as a rapidly rotating and vig-

orously convecting spherical shell. We take into account the radial

variation of adiabatic temperature, density, pressure and electrical

conductivity according to an interior state model originally devel-

oped for Jupiter ( French et al., 2012 ). Note, interior state models

dedicated to Saturn are available, but they do not yet cover the

electrical transport properties ( Nettelmann et al., 2013 ). It is un-

likely that there is great sensitivity to the profiles of temperature,

density and pressure, so using scaled Jupiter values should be ade-

quate. As discussed in the previous study by Jones (2014) , the gov-

erning equations for the conservation of mass, momentum, ther-

mal energy and magnetic field are 

0 = ∇ · ( ̄ρu ) , (5)

∂ u + u · ∇ u = −P m ∇ ̂

 p − 2 P m 

ˆ e z × u + P m F ν

∂t E E M  
− RaP m 

2 

P r 

d ̄T 

dr 
S ̂  e r + 

P m 

E ρ̄
( ∇ × B ) × B , (6)

∂S 

∂t 
+ u · ∇ S = 

P m 

P r 

1 

ρ̄T̄ 
∇ · ρ̄T̄ ∇S + 

1 

P m 

P r 

Ra ̄T 
Q ν

+ 

P m 

P r 
H + 

P r 

RaP m ̄T 

λ(r) 

E ρ̄
( ∇ × B ) 2 , (7)

∂ B 

∂t 
= ∇ × ( u × B ) − ∇ ×

(
λ(r) ∇ × B 

)
. (8)

ere u is the flow, B the magnetic field, S the specific entropy, F ν
he viscous force, ˆ p = p/ ̄ρ the modified pressure, ˆ e z the axis of ro-

ation, ˆ e r the radial unit vector, H is an entropy source, Q ν repre-

ents viscous heating, ρ̄ and T̄ are density and temperature of the

ackground. Further 

 ν = 

1 

ρ̄

[
∂ 

∂x j 
ρ̄

(
∂u i 

∂x j 
+ 

∂u j 

∂x i 

)
− 2 

3 

∂ 

∂x i 
ρ̄

∂u j 

∂x j 

]
, (9)

 ν = σi j 

∂u i 

∂x j 
, (10)

i j = νρ̄

(
∂u i 

∂x j 
+ 

∂u j 

∂x i 
− 2 

3 

δi j ∇ · u 

)
, (11)

here σ ij is the stress tensor. Background temperature, den-

ity and magnetic diffusivity are normalised by their respective

id-depth values ( T m 

, ρm 

, λm 

). The non-dimensional parameters

merging by rescaling length by the shell thickness D = r o − r i ,

ime by the magnetic diffusion time scale τλ = D 

2 /λm 

, and the

agnetic field by 
√ 

�ρm 

μ0 λm 

, are the Ekman number E , the hy-

rodynamic Prandtl number Pr , the Rayleigh number Ra and the

agnetic Prandtl number Pm according to 

 = 

ν

�D 

2 
, P r = 

ν

κ
, Ra = 

T m 

D 

3 q o 

ρo T o κ2 ν
, P m = 

ν

λm 

, (12)

here κ is entropy diffusivity, ν kinematic viscosity and � the

otation rate. Here ρo and T o are density and temperature at the

uter boundary ( r = r o ). Note that the entropy scale and hence

he Rayleigh number in the present study are based on the outer

oundary heat flux density q o , rather than an imposed entropy

ontrast S as used in Jones (2014) . Then q o , which is constant

ver the planet’s surface, is determined by the contributions of in-

ernal ( H ) and bottom heat source density ( q i ) 

 

2 
o q o = 

r 3 0 − r 3 
i 

3 

H + r 2 i q i , (13)

hich can be expressed using the aspect ratio β = r i /r o to give 

 o = 

1 − β3 

3(1 − β) 
HD + β2 q i . (14)

or giant planets with relatively small cores, the heat flux emerg-

ng from the core is likely to be small compared to the heat flux in

he H/He region, so for the bulk of the models we ignore any heat

ux at the inner boundary ( q i = 0 ), and the convection is powered

xclusively by an internal entropy source H due to cooling of the

lanet. However, for comparison we also performed a few models

ith bottom driving ( H = 0 , q i = q o /β2 ). Further, the aspect ratio

s increased to a Saturn-like value, β = 0 . 2 . The containing walls

re impenetrable and no-slip at the inner boundary and free-slip

t the outer boundary (see also Fig. 1 ). 

We numerically integrate the system of equations ( Eqs. 5 –8 )

y using the Leeds Anelastic Spherical Dynamo Code (ALSD), an

PI-parallelised pseudo-spectral code benchmarked against several
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Table 1 

Table of runs. The Ekman number is fixed to E = 5 · 10 −5 , the magnetic Prandtl 

number to Pm = 3 apart from the cases where Pm = 5 is used ( 5 , group 7). 

D, Q and NA are the time averaged relative magnetic energy at the surface in 

equatorial-antisymmetric/axisymmetric, equatorial-symmetric/axisymmetric and non- 

axisymmetric magnetic energy at the surface, respectively. † indicates bottom heated 

models. � denotes the Jupiter-model by Jones (2014) , which was performed with a 

lower Ekman number E = 2 . 5 · 10 −5 , β = 0 . 0963 and internal heating. The column 

‘type’ assigns each dynamo solution to the seven types given in Fig. 6 . The bold-faced 

ones are those shown in the figure. 

o. Ra Pr r d D Q NA Type Symbol 

1.1 6 · 10 6 0.15 0.67 0.914 0.002 0.085 III 

1.2 6 · 10 6 0.15 0.72 0.934 0.014 0.005 III 

1.3 6 · 10 6 0.15 0.82 0.004 0.813 0.183 V 

1.4 6 · 10 6 0.15 0.94 0.0 0 08 0.653 0.339 V 

2.1 1 · 10 7 0.25 0.62 0.943 0.001 0.056 III 

2.2 1 · 10 7 0.25 0.67 0.912 0.0 0 09 0.087 III 

2.3 1 · 10 7 0.25 0.72 0.0021 0.843 0.155 V 

2.4 1 · 10 7 0.25 0.82 0.0055 0.746 0.249 V 

2.5 1 · 10 7 0.25 0.94 0.461 0.188 0.351 IV 

2.6 1 · 10 7 0.25 ∞ 0.093 0.065 0.842 IV 

3.1 1.5 · 10 7 0.25 0.62 0.02 0.421 0.559 IV 

3.2 1.5 · 10 7 0.25 0.67 0.033 0.435 0.533 V 

3.3 1.5 · 10 7 0.25 0.72 0.011 0.679 0.31 V 

3.4 1.5 · 10 7 0.25 0.82 0.039 0.726 0.235 V 

3.5 1.5 · 10 7 0.25 0.94 0.558 0.322 0.121 IV 

4.1 9 · 10 6 0.15 0.62 0.014 0.625 0.361 V 

4.2 9 · 10 6 0.2 0.62 0.956 0.0012 0.042 III 

4.3 9 · 10 6 0.25 0.62 0.962 0.0 0 05 0.037 III 

5.1 1.2 · 10 7 0.25 0.72 0.027 0.716 0.257 V/ VI 

5.2 2 · 10 7 0.25 0.72 0.024 0.437 0.539 V 

5.3 2.5 · 10 7 0.25 0.72 0.018 0.472 0.510 V 

6.1 9 · 10 6 0.25 0.82 0.621 0.002 0.377 II 

6.2 1.2 · 10 7 0.25 0.82 0.004 0.672 0.324 V 

6.3 2 · 10 7 0.25 0.82 0.014 0.563 0.423 V 

6.4 3 · 10 7 0.25 0.82 0.042 0.267 0.691 V 

7.1 5 1 · 10 7 0.25 0.62 0.685 0.006 0.309 II 

7.2 5 1 · 10 7 0.25 0.72 0.001 0.667 0.332 V 

7.3 5 1 · 10 7 0.25 0.94 0.177 0.207 0.614 IV 

8.1 † 5 · 10 6 0.15 0.62 0.287 0.299 0.414 VII 

8.2 † 9 · 10 6 0.25 0.62 0.761 0.005 0.234 III 

8.3 † 9 · 10 6 0.25 0.94 0.122 0.072 0.806 IV 

8.4 † 1 · 10 7 0.25 0.94 0.118 0.091 0.791 IV 

9 7 · 10 6 0.15 0.62 0.024 0.558 0.439 IV 

10 7 · 10 6 0.2 0.67 0.945 0.001 0.054 III 

11 1 · 10 7 0.2 0.67 0.473 0.225 0.302 III/IV 

12 8 · 10 6 0.15 0.72 0.898 0.008 0.095 III 

13 � 1.1 · 10 7 0.1 0.94 0.874 0.004 0.128 I 

o  

T  
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a  
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i  

n  

t  

t  

a  

J  

l  

o  

t  

n  

t  

h  

i  
ther comparable numerical implementations ( Jones et al., 2011 ).

he radial resolution is N r = 160 and spectral resolution is trun-

ated at maximum degree and order N � = N m 

= 128 yielding az-

muthal and latitudinal resolution of N φ = 384 and N θ = 192 , re-

pectively. Table 1 contains a selection of our dynamo simula-

ions where the individual models are organised in groups, each

roup aiming to identify one parameter dependence. For group 1,

 smaller P r = 0 . 15 is combined with a smaller Rayleigh number

nd r d is varied. Groups 2 and 3 repeat the numerical experiment

ith slightly higher Pr and different Ra -values. Group 4 tests the

r -dependence, whereas groups 5 and 6 investigate the effect of

ncreasing Ra for fixed r d . Group 7 checks models with higher mag-
etic Reynolds number by inreasing Pm , whereas group 8 shows

he influence of bottom driven convection. The cases 9–12 test

he robustness of the regimes with various combinations of Pr, Ra

nd r d . Case 13 in Table 1 represents the Jupiter-like model from

ones (2014) . At the chosen parameter regime the numerical simu-

ations are extremely resource demanding. A single model requires

ne or two weeks of run-time, when parallelised over 512 cores,

o integrate past the initial transients and time-average over a sig-

ificant fraction of the magnetic diffusion time. The total computa-

ional demand for the 34 runs in the table sums up to 3 · 10 6 CPU

rs and is provided by supercomputing facilities. Simulations were

nitialised from previously obtained solutions, e.g. from the strong
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dipolar Jupiter-like model of Jones (2014) . However, we also per-

formed a few test runs initialised from a random seed field, where

the Lorentz force is initially marginal. 

It is interesting to note that we have not encountered any bista-

bility in our runs. Bistability is the coexistence of two (or more)

distinct stable solutions, where the emerging solution in any par-

ticular run being determined by the initial conditions. Bistability

was reported for similar models by Duarte et al. (2013) , but typ-

ically only for Jupiter-like models with rather high r d . In the sce-

nario of Duarte et al. (2013) , either a strong, dipolar field along-

side weak zonal flows, or a multipolar field shredded by the strong

zonal flows, are the two distinct characteristic solution types. For

our models, especially those with small r d , zonal flows are always

strongly generated in the hydrodynamic shell, where they cannot

be attenuated by the magnetic field. Furthermore our models op-

erate at a slightly different parameter regime. Bistability cannot be

ruled out for our models, but it seems uncommon in the range of

models we examined. 

4. Results 

For an overview, we consider models where only the radial po-

sition of the conductivity drop-off r d is changed, but all other pa-

rameters are kept identical. To compare the emerging solutions to

end-member scenarios, a pure hydrodynamic simulation with no

magnetic fields and a fully conducting model where the electri-

cal conductivity is constant along radius are added. The details of

these runs can be found in group 2 of Table 1 . After time inte-

grating through a transient we average the solutions over a frac-

tion of the magnetic diffusion time, and some results are shown

in Fig. 3 . Zonal flows are consistently found to be prograde at

the equator regardless of the magnetic effects (first column in

Fig. 3 and the surface snapshots), but obey rather different ampli-

tudes and patterns, discussed below in section 3.1. In the second

column of Fig. 3 we see that the meridional circulation is small

in these rapidly rotating low Rossby number models, but there is

some meridional flow coupling the magnetic conducting interior

to the non-magnetic exterior. The third column gives the helicity,

discussed further in section 4.2, an important quantity for mag-

netic field generation. The magnetic fields are shown in the fourth

and fifth columns of Fig. 3 ), along with a snapshot of the surface

radial field. It is immediately apparent that the morphology of the

magnetic field is remarkably different for the different values of r d ,

even though all other parameters are identical. In particular, be-

tween the Jupiter-like case (b) and the Saturn-like case (d) there

is a region of r d where the field is quadrupolar rather than dipo-

lar, i.e. the radial magnetic field is symmetric rather than antisym-

metric about the equator. We discuss these differences in sections

4.3–4.5 below. 

4.1. Zonal flows and the conservation of angular momentum 

The resulting surface zonal flows for the set of models where

only the conductivity drop-off r d is changed (group 2 in Table 1 )

are plotted in Fig. 4 . The plot shows the time-averaged, axisym-

metric azimuthal flow ( u φ) at the surface as a function of latitude

in terms of the Rossby number Ro s = u φE(1 − β) /P m . The hori-

zontal dashed lines denote the virtual magnetic tangent cylinder

and are coloured according to the r d -value used. It can be seen

that the model with smallest r d has a prograde equatorial peak jet

amplitude of more than double the Jupiter-like models ( Fig. 4 or-

ange vs green profile). The broader and more energetic jet is in

line with the observed profiles for Jupiter and Saturn ( Porco et al.,

2003; Sanchez-Lavega et al., 2000; Aurnou et al., 2007 ) with peak

equatorial amplitudes of 150 and 450 m/s, respectively. For com-

pleteness the fully conducting model ( r = ∞ ) and a hydrodynamic
d 
odel without magnetic field are also included (purple and grey

rofile). In the fully conducting model, the equatorial peak jet is as

mall as Ro e = 0 . 011 hence only a quarter of the Jupiter-like model

ith r d = 0 . 94 . This indicates that even a rather thin non-magnetic

hell creates a firm equatorial jet. Further as the difference be-

ween a deep drop-off model ( r d = 0 . 6 2) and the hydrodynamic

un ( Ro e = 0 . 08 vs. 0.11) is much weaker, it is clear that the zonal

ow system originates mainly from the outer regions. 

The main force balances are fundamentally different between

he hydrodynamic outer and magnetic inner shell. In the former,

onal flows are exclusively maintained by Reynolds stress created

y a consistent strong tilt in the convective columns and ultimately

aturated by the fluid viscosity. This leads to strong geostrophic

onal flows. However, in the metallic region the Lorentz force

ounteracts the rotational forces, and the convective columns are

topped from further tilting by magnetic tension. Hence the dif-

erential rotation emerging inside the magnetic tangent cylinder

s considerably weaker. This explains why the models with only a

hin non-magnetic shell (or no non-magnetic shell) have a weaker

onal flow, and why the models with a smaller r d have a broader

rograde jet. However, the central prograde jet on Saturn (Jupiter)

xtends to ± 35 ° ( ± 20 °), whereas in our results the equatorial

ets are broader. Also, despite the reasonably low Ekman number

 E = 5 × 10 −5 ) there is not much evidence for any significant west-

ard jets, which are known to exist in higher latitude regions on

upiter and Saturn. It is possible that at much smaller E westward

ets will develop, but it does appear that while westward jets can

e readily obtained in purely hydrodynamic models (e.g. Jones and

uzanyan, 2009 ), it is much harder to get westward jets in models

ith a magnetic field. 

Fig. 4 clearly indicates the importance of applying a radially

arying electrical conductivity in attempts to model gas giant at-

ospheric circulations. As already suggested in Jones (2014) , our

esults indicate that there are deep jets outside the magnetic tan-

ent cylinder, giving rise to the large surface flows near the equa-

orial region, but that the jets at higher latitudes, which lie inside

he magnetic tangent cylinder, are due to localised surface effects

n the uppermost parts of giant planet atmospheres. 

To more clearly identify the main force balance maintaining the

ifferential rotation system two equations are helpful. The first is

he thermal wind equation, which is the φ-component of the vor-

icity equation, so we take the time-averaged φ-component of the

url of equation (6) , 

ω φ(∇ · u ) + s u · ∇ 

(ω φ

s 

)
− s ω · ∇ 

(u φ

s 

)
= 

2 P m 

E 

∂u φ

∂z 

−RaP m 

2 

P r 

1 

r 

∂ 

∂θ

(
S 

d ̄T 

dr 

)
+ 

P m 

E 

(
∇ ×

(
1 

ρ̄
(∇ × B ) × B 

))
φ

+ P m ( ∇ × F ν ) φ, (15)

here s = r sin θ/r o is the distance from the rotation axis and ω =
 × u is vorticity. In low Rossby number giant planets, the non-

inear inertia terms on the left-hand-side are much smaller than

he first term on the right, since planetary vorticity dominates lo-

al vorticity, and the final viscous term is also small. The thermal

ind equation is most useful outside the magnetic region, r > r d ,

here the magnetic terms can be neglected. We are then left with

he usual thermal wind balance between latitudinal entropy gra-

ients and the gradient of u φ parallel to the rotation axis ( z -axis).

owever, entropy gradients are small in the convective regions of

iant planets because efficient convection ensures that the whole

tmosphere is close to adiabatic. In consequence of ∂ u φ/∂ z = 0 , u φ
as to be nearly independent of z , i.e. geostrophic. Note that this

rgument breaks down in the Sun, because the Rossby number in

he convection zone is not very small, so the terms on the left are

on-negligible, but the convection in giant planets is driven only
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Fig. 3. From left to right we show five time-averaged meridional sections. These are: the azimuthal flow ( u φ ), the meridional stream function �m , the kinetic helicity h , the 

radial and azimuthal fields B r and B φ . Also shown are typical snapshots of the spherical projection of the radial field and azimuthal flow at the surface. From top to bottom 

the five cases are: (a), the fully conducting model, run 2.6 in Table 1 ; (b) the Jupiter-like model, run 2.5, with r d = 0 . 94 ; (c) an intermediate r d = 0 . 72 model, run 2.3; (d) the 

deep drop-off case r d = 0 . 62 , run 2.1; (e) the hydrodynamic model. In (b–d), the dashed curve gives the approximate radial level where the electrical conductivity drops off. 

The maximal contour levels are listed. For the helicity in figures (c) and (d), the helicity in the interior is amplified for clarity, and the maximal contour levels in the interior 

region are given in brackets. Flows are in terms of magnetic Reynolds numbers Rm , the field in measures of the Elsasser number �. Parameters: Ra = 1 · 10 7 , E = 5 · 10 −5 , 

P r = 0 . 25 , P m = 3 . 
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Fig. 4. Axisymmetric surface zonal flow along latitude for models with variable 

conductivity drop-off r d , a fully conductive model (magenta) and pure hydrody- 

namic simulation (dark-grey). The horizontal dashed lines denote the latitude. of 

the virtual magnetic tangent cylinder attached at r d .(For interpretation of the refer- 

ences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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by very slow cooling, and so is much weaker. It is also possible that

close to the surface the density is low enough for significant en-

tropy (hence temperature) fluctuations to occur, so the flow there

could be ageostrophic, but our model has to be cut off before such

very low densities are reached. It is now clear why there is so lit-

tle zonal flow inside the tangent cylinder even in the non-metallic

regions: the Maxwell stresses wipe out any large zonal flows in

the metallic region, and this sets a u φ = 0 bottom boundary con-

dition for the thermal wind equation (15) . Since there are no sig-

nificant terms forcing a thermal wind gradient, it remains close to

zero everywhere inside the magnetic tangent cylinder. Outside the

magnetic tangent cylinder, there is no equivalent bottom boundary

condition, and large geostrophic zonal flows can build up as fore-

seen by Busse (1983) . 

The second useful equation is that governing zonal angular mo-

mentum per unit mass L 

L = u φs + 

P m 

E 
s 2 . (16)

The first term gives the differential rotation and the second con-

cerns the planetary solid body rotation. The conservation equa-

tion can be found by multiplying the azimuthal component of

the Navier–Stokes equation (6) by s and averaging over azimuth

and time (e.g, Browning, 2008; Schneider and Liu, 2009; Liu and

Schneider, 2010; Gastine et al., 2013 ): 

ρ u m 

· ∇L = ∇ ·
[

P m ρs 2 ∇ 

(
u φ

s 

)
− ρs u 

′ u 

′ 
φ

]

+ ∇ ·
[ 

P m 

E ρ
s 

(
B 

′ B 

′ 
φ

+ B B φ

)] 
. (17)

where the remaining forces due to viscosity, Reynolds stress and

Maxwell stress appear in that order on the right hand side of the

equation. 

This diagnostic equation links the axisymmetric flows (merid-

ional circulation u m 

and zonal flows u φ) with the non-

axisymmetric convection u 

′ and the magnetic field contributions

B B φ in terms of forces due to viscous, Reynolds and Maxwell

stresses, respectively. The left hand side of Eq. 17 contains only

mean flows and hence is easily calculated, whereas on the right

hand side, the terms due to Reynolds and Maxwell stress require
orrelating a set of snapshots over time and azimuth. We verified

hat for each case the left and right hand sides are equal. 

Fig. 5 plots the five terms for the same set of models as in

ig. 3 (group 2 in Table 1 ). In the hydrodynamic case ( Fig. 5 (e)), the

iscosity balances the Reynolds stresses to a large extent, hence

he advection of zonal angular momentum L by meridional circu-

ation is marginal. This is in line with the classic picture of the

onal flow created by a consistent tilt in the convective columns

hich further enhance the differential rotation ( Busse, 2002 ). This

un-away process is ultimately stopped by the viscosity acting

n the shear of the zonal flows. In contrast, in a fully conduct-

ng model ( Fig. 5 (a)) the Reynolds stresses are stopped from fur-

her growth by the magnetic forces and the viscosity is negligible

 Aubert, 2005 ). As a consequence, the zonal flows are much weaker

f magnetic fields are invoked as already shown in Fig. 4 . Note for

oth, the fully conducting and the hydrodynamic model ( Fig. 5 (a)

nd (e)), the balance between the Reynolds and either Maxwell or

iscous stresses is fairly well fulfilled, such that the advection of

ngular momentum by meridional circulation is marginal. 

However, when the electrical conductivity is a function of ra-

ius ( Fig. 5 (b)–(d)) and hence a hydrodynamic shell encloses a

agnetic deeper interior, there we find contributions from all

hree stress sources. The Maxwell stresses are confined within the

etallic region, hence cannot balance the Reynolds stresses which

re quite strong in the non-metallic region. To achieve a z-invariant

ifferential rotation a mean advection of angular momentum is re-

uired to maintain the balance. Note the strong Reynolds stresses

n the 3rd column of Fig. 5 (d) that occur near the outer boundary

ust inside the mTC. The thermal wind constraint means that these

eynolds stresses cannot drive a zonal flow, so they have to be al-

ost exactly balanced by a mean advection of angular momentum,

ee the 1st column of Fig. 5 (d). 

In the metallic region, the dominant balance seems to be be-

ween the Maxwell stresses (columns 4 and 5) and the advection

f angular momentum (column 1). The Reynolds stresses are not

ompletely negligible, but they have a minor role there. Near the

quatorial plane, zonal angular momentum is transported inwards

rom the hydro region (blue areas in the figure in the first column)

nd outwards in the deep metallic region (red). These converging

ows are directed polewards to conserve the mass flux and lead

o the characteristic meridional circulation seen in Fig. 3 . Although

he zonal flow itself is not large near this convergent region, its

radient gives rises to a noticeable viscous contribution in some of

he 2nd column panels of Fig. 4 , though this will likely disappear

t lower E . It is clear that the zonal force balance is rather complex

or systems coupling hydrodynamic and magnetic regions and can

nclude all three forces plus meridional circulation. 

.2. Kinetic helicity 

The kinetic helicity h is thought to play an essential part in

he generation of magnetic fields in rapidly rotating convection

 Moffatt, 1978; Olson et al., 1999; Sreenivasan and Jones, 2011 ).

ig. 3 third column plots the azimuthal average of the kinetic he-

icity gained from non-axisymmetric flows: 

 = u 

′ · (∇ × u 

′ ) . (18)

We time-average the helicity over a series of snapshots and find

he classical picture of an antisymmetric distribution with a neg-

tive (positive) mean in the northern (southern) hemisphere for

he fully conducting (top) and hydrodynamic model (bottom). This

s the usual parity found in Boussinesq models. We note that, in

greement with previous findings ( Sreenivasan and Jones, 2011 ),

he kinetic helicity in the fully conducting magnetic case is three

imes higher than in the hydrodynamic one. This is in line with

he classic linear picture of z -independent convective columns ex-
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Fig. 5. Time-averaged balance of angular momentum. From left to right: angular momentum flux is given by forces due to viscous, Reynolds, non-axisymmetric and axisym- 

metric Maxwell stresses. From top to bottom: fully conducting model (a), the Jupiter-like model with r d = 0 . 94 (b), intermediate r d = 0 . 72 (c), deepest drop-off r d = 0 . 62 (d) 

and hydrodynamic model (e). The dashed semi-circles denote the conductivity drop-off, the vertical dashed lines the corresponding magnetic tangent cylinders. The runs 

presented are the same as in Fig. 3 . 
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tending along the height of the entire shell. The negative helic-

ity stems from a consistent alignment of flow and flow vorticity,

hence the vertical flow is equatorward in a cyclonic column and

poleward in an anticyclone. The convective structures in our simu-

lations are not strictly columnar due to their nonlinearity, but the

dominant Coriolis force still enforces much larger vertical than hor-

izontal length scales. 

For the hydrodynamic model ( Fig. 3 , bottom) it can be seen

that inside the tangent cylinder, both helicity parities are visible in

each individual hemisphere. Near the rotation axis, radial upwards

motion is accompanied by a divergence of horizontal flow which

is turned into a cyclonic structure by the Coriolis force and vice

versa. Note that the helicity sign change is due to a flip of the vor-

ticity, whereas for the columnar mode the kinetic helicity flips at

the equator due to a change in the vertical flows ( Guervilly et al.,

2014; Duarte et al., 2016 ). 

The remarkable feature of the third column of Fig. 3 is the

reversed helicity in the metallic region, positive in the northern

hemisphere and negative in the southern hemisphere. Anelastic-

ity allows for vorticity generation by the background density gra-

dient. This will create negative vorticity in rising, expanding fluid

parcels and hence negative helicity in the northern hemisphere.

This aligns with the helicity distribution predicted for (also incom-

pressible) columnar convection, and so would simply enhance the

usual Boussinesq helicity distribution. It has been suggested that

internal heating and strong inertia effects can lead to inverse he-

licity, i.e. positive in the north and negative in the southern hemi-

sphere ( Duarte et al., 2016 ). However, our hydrodynamic model

shows the usual behaviour, so we attribute the inverse helicity

patches found in models with variable conductivity ( Fig. 3 middle

three panels) to an effect of the magnetic field. 

As we saw in the zonal flow section, magnetic fields are dynam-

ically important, so we expect them to affect the helicity. How-

ever, given that the fully magnetic model shows the original he-

licity distribution found for the simpler hydro-model, it is clear

that helicity inversion is not simply due to the magnetic field it-

self. Duarte et al. (2016) argue that the regions close to the outer

boundary and the deeper interior can be decoupled by a large den-

sity gradient. Apparently in our models it is the electrical conduc-

tivity and hence the magnetic field which separates the two dis-

tinct regions. Closer to the outer boundary, the helicity distribu-

tion is controlled by the boundaries, hence axial equatorward (up-

ward) flow is associated with cyclones (anticyclones) leading to the

classical picture of negative kinetic helicity in the northern hemi-

sphere. However in the magnetic regions, the Lorentz force is of

first order and relaxes the rotational constraints. Hence the axial

vorticity is no longer controlled by (rather distant) boundaries but

by the diverging/converging flows near the equatorial plane driven

by the magnetic field. This leads to positive kinetic helicity as ax-

ial equatorward flows are now apparently associated with anticy-

clones and vice versa. As the inversion consistently emerges for

models with variable conductivity it can be concluded that it re-

quires different force regimes to decouple the boundary control of

the helicity parity. This can be achieved by e.g the combination of

hydrodynamic and magnetic regions with strong density gradient

in the outermost layers ( Duarte et al., 2016 ). 

Sreenivasan and Jones (2011) found that quadrupolar fields re-

duced the helicity while dipolar fields enhanced it, and attributed

the overall preference of dipolar fields in Boussinesq models to this

effect. In none of their models was the helicity ever reversed. It ap-

pears that in these variable conductivity models, the combination

of magnetic field and induced mean flows is having such a strong

effect that both the quadrupolar Fig. 3 (c) and the dipolar Figs. 3 (b)

and (d) undergo helicity reversal. It is therefore perhaps not sur-

prising that these anelastic variable conductivity models show no

strong preference between dipolar and quadrupolar fields. 
.3. Dynamo solutions 

As we observe many different types of magnetic field in our so-

utions, we firstly aim to distinguish different tem poral behaviour

y plotting butterfly diagrams ( Fig. 6 ). The parameters of the runs

re listed in Table 1 . These plots show the axisymmetric, radial

eld at the surface of the spherical shell as a function of colatitude

nd time. For the Jupiter-like models with a thin non-conducting

egion, a dominant stable dipole is a possible solution, in agree-

ent with the observations of Jupiter’s magnetic field (panel a).

ur example in panel (a), model 13, is close to the Jupiter model of

ones (2014) . In our group 2 models with r d = 0 . 94 we also found

 dominant dipolar field case ( Table 1 , model 2.5), but this model

arbours a more erratic temporal evolution with some infrequent

olarity reversals. When the non-conducting outer shell is slightly

ncreased, so r d = 0 . 82 , model 6.1 in Fig. 6 (b), the octupole par-

icipates strongly, leading to positive and negative radial magnetic

ux in both hemispheres. However, when the conducting region

s shrunk further, r d = 0 . 62 , and all other parameters are kept the

ame, the dipole is again dominant, but it starts to oscillate, see

ig. 6 (c) model 4.3. The field has the form of a dynamo wave prop-

gating towards the equator, as in the Sun. Although the differen-

ial rotation is primarily in the non-conducting region, some differ-

ntial rotation does penetrate into the outer parts of the dynamo

egion (see the leftmost column of Fig. 3 (c) and (d)), and we be-

ieve this provides an omega-effect giving rise to dynamo waves.

ote that Fig. 6 (c) has a slightly smaller Rayleigh number than

igs. 6 (a) and (b). 

In Fig. 6 (d) (model 3.5), we show what happens if the Rayleigh

umber is significantly increased. The dynamo becomes small scale

nd irregular. This example is for r d = 0 . 94 , but the same happens

t all r d if Ra is increased sufficiently. This is expected from expe-

ience with Boussinesq models, as the more vigorous convection

s energetic enough to overcome the dominant geostrophy (local

ossby number no longer sufficiently small) and hence irregular,

mall-scale fields are created by more isotropic turbulence. 

However, a more moderate increase of the vigour of convection

 Ra ) can turn the dynamo wave behaviour of Fig. 6 (c) into a steady

uadrupole solution, as shown in Fig. 6 (e), model 2.3. Although

his model has a magnetic field that is almost completely symmet-

ic about the equator, dipole and quadrupole modes are not com-

letely exclusive. Fig. 6 (f), model 5.1, is at a slightly higher Rayleigh

umber, and although it is basically a quadrupolar dynamo, it has

 small oscillatory dipolar component as well. Such a combination

f an oscillating dipole and a steady quadrupole seems to be the

ost common solution for models with intermediate r d studied in

his paper. 

As a peculiar solution, we also identify a hemispherical wave

ynamo ( Fig. 6 (g)), model 8.1. The Rayleigh number is moderate,

 d = 0 . 62 and Pr is smaller, at 0.15 rather than 0.25. This solu-

ion is remarkable as dipolar and quadrupolar contributions must

e equally strong and are required to oscillate in a well-defined

hase relation in order to keep the field hemispherical at all times.

or all the other solutions it seemed that dipolar and quadrupolar

olutions are created independently of each other and are simply

uperimposed. This quite obviously cannot be true for the hemi-

pherical wave. Note that the magnetic field there is weaker by a

actor 10 compared to the other solutions. 

In Fig. 7 we show some meridional sections of the hemispher-

cal dynamo wave, which shed light on the nature of this solu-

ion. First we note from row (a) the latitudinal gradients of the en-

ropy, are quite equatorially symmetric, so the small thermal wind

s also symmetric about the equator, and consistent with this the

onal flow is also symmetric. Also the kinetic helicity distribution

s almost perfectly antisymmetric to the equator. Thermal wind,

onal flow and the kinetic helicity as a proxy for the induction of
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Fig. 6. Axisymmetric radial field at the outer boundary as function of latitude and time (butterfly diagram) to characterise the distinct solutions. Details of the input 

parameters are given in Table 1 .(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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oloidal field are therefore not the origin of the hemispherical na-

ure of the dynamo. It is the meridional circulation which shows

 strong equatorial asymmetry. The reason for this can be seen in

he angular momentum flux balance shown in row (b). The vis-

ous forces and the Reynolds stresses are quite equatorially sym-

etric, but the Maxwell stresses are not, as we would expect since

he magnetic field resides primarily in one hemisphere. Inside the

etallic region, the main balance is between the Maxwell stresses

nd the advection of angular momentum by the meridional cir-

ulation, so this forces the meridional circulation to be equatori-

lly asymmetric. This suggests that a hemispherical dynamo comes

bout when an asymmetric meridional circulation pushes the az-

muthal magnetic field slightly off centre, and this offset magnetic

eld then generates the right form of meridional circulation that

dvects the magnetic field still further off centre. In the dynamos

hich remain in either dipolar or quadrupolar parity, presumably

 small offset generates a meridional circulation which corrects,

ather than exacerbates, the off centre components of the magnetic

eld. 

To give further information about the nature of the whole range

f our solutions, we show the phase relation between dipole and

uadrupole components in Fig. 8 by plotting a phase diagram of

he surface values of g 20 against g 10 as time evolves ( g 10 and

 20 are defined in equation (20) below). The numbers (I-VII) in-
icate for each trajectory the various solution types highlighted in

able 1 and correspond to the cases shown in Fig. 6 . This plot is

ensitive to sign changes, but it only covers two single axisymmet-

ic spherical harmonics out of the possibly complex magnetic field.

he diagonal dashed lines are indicating g 10 = ±g 20 , and the hemi-

pherical dynamo VII operates along this line, as equal contribution

f g 20 and g 10 are needed to minimise the field in one hemisphere

nd maximise it in the other at all times. The stable dipolar dy-

amo I (in blue), which is Jupiter-like, hovers around g 10 = 0 . 01

nd g 20 = 0 , as there is some variation of the field strength with

ime even though the sign of g 10 doesn’t change. The solar-like

ipolar waves, solution III (dark-red) show only a small quadrupo-

ar contribution and oscillate along the g 10 -line. The path for so-

ution IV (red), the small scale irregular dynamo, wanders about

rratically as expected. The orange trajectory, solution V, corre-

ponding to the quadrupole, has only a small dipolar term and

tays around g 20 = 0 . 006 . The quadrupolar dynamo with an oscilla-

ory dipole component, solution VI in green, wanders more in the

ipolar direction, but interestingly never crosses the g 10 = ±g 20 di-

gonals, suggesting that in these models dipolar and quadrupolar

odes do depend on each other. In other words, increasing the

onvective vigour leads to an increased strength of the dipole, but

t never exceeds the quadrupole. The peak magnetic intensity then

scillates between north and south. 
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Fig. 7. Time-averaged meridional sections of the hemispherical wave dynamo, model 8.1. (a) from left to right: the azimuthal flow ( u φ ), the meridional stream function �m , 

kinetic helicity h and the latitudinal entropy gradient 1 
r 
∂ θ S . (b) the angular momentum flux balance, as in the first 4 panels of Fig. 5 . 

Fig. 8. Phase diagram g 20 ( g 10 ) to identify the various regimes. g 10 and g 20 are the 

sign and amplitude of the axisymmetric dipole and quadrupole field component at 

the surface. The small inset is an upscaled plot of the hemispherical wave with 

weaker magnetic amplitude indicating the strict phase relation between dipole and 

quadrupole. The roman numbers refer to the types in Table 1 and Fig. 6 . 
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4.4. Magnetic trigram 

The ‘butterfly diagrams’ are helpful for identifying the time-

dependence of the axisymmetric radial field at the surface, which

is important for giving an overall view of the magnetic field, but

they do not tell us about the non-axisymmetric components of

the field. It is therefore helpful to measure the relative axisymme-
ry of our solutions, to properly compare the solutions to satellite

easurements of real planetary magnetic fields. This distinguishes

etween highly axisymmetric planets like Saturn and those with

ubstantial non-axisymmetric components like Uranus and Nep-

une. The observed fields are typically characterised by a set of

Gauss coefficients’ ( g � m 

, h � m 

), each giving the amplitude of a spe-

ific spherical harmonic contribution to the internal field. Assum-

ng that the dynamo field field created inside the planet can be

pward-continued through a source-free region, the resulting mag-

etic field can be expressed as the gradient of a scalar potential V :

 = −∇ V , (19)

here V is constructed with the Gauss coefficients 

 = r p 

∞ ∑ 

� =1 

(
r p 

r 

)� +1 � ∑ 

m =0 

P m 

� ( cos ϑ) 
{

g �m 

cos (mφ) + h �m 

sin (mφ) 
}

. 

(20)

ere r p is the surface radius of the planet, P m 

� are the Legen-

re polynomials of degree � and order m and g � m 

, h � m 

the in-

ividual Gauss coefficients. An overview of the sets of Gauss co-

fficients measured for the solar system planets can be found in

onnerney (2007) . Out of the Gauss coefficients the relative con-

ribution of various symmetries, such as axisymmetry and equa-

orial symmetry can be extracted even if only a few coefficients

re known. Therefore we separate the magnetic energy at the

uter boundary contained in axisymmetric and non-axisymmetric

odes, where the first group is further subdivided by equatorial
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Fig. 9. Magnetic trigram for the solar system planets and all numerical models. D/Q refer here to the magnetic energy kept in axisymmetric and equatorially antisymmet- 

ric/symmetric modes relative to the total magnetic energy at the planetary surface/the upper boundary of the simulation domain. NA are the remaining non-axisymmetric 

contributions. Colours refer to the Rayleigh number, symbol shapes to the radial position of the conductivity drop-off and the grey-scaled edge indicates the Prandtl number. 

Note, small ‘5’ indicates models with higher magnetic Prandtl Pm = 5 , whereas Pm = 3 otherwise. Further the few models with powered by a fixed entropy contrast and no 

internal heat source are characterised with coloured edge and grey inlay. The uppermost trigram domain close to ‘D’ is amplified by a factor 3 at the left hand side. The 

Ekman number is fixed at E = 5 · 10 −5 . The single grey dot represents model 13, the Jupiter-model by Jones (2014) with different parameters ( E = 2 . 5 · 10 −5 , Ra = 9 · 10 6 and 

Pr = 0 . 1 ). 
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ymmetry, 

D = 

� max ∑ 

� =1 

(� + 1) g 2 � 0 /E tot 
m 

, for � odd, m = 0 , 

Q = 

� max ∑ 

� =2 

(� + 1) g 2 � 0 /E tot 
m 

, for � even, m = 0 , 

NA = 

� max ∑ 

� =1 

� ∑ 

m = −� 

(� + 1) 
(
g 2 �m 

+ h 

2 
�m 

)
/E tot 

m 

, for m � = 0 , 

 

tot 
m 

= 

� max ∑ 

� =1 

� ∑ 

m = −� 

(� + 1) 
(
g 2 �m 

+ h 

2 
�m 

)
, for all �, m , 

(21) 

here E tot 
m 

is the total (poloidal) magnetic energy at the outer

oundary. In short, D contains all relative contributions of equa-

orially antisymmetric and axisymmetric modes, whereas Q incor-

orates all equatorially symmetric and axisymmetric modes and

A is the deviation from symmetry along the rotation axis. Hence

umming up the three parts yields 

 + Q + NA = 1 . (22)

his can be represented uniquely in a triangular plot. Fig. 9 shows

he magnetic trigram which has been derived in this way. The tri-

ram is constructed by plotting a point with D, Q and NA in the

 − y plane with cartesian coordinates 

(x, y ) = 

(
Q − NA + 1 

2 

, 

√ 

3 

2 

D 

)
. (23)

his corresponds geometrically to the triangular hyperplane

 + Q + NA = 1 in the three-dimensional (D, Q, NA) cartesian
ystem, when D, Q and NA are all positive. The three dashed lines

n the figure correspond to the lines along which D = Q, D = NA

nd Q = NA. So almost axisymmetric dipolar planets, like Saturn,

nd up close to the point D in the trigram, whereas planets with

heir magnetic field mainly in the non-axisymmetric components

ike Uranus and Neptune, which have D and Q small compared to

A, end up close to the point NA. 

We first add the solar system planets to our trigram indicated

y black stars, by calculating D,Q and NA from the known Gauss

oefficients. We adopt the measurements from Cassini (Saturn),

oyager I (Jupiter), Voyager II (Neptune and Uranus) and Messen-

er (Mercury) ( Connerney, 2007; Wicht and Heyner, 2014 ). The val-

es for the Earth’s magnetic field up to degree and order 4 are

aken from the 10th IGRF model ( Macmillan and Maus, 2005 ). It

an be seen in Fig. 9 that the peculiar field of Saturn has a dis-

inct position closest to the top corner. The Cassini measurements

re best modelled with a 3 Gauss coefficient model which are

ntirely axisymmetric and which have strongly dominant equato-

ial antisymmetry ( g 10 , g 30 ). For Mercury only a few axisymmet-

ic Gauss coefficients are used to reconstruct the data, where the

omparable strength of equatorial symmetric and antisymmetric

eld contributions lead to a hemispherical asymmetry of the mag-

etic field, displacing Mercury from D towards the point Q. For

upiter the maximal degree and order of the Gauss coefficients is 4

see e.g. Connerney (2007) for an overview) and for the Earth the

eld is accurately known. Both have fields dominated by a slightly

ilted dipole, but further show significant non-axisymmetric (NA)

eatures. Their small symmetric components mean Q is small, so

oth Earth and Jupiter are displaced from D in the NA direction.

astly, the ice giants have rather irregular, non-axisymmetric dy-

amos positioned in the left bottom corner of the magnetic tri-
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gram. Note that apart from the Earth, all we have are snapshots of

their current position on the trigram. 

The values of D, Q and NA from all the models in Table 1 have

been added into the trigram Fig. 9 . To make it easier to identify

the points, the D, Q and NA values, and their corresponding sym-

bols are listed in Table 1 . We find the magnetic field solutions of

our numerical models fall mainly into two groups. The dipole dom-

inated fields are in the top corner, with small Q, stretching out

towards NA. The numerous solutions with dominant quadrupolar

symmetry are found at the bottom close to NA-Q line. 

For the models with strong dipole contribution, only those with

high r d are found to remain stable over time. Whereas the model

13 closest to that in Jones (2014) (grey circle with black centre in

Fig. 9 ), aligns well with the measured Jupiter field our model with

high r d and stable dipole field (model 6.1, light green pentagon

with grey surround) had larger Pr causing larger non-axisymmetric

contributions. Indeed, we have not found a single case with inter-

mediate or small r d harbouring a dominant dipole which is sta-

ble in time. However, the more common quadrupolar modes are

typically stable in time and do not reverse. The rather peculiar

bottom-heated hemispherical wave model (no. 8.1 or type VII in

Table 1 and in Fig. 6 (f)) has strong non-axisymmetric contributions

and lies as it should on the D = Q-diagonal (dark red triangle with

grey interior). 

The preference between dipolar dominated and quadrupolar

dominated fields is not well understood, and Fig. 9 shows a rather

complex behaviour. The standard set of models (group 2 in tab 1 ),

analysed earlier in Sections 4.2, 4.1 and Fig. 3 , is controlled by the

Rayleigh number of Ra = 1 · 10 7 and Prandtl number of P r = 0 . 25 .

The r d = ∞ model has a small-scale dynamo with strong non-

axisymmetric contributions (dark green cross close to NA). Now if

r d is reduced to 0.94, the field is more large-scale and the dipole

is more dominant. In general if r d is lowered the models tend to-

wards the axisymmetric solutions because we analyse the field at

the surface not at the top of the dynamo region. Hence small-scale

modes are systematically weaker, as they decay faster in the po-

tential field. If the conductivity drop-off is further lowered towards

r d = 0 . 82 , 0 . 72 , the leading order parity jumps to quadrupolar par-

ity (dark green pentagon and square close to the bottom). Surpris-

ingly, if the magnetic shell is further thinned to r d = 0 . 67 or 0.62

the solution undergoes another parity inversion and the dynamos

are strongly dipolar (dark green diamond and triangle in the top

corner). These dipolar fields found for small r d are not steady dy-

namos, but are dynamo waves migrating towards the equator. They

can be highly axisymmetric with > 90% of their magnetic energy

in the m = 0 component. We compare our models to observations

of Saturn in more detail in the next section. 

The reasoning that models with a thicker hydrodynamic shell

(smaller r d ) appear generally more axisymmetric on the surface

due to the drop-off in the non-metallic region assumes that at the

surface of the dynamo region the magnetic field morphology is un-

affected by the value of r d . This was obviously not true for the

models in group 2 with Ra = 1 · 10 7 . However, we also found sur-

prising behaviour when the driving was enhanced to Ra = 1 . 5 · 10 7 

(blue coloured symbols). All of those dynamos are dominantly

quadrupolar with irregular or erratic dipolar components. Even

though the model with the lowest conductivity drop-off r d = 0 . 62

has the thickest hydro shell and hence the largest potential field

decay, it shows the highest degree of non-axisymmetry. This trend

is visible for all models up to r d = 0 . 82 in that set, where the

most axisymmetric fields are found for the thickest dynamo re-

gions (large r d ). As an interpretation, we suggest that at this higher

Ra there is enhanced flow in the hydrodynamic shell, which leaks

into the dynamo region and disrupts the large-scale field more ef-

ficiently when the hydrodynamic shell is larger. 
n  
Another clear trend visible in Fig. 9 is that increasing the

onvective vigour while keeping r d fixed increases the non-

xisymmetry of the field. This can be clearly seen for the squares

 r d = 0 . 72 , group 5 in Table 1 ) and pentagons ( r d = 0 . 82 , group 6

n Table 1 ) in the plot. Larger convective vigour leads to more en-

rgetic flows , hence larger magnetic Reynolds numbers and more

mall-scale fields. 

We also explored the effect of varying Pm . If Pm is reduced

uch below the value 3 used in the group 2 runs, say down to

 m = 1 , while Ra is held constant, the enhanced magnetic diffu-

ion leads to dynamo collapse. We can compensate for the en-

anced diffusion by increasing Ra , so magnetic field generation is

upercritical again, but this also increases the non-axisymmetry.

oussinesq models suggest that dipolar solutions can be obtaned

t lower Pm , but only by going to smaller E ( Christensen and

ubert, 2006 ) which is computationally expensive and so not pur-

ued here. 

Rm can be tuned also by choosing larger P m = 5 (group 7)

nstead of 3. Comparing, e.g. model 2.1/2.3/2.5 with the equiva-

ent P m = 5 -run (model 7.1/7.2/7.3) shows an enhanced NA-value,

here the dominant field parity is conserved. Interestingly, the os-

illating dipole wave (2.1) is transformed into a steady octupolar

ynamo (7.1). 

If the convection is driven from the inner boundary rather than

omogeneously inside the shell, the flow is also more energetic

imicking the strong-inertia behaviour (models 2.5 vs 8.4 or 4.3 vs

.2) with larger contributions to non-axisymmetric magnetic en-

rgy. Further, model 8.1 from that group shows the peculiar hemi-

pherical wave dynamo. 

Also higher Ra usually leads to more quadrupolar fields. The ef-

ect of making Pr < 0.25 seems more complex. Whereas lowering Pr

or r d = 0 . 62 and Ra = 9 · 10 6 (light green triangles) yields a tran-

ition from a dipolar-wave dynamo to a stable quadrupole (group

 in Table 1 ), if both Ra and Pr are changed, Ra = 1 · 10 7 → 6 · 10 6

nd P r = 0 . 25 → 0 . 15 , a quadrupole (dark green square, model 2.3)

s transformed into a dipolar wave (red square, model 1.2). This

uggests higher Ra favours quadrupoles over dipoles for the same

 d and Pr , though if Ra is increased too much the dynamo becomes

mall-scale. 

In general the two big clusters of models in the magnetic tri-

ram suggests that models which are fairly axisymmetric are either

ominated by dipolar or by quadrupolar symmetry. Mixed mod-

ls with roughly equal contributions of D and Q are only found

n the peculiar hemispherical models. A comparable contribution

f both D and Q normally only occurs for small scale very non-

xisymmetric dynamos. Note that in our models, the strongest ax-

symmetry in the models is usually (but not invariably) found for

maller r d , where there is stronger shear and stronger potential

eld decay of small-scale modes. However, the more axisymmet-

ic models can be either strongly dipolar or strongly quadrupolar. 

.5. Saturn-like models 

Can our models with small r d = 0 . 62 / 0 . 67 have Saturn-like

agnetic fields? The peculiar field of Saturn seems entirely domi-

ated by axisymmetric modes at the surface. The tilt of the dipole

s marginal ( Cao et al., 2011 ) if it exists at all. Also, only the

rst three axisymmetric Gauss coefficients have been measured,

nd the field is only slightly equatorially asymmetric. These ob-

ervations suggest an axisymmetric dipole of strength g 10 = 21 μT.

he axisymmetric octupole g 30 = 2 . 2 μT, roughly ten times smaller

han the axisymmetric dipole, and unlike the Earth it has the same

ign as the dipole, suggesting that the magnetic field is more con-

entrated near the poles than that given by a purely dipole field

 Connerney, 2007 ). There is an even weaker quadrupole compo-

ent, g = 1 . 5 μT. As shown in the magnetic trigram ( Fig. 9 ), mod-
20 
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Fig. 10. Bottom: Time evolution of the first axisymmetric Gauss coefficients (dipole, quadrupole, octupole for a model from type III). The magnetic field is rescaled using a 

laminar electrical conductivity (left ordinate) or an effective value (right ordinate) derived from the secular variation. Top: zonally averaged radial and azimuthal field and 

radial field at the surface for the four snapshots indicated in the time series. The model used is no. 1.2 from Table 1 . 
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ls with a small, Saturn-like value of r d are dominated by equa-

orially antisymmetric (dipole family) field components. However,

hey typically periodically reverse with a quarter of the magnetic

iffusion time as the typical period. If a steady dipole field is re-

uired to model Saturn, then these models without a stably strat-

fied layer cannot do the job. However, our observations of Saturn

pan only a minute fraction of a magnetic diffusion time. Fig. 10

hows the simulation results for the time evolution of the first

hree Gauss coefficients at the upper bound of the simulation do-

ain. The input parameters for this particular model are found in

able 1 , model 2.1. 

To rescale magnetic field amplitude and the time, the sim-

lest way is to use the laminar value of the magnetic diffusiv-

ty assuming a metallic electrical conductivity ( λm 

= 0 . 54 m 

2 / s )

 Jones, 2014 ). The magnetic field strength is rescaled by
 

�ρm 

μ0 λm 

and the (magnetic diffusion) time by τm 

= D 

2 /λm 

.

he values for Saturn are: D = 4 . 698 · 10 7 m , � = 2 . 633 · 10 −5 1 / s

nd ρm 

= 919 kg / m 

3 ( Nettelmann et al., 2013 ). For laminar λm 

he dipole mode reaches then ± 5 μT, the magnetic diffusion

ime would be 126 Myrs and the oscillation period is 30 Myr

s shown in Fig. 10 using the left ordinate. The relations be-

ween the individual Gauss coefficients are correctly reproduced as

 10 ≈ 10 · g 30 > g 20 , however the amplitude is underestimated by a

actor four. 

It is likely that small scale turbulence enhances the diffusiv-

ty in the metallic region of giant planets hence reduces the mag-

etic diffusion time substantially and renders the above estimate

sing laminar λ somewhat questionable. As an alternative and

ore realistic approach, Holme (2007) suggested comparing the

bserved mean secular variation of the dipole with that of the
odel to find an ‘effective’ magnetic diffusivity. Applied to Jupiter

y Jones (2014) , this method somewhat over-predicted the mag-

etic field strength, but it is based on more realistic assump-

ions. Cao et al. (2011) found no clear evidence of secular varia-

ion of the Saturn magnetic field, however for comparison we use

he suggested end-member maximal value of 2 . 8 nT / yr . Assuming

 10 = 21200 nT this gives a mean change of the dipole of 0.013%

er year. Within the oscillating model we find a root-mean-square

˙  10 /g 10 = 157 giving an effective magnetic diffusivity λe = 60 m 

2 / s ,

hat is roughly 100 times higher than the laminar value. Expressed

n terms of the magnetic field strength ( Fig. 10 , right ordinate) the

ipole oscillates between ±50 μT - a much better estimate. Also

he magnetic diffusion time is reduced to 1 Myrs and the oscil-

ation period to 250 kyrs. The models closest to Saturn in terms

f the believed conductivity distribution, magnetic field amplitude

nd symmetries are therefore oscillatory dynamos. The observa-

ions of Saturn’s magnetic field and hence its time-dependence

nly span about 30 years, whereas our Saturn model will only

how significant secular variation on time-scales of tens of thou-

and years. With the data available, an oscillatory dynamo wave

odel is just as satisfactory in matching the observations as a

teady dynamo. 

However, there is one feature where our models differ from

he observed field. The non-axisymmetric components of Saturn’s

eld are now constrained to give a dipole inclination of less than

.06 ° ( Cao et al., 2011 ), equivalent to g 11 and h 11 being less than

0 nT. While the non-axisymmetric components in our Saturn-like

odel 4.3 are indeed small compared to the axisymmetric compo-

ents (see Fig. 10 ), they are not that small. The model dipole tilt

s typically around 1 − 2 ◦, but there are times when it is some-
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what less. It therefore appears that although our models without

a stable layer are capable of getting the axisymmetric components

right, they cannot reduce the non-axisymmetric components to the

extremely low values indicated by the recent observations. 

Fig. 10 also plots snapshots during the time-evolution of the

wave-like dynamo which is dominated by equatorial antisymmet-

ric modes. At snapshot (a), the dipole is maximal and the octupole

relates to the inverse flux patches in either hemisphere close to

the equator. Those patches disappear at snapshot (b), where the

octupole crosses zero. A new pair of inverse flux patches is created

at higher latitudes, starting to push the regular flux patch equa-

torward. At snapshot (c), the dipole is exactly zero, representing

equal strength of inverse and regular flux in each hemisphere. Note

that the axisymmetric azimuthal field ( B φ) is already reversed at

this time. The inverse flux patches grow in amplitude and finally

reach their maximal strength in snapshot (d), where the dipole is

maximal and of inverse sign compared to snapshot (a). Fig. 10 also

shows that the radial field at the surface remains predominantly

axisymmetric during the evolution. However, there is some weak

azimuthal variation, most clearly visible as inverse flux patches at

the equator. The field concentration in the higher latitudes due to

the dipole and octupole having the same sign is found in our mod-

els as well as in the observed Saturn magnetic field. 

The observed magnetic field is surprisingly similar to the mean-

field models of the solar magnetic field, despite the fact that the

Sun is not a rapid rotator, and has much stronger convection

than giant planets. We observe a consistent positive kinetic he-

licity in the dynamo region for models with variable conductivity

and found strongly increasing cylindrical shear. Both are proposed

as key features of the classic Parker-wave dynamo ( Parker, 1955 ).

Even though our models are different in terms of the setup and

do not fulfil the mean-field assumptions, such as scale separation,

we find some similarities. The shear in our models is purely cylin-

drical and increases outwards ( ∂ u φ/∂s > 0 ) due to the emerging

differential rotation in the hydrodynamic exterior. In the frame-

work of mean field dynamos, the waves migrate equatorward if

the poloidal field generation (called the α-effect) times the shear

is negative ( Stix, 1976 ). Fig. 10 shows snapshots of the azimuthally

averaged radial field as a proxy for the poloidal field and zonal

field for the toroidal field. The propagation direction is in line

with the classic theoretical prediction of equatorwards propaga-

tion if we make the common (but not obvious) assumption that

α ∝ −h . Further it was suggested by Yoshimura (1976) that the

toroidal field is ahead by a phase shift π /4 when the shear is sim-

ply (∂ u φ/∂s ) > 0 . The snapshot (c) in Fig. 10 is taken when the

dipole is zero, and the zonal field is already reversed, hence the

toroidal field is indeed ahead as predicted. 

5. Discussion and conclusions 

We have performed a suite of numerical simulations for the

dynamo generated magnetic fields of rapidly rotating, convecting

planets. The models have a range of conductivity distributions,

varying from Jupiter-like distributions, which have significant con-

ductivity out to r d = 0 . 94 r o , to Saturn-like distributions with a con-

ductivity drop-off at r d = 0 . 62 r o . As in Boussinesq models, organ-

ised large-scale fields only occur in the rotationally dominated

regime (sufficiently low Rossby number). If the Rayleigh number

is increased at fixed Ekman number, the Rossby number becomes

too large and the generated magnetic field becomes small-scale.

Within the large-scale field regime, there is a remarkable diversity

of magnetic field configurations. We have extended the classifica-

tion of the emerging magnetic fields beyond just measuring the

relative dipole strength in order to understand these complex dy-

namos. Butterfly diagrams were used to clarify the equatorial sym-

metries and time-dependencies, and we introduce a triadic scheme
ased on the leading magnetic field symmetries (axisymmetry and

quatorial symmetry) to distinguish the various solutions (‘mag-

etic trigram’, see Fig. 9 ). Our choice of parameters (e.g. Prandtl,

kman and Rayleigh number) revealed many different magnetic

eld solutions. It appears that for a deeper conductivity drop-off

smaller r d ), stronger shear emerges within the hydrodynamic ex-

erior and this shear affects the induction process at the interface.

his leads to unforeseen alterations of the leading order field pari-

ies and temporal evolution of the interior dynamo. 

For Jupiter-like models, strong steady dipole dominated fields

re possible. As r d is lowered, there is a whole belt of r d values be-

ween Jupiter-like and Saturn-like values where the magnetic field

as mainly quadrupole symmetry. Then as r d is further reduced

o Saturn-like values, oscillatory dipolar fields become preferred,

ith a period of O (10 5 ) years. There is therefore a significant range

f giant planet masses, between those of Jupiter and Saturn, where

uadrupolar magnetic fields predominate. This raises the intriguing

ossibility that the reason we don’t have any planets in our solar

ystem which are strongly quadrupolar is that both Jupiter and Sat-

rn happen to lie just outside the quadrupolar belt. Exoplanets in

he appropriate mass range may have quadrupole dominated mag-

etic fields. 

We do not yet fully understand how the morphology of these

rganised giant planet fields is determined. However, in the course

f the investigation we have found a number of significant fea-

ures which we believe will play a part in the final story. Although

e cannot predict the magnitude of the zonal flows in giant plan-

ts, our models consistently show that having a deep hydro-region

eads to broader, faster equatorial jets, just as Saturn has a broader,

aster equatorial jet than Jupiter. The powerful jet arises because

n the hydro-shell the Reynolds stress driving the flow is only bal-

nced by the weak (turbulent) viscosity. As we might expect, the

attern of the equatorial jet in our models is not identical to those

n real planets, being somewhat too broad, but nevertheless we be-

ieve that the strong zonal flow, which penetrates into the edge of

he metallic region in lower r d models, is influencing the dynamo.

t is known that strong shear leads to oscillatory dynamos being

referred over steady dynamos, and this may be why our Saturn-

ike models are always time-dependent. In the deep interior, the

axwell stresses predominate over the Reynolds stresses, and the

ifferential rotation is reduced there. The balance in the azimuthal

omentum equation is then mainly between Maxwell stress and

dvection of angular momentum (see Fig. 5 ), and this leads to a

eridional circulation which can affect the dynamo. 

Another significant result is the helicity reversal found in the

etallic regions of our giant planet models (see also Duarte et al.,

016 ). Our results suggest, that the deep dynamo region, where

he Lorentz force relaxes the rotational constraint to some de-

ree, is decoupled from the hydrodynamic outer shell. This is re-

lised when the axial vorticity flips as a convective column extends

hrough the interface. As a consequence, the helicity in the mag-

etic region is determined by converging/diverging flows near the

quatorial plane rather than from the spherical boundaries. This

ay be also connected with the existence of the Maxwell stresses

nd the meridional circulation in this region, and it is very likely

onnected with the preference for quadrupolar over dipolar fields.

reenivasan and Jones (2011) proposed that a preference for dipo-

ar fields over quadrupolar fields in Boussinesq models was created

y the helicity being enhanced by dipolar fields and quenched by

uadrupolar fields. In our anelastic models the effect of the mag-

etic field is so strong it completely reverses the helicity. It is not

nreasonable that this could completely alter the relative effects of

uadrupolar and dipolar magnetic fields on the helicity, and hence

n the dynamo process. It is also possible that the zonal flow leak-

ng into the metallic region from the hydro-region could contribute

o the helicity reversal. 
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We have also found an anelastic hemispherical dynamo, first

een in Boussinesq-models by ( Busse, 2002 ). In our models, the

ey to the existence of this type of dynamo seems to be the in-

uced meridional circulation. We have not conducted an extensive

earch for these hemispherical dynamo wave models, but if they

an be explained as an interaction between the magnetic field and

he meridional circulation (see Fig. 7 ), it may be possible to shed

ore light on these slightly exotic dynamos. For the great majority

f our models, either the dipole or quadrupole components dom-

nated, though we did find a series of quadrupolar models with

n oscillatory dipolar component in combination with the basic

teady quadrupole (see Fig. 6 ). 

We had a mixed success in our attempts to find a model which

eproduced the observed magnetic field of Saturn. No steady pre-

ominantly axisymmetric dipolar solutions were found at r d val-

es like Saturn’s. However, since the oscillating dynamos we found

ave such a long period compared to our observation window, this

s no great problem. It is possible that steady solutions in Saturn

odels exist at lower Ekman number with some combination of Pr

nd Pm , but the parameters might have to be quite extreme to pre-

ent the strong zonal flow leaking into the dynamo region. Within

ur oscillatory Saturn models, it is possible to find significant in-

ervals of time where the ratios of the three known axisymmetric

auss coefficients are Saturn-like. We have therefore succeeded in

eriving a plausible model for the axisymmetric components of the

eld. Where the model fails is in the size of the non-axisymmetric

omponents, which are much too large. Again, it may be possible

o reduce the non-axisymmetric components by the factor of 10

eeded by going to more extreme parameter values, but this would

e very challenging computationally. 

There is a difficulty in using the surface zonal flow to constrain

iant planet dynamo models. The convective flow speed can be es-

imated from the heat flux emerging from the surface, giving a

ypical speed of 10 −2 ms −1 (e.g. Christensen and Aubert, 2006 ).

his is also the typical flow speed estimated from the secular

hange of Jupiter’s magnetic field using data from Jovian space

ission ( Jones, 2014; Ridley and Holme, 2016 ). If the flow in the

etallic region was significantly faster than this, it would have to

e aligned with the magnetic field in such a way as to disguise

he resulting secular variation, which seems unlikely. Jupiter has

urface zonal flow speeds of about 10 2 ms −1 , 10 4 times greater

han the convective speeds, and the ratio for Saturn is likely to

e even larger than that. It is not possible to reach such large ra-

ios in numerical dynamo simulations, because very small values

f Ekman and magnetic Prandtl numbers would be required, and

t is then not possible to resolve the resulting small length-scales.

owever, It is possible to achieve realistic Rossby numbers for the

onal flows, e.g. Heimpel et al. (2005) , but only at the expense of

ncreasing the convective heat flux to unrealistically high values to

ffset the excessive viscous dissipation. Nevertheless, although the

agnitude of the zonal flow cannot be reliably estimated using nu-

erical dynamo models, it is still of interest to investigate the pat-

ern of the surface zonal flows generated, as these do relate to the

bserved pattern. 

As a future prospect, we aim for a clearer understanding of the

ather complex internal dynamics, especially the magnetic field in-

uction process, the magnetic field parity preference and model

arameter dependencies that our simulations have uncovered. As

omparable models have successfully reproduced Jupiter’s mag-

etic field (e.g. Jones, 2014 ), a primary target of research will be

o extract the crucial ingredients for a successful Saturn model.

rom our results, it looks as though a stably stratified layer with

ifferential rotation, along the lines proposed by Stevenson (1982) ,

s still the most natural way to explain Saturn’s extraordinar-

ly axisymmetric surface field. There is still no consensus in the

igh pressure physics community as to whether a stably strat-
fied layer exists in Saturn. For the pressure and temperature

anges appropriate to Saturn, hydrogen and helium become im-

iscible at a pressure level of 1 Mbar, or 67% of the planet’s

adius ( Stevenson and Salpeter, 1977; Nettelmann et al., 2013 )

ossibly leading to a helium-depleted upper zone and a helium-

nriched deeper zone. Lorenzen et al. (2011) found that the tran-

ition to immiscibility coincides with the transition to metallic-

ty, at the 67% radius level above which the conductivity drops off

apidly. Whether the emerging helium rain is remixed at a greater

epth ( Lorenzen et al., 2011 ), in which case a stable layer is likely,

r whether it forms a sediment at the rocky core surface, see

.g. Püstow et al. (2016) , remains debated. However, as the alter-

ative scenario of including the effect of stable layers is a realistic

ossibility, it will be studied further in a subsequent paper. 

cknowledgments 

WD and CAJ gratefully acknowledge insightful discussions with

. Hori, D. W. Hughes, S. M. Tobias, J. Wicht and L. D. V. Duarte.

urther we thank the reviewers for their insightful comments

nd suggestions significantly improving the manuscript. The au-

hors are supported by the Science and Technology Facilities Coun-

il (STFC), ‘A Consolidated Grant in Astrophysical Fluids’ (refer-

nce ST/K0 0 0853/1 ). This work was partially undertaken on ARC1,

art of the High Performance Computing facilities at the Univer-

ity of Leeds, UK. This work also used the DiRAC Data Centric

ystem at Durham University, operated by the Institute for Com-

utational Cosmology on behalf of the STFC DiRAC HPC Facility

www.dirac.ac.uk). This equipment was funded by a BIS National

-infrastructure capital grant ST/K0 0 042X/1 , STFC capital grant

T/K0 0 087X/1 , DiRAC Operations grant ST/K003267/1 and Durham

niversity . DiRAC is part of the National E-Infrastructure. 

eferences 

ubert, J., 2005. Steady zonal flows in spherical shell dynamos. J. Fluid Mech. 542,

53–67. doi: 10.1017/S0 0221120 050 06129 . 
urnou, J., Heimpel, M., Wicht, J., 2007. The effects of vigorous mixing in a convec-

tive model of zonal flow on the ice giants. Icarus 190, 110–126. doi: 10.1016/j.
icarus.2007.02.024 . 

eer, J., Tobias, S., Weiss, N., 1998. An active sun throughout the maunder minimum.

Sol. Phys. 181, 237–249. doi: 10.1023/A:10 050260 01784 . 
rowning, M.K., 2008. Simulations of dynamo action in fully convective stars. As-

trophys. J. 676, 1262–1280. doi: 10.1086/527432 . 
usse, F.H., 1970. Thermal instabilities in rapidly rotating systems.. J. Fluid Mech. 44,

441–460. doi: 10.1017/S0 022112070 0 01921 . 
usse, F.H., 1976. A simple model of convection in the Jovian atmosphere. Icarus 29,

255–260. doi: 10.1016/0019- 1035(76)90053- 1 . 

usse, F.H., 1983. A model of mean zonal flows in the major planets. J. Fluid Mech.
23, 153–174. doi: 10.1080/03091928308221746 . 

usse, F.H., 2002. Convective flows in rapidly rotating spheres and their dynamo
action. Phys. Fluids 14, 1301–1314. doi: 10.1063/1.1455626 . 

ao, H., Russell, C.T., Christensen, U.R., Dougherty, M.K., Burton, M.E., 2011. Saturn’s
very axisymmetric magnetic field: no detectable secular variation or tilt. Earth

Planet. Sci. Lett. 304, 22–28. doi: 10.1016/j.epsl.2011.02.035 . 

habrier, G., Saumon, D., Hubbard, W.B., Lunine, J.I., 1992. The molecular-metallic
transition of hydrogen and the structure of Jupiter and Saturn. Astrophys.J. 391,

817–826. doi: 10.1086/171390 . 
hristensen, U.R. , 2001. Zonal flow driven by deep convection in the major planets.

Geophys. Res. Lett. 28, 2553–2556 . 
hristensen, U.R., Aubert, J., 2006. Scaling properties of convection-driven dynamos

in rotating spherical shells and application to planetary magnetic fields. Geo-

phys. J. Int. 166, 97–114. doi: 10.1111/j.1365-246X.20 06.030 09.x . 
hristensen, U.R., Wicht, J., 2008. Models of magnetic field generation in partly

stable planetary cores: applications to Mercury and Saturn. Icarus 196, 16–34.
doi: 10.1016/j.icarus.2008.02.013 . 

onnerney, J.E.P. , 2007. Planetary Magnetism. In: Spohn, T. (Ed.), Treatise on Geo-
physics Volume 10: Planets and Moons. Elsevier, pp. 243–275 . 

eRosa, M.L., Brun, A.S., Hoeksema, J.T., 2011. Dipolar and Quadrupolar Magnetic
Field Evolution over Solar Cycles 21, 22, and 23. In: Brummell, N.H., Brun, A.S.,

Miesch, M.S., Ponty, Y. (Eds.), Astrophysical Dynamics: From Stars to Galaxies.

In: IAU Symposium, 271, pp. 94–101. doi: 10.1017/S1743921311017492 . 
onati, J.-F., 2011. Large-scale magnetic fields of low-mass dwarfs: the many faces

of dynamo. In: Brummell, N.H., Brun, A.S., Miesch, M.S., Ponty, Y. (Eds.), Astro-
physical Dynamics: From Stars to Galaxies. In: IAU Symposium, 271, pp. 23–31.

doi: 10.1017/S1743921311017431 . 

https://doi.org/10.13039/501100000271
https://doi.org/10.13039/100008219
https://doi.org/10.13039/501100000271
https://doi.org/10.13039/501100001314
https://doi.org/10.1017/S0022112005006129
https://doi.org/10.1016/j.icarus.2007.02.024
https://doi.org/10.1023/A:1005026001784
https://doi.org/10.1086/527432
https://doi.org/10.1017/S0022112070001921
https://doi.org/10.1016/0019-1035(76)90053-1
https://doi.org/10.1080/03091928308221746
https://doi.org/10.1063/1.1455626
https://doi.org/10.1016/j.epsl.2011.02.035
https://doi.org/10.1086/171390
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0011
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0011
https://doi.org/10.1111/j.1365-246X.2006.03009.x
https://doi.org/10.1016/j.icarus.2008.02.013
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0014
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0014
https://doi.org/10.1017/S1743921311017492
https://doi.org/10.1017/S1743921311017431


32 W. Dietrich, C.A. Jones / Icarus 305 (2018) 15–32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O  

 

P  

P  

 

 

 

 

P  

 

P  

 

R  

 

R  

S  

S  

S  

 

S  

 

S  

S  

S  

 

S  

S  

 

S  

S
T  

 

 

 

W  

 

Y  

 

Z  

 

 

Duarte, L.D.V., Gastine, T., Wicht, J., 2013. Anelastic dynamo models with variable
electrical conductivity: an application to gas giants. Phys. Earth Planet. Int. 222,

22–34. doi: 10.1016/j.pepi.2013.06.010 . 
Duarte, L.D.V., Wicht, J., Browning, M.K., Gastine, T., 2016. Helicity inversion in

spherical convection as a means for equatorward dynamo wave propagation.
MNRAS 456, 1708–1722. doi: 10.1093/mnras/stv2726 . 

French, M., Becker, A., Lorenzen, W., Nettelmann, N., Bethkenhagen, M., Wicht, J.,
Redmer, R., 2012. Ab initio simulations for material properties along the Jupiter

adiabat. ApJS 202, 5. doi: 10.1088/0 067-0 049/202/1/5 . 

Gastine, T., Duarte, L., Wicht, J., 2012. Dipolar versus multipolar dynamos: the in-
fluence of the background density stratification. A&A 546, A19. doi: 10.1051/

0 0 04-6361/201219799 . 
Gastine, T., Wicht, J., 2012. Effects of com pressibility on driving zonal flow in gas

giants. Icarus 219, 428–442. doi: 10.1016/j.icarus.2012.03.018 . 
Gastine, T., Wicht, J., Aurnou, J.M., 2013. Zonal flow regimes in rotating anelastic

spherical shells: an application to giant planets. Icarus 225, 156–172. doi: 10.

1016/j.icarus.2013.02.031 . 
Gastine, T., Wicht, J., Duarte, L.D.V., Heimpel, M., Becker, A., 2014. Explaining

Jupiter’s magnetic field and equatorial jet dynamics. Geophys. Res. Lett. 41,
5410–5419. doi: 10.1002/2014GL060814 . 

Gómez-Pérez, N., Heimpel, M., Wicht, J., 2010. Effects of a radially varying electri-
cal conductivity on 3D numerical dynamos. Phys. Earth Planet. Int. 181, 42–53.

doi: 10.1016/j.pepi.2010.03.006 . 

Goudard, L., Dormy, E., 2008. Relations between the dynamo region geometry and
the magnetic behavior of stars and planets. EPL (Europhysics Letters) 83, 59001.

doi: 10.1209/0295-5075/83/59001 . 
Guervilly, C., Hughes, D.W., Jones, C.A., 2014. Large-scale vortices in rapidly rotating

Rayleigh-Bénard convection. J. Fluid Mech. 758, 407–435. doi: 10.1017/jfm.2014.
542 . 

Heimpel, M., Aurnou, J., 2007. Turbulent convection in rapidly rotating spherical

shells: a model for equatorial and high latitude jets on jupiter and saturn. Icarus
187, 540–557. doi: 10.1016/j.icarus.2006.10.023 . 

Heimpel, M., Aurnou, J., Wicht, J., 2005. Simulation of equatorial and high-latitude
jets on Jupiter in a deep convection model. Nature 438, 193–196. doi: 10.1038/

nature04208 . 
Heimpel, M., Gómez Pérez, N., 2011. On the relationship between zonal jets and

dynamo action in giant planets. Geophys. Res. Lett. 38, L14201. doi: 10.1029/

2011GL047562 . 
Holme, R. , 2007. Large-Scale Flow in the Core. In: Olson, P. (Ed.), Treatise on Geo-

physics Volume 8: Core Dynamics. Elsevier, pp. 107–128 . 
Holme, R., Bloxham, J., 1996. The magnetic fields of Uranus and Neptune: methods

and models. J. Geophys. Res. B 101, 2177–2200. doi: 10.1029/95JE03437 . 
Hubbard, W.B., 1982. Effects of differential rotation on the gravitational figures of

Jupiter and Saturn. Icarus 52, 509–515. doi: 10.1016/0019-1035(82)90011-2 . 

Jones, C.A., 2014. A dynamo model of Jupiter’s magnetic field. Icarus 241, 148–159.
doi: 10.1016/j.icarus.2014.06.020 . 

Jones, C.A., Boronski, P., Brun, A.S., Glatzmaier, G.A., Gastine, T., Miesch, M.S.,
Wicht, J., 2011. Anelastic convection-driven dynamo benchmarks. Icarus 216,

120–135. doi: 10.1016/j.icarus.2011.08.014 . 
Jones, C.A., Kuzanyan, K.M., 2009. Compressible convection in the deep atmospheres

of giant planets. Icarus 204, 227–238. doi: 10.1016/j.icarus.2009.05.022 . 
Kaspi, Y., Hubbard, W.B., Showman, A.P., Flierl, G.R., 2010. Gravitational signa-

ture of Jupiter’s internal dynamics. Geophys. Res. Lett. 37, L01204. doi: 10.1029/

2009GL041385 . 
Knobloch, E., Tobias, S.M., Weiss, N.O., 1998. Modulation and symmetry changes in

stellar dynamos. MNRAS 297, 1123–1138. doi: 10.1046/j.1365-8711.1998.01572.x . 
Kochukhov, O., 2006. Remarkable non-dipolar magnetic field of the Bp star HD

137509. A&A 454, 321–325. doi: 10.1051/0 0 04-6361:20 064932 . 
Liu, J., Schneider, T., 2010. Mechanisms of jet formation on the giant Planets. J. At-

mos. Sci. 67, 3652–3672. doi: 10.1175/2010JAS3492.1 . 

Lorenzen, W., Holst, B., Redmer, R., 2011. Metallization in hydrogen-helium mixtures.
Phys. Rev. B 84 (23), 235109. doi: 10.1103/PhysRevB.84.235109 . 

Macmillan, S., Maus, S., 2005. International geomagnetic reference field - the tenth
generation. Earth, Planets, and Space 57, 1135–1140. doi: 10.1186/BF03351896 . 

Moffatt, H.K. , 1978. Magnetic Field Generation in Electrically Conducting Fluids.
Cambridge University Press . 

Nettelmann, N., Püstow, R., Redmer, R., 2013. Saturn layered structure and homoge-

neous evolution models with different EOSs. Icarus 225, 548–557. doi: 10.1016/j.
icarus.2013.04.018 . 
lson, P., Christensen, U., Glatzmaier, G.A., 1999. Numerical modeling of the geo-
dynamo: mechanisms of field generation and equilibration. J. Geophys. Res. B

1041, 10383–10404. doi: 10.1029/1999JB90 0 013 . 
arker, E.N., 1955. Hydromagnetic dynamo models.. Astrophys. J. 122, 293. doi: 10.

1086/146087 . 
orco, C.C. , West, R.A. , McEwen, A. , Del Genio, A.D. , Ingersoll, A.P. , Thomas, P. ,

Squyres, S. , Dones, L. , Murray, C.D. , Johnson, T.V. , Burns, J.A. , Brahic, A. ,
Neukum, G. , Veverka, J. , Barbara, J.M. , Denk, T. , Evans, M. , Ferrier, J.J. , Geissler, P. ,

Helfenstein, P. , Roatsch, T. , Throop, H. , Tiscareno, M. , Vasavada, A.R. , 2003.

Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science 299,
1541–1547 . 

roctor, M.R.E., 1977. The role of mean circulation in parity selection by plan-
etary magnetic fields. Geophys. Astro. Fluid Dyn. 8, 311–324. doi: 10.1080/

03091927708240386 . 
üstow, R., Nettelmann, N., Lorenzen, W., Redmer, R., 2016. H/He demixing and

the cooling behavior of Saturn. Icarus 267, 323–333. doi: 10.1016/j.icarus.2015.

12.009 . 
idley, V.A., Holme, R., 2016. Modeling the Jovian magnetic field and its secular

variation using all available magnetic field observations. J. Geophys. Res. 121,
309–337. doi: 10.1002/2015JE004951 . 

oberts, P.H., 1972. Kinematic dynamo models. Philos. Trans. R. Soc. Lond. A. 272,
663–698. doi: 10.1098/rsta.1972.0074 . 

anchez-Lavega, A., Rojas, J.F., Sada, P.V., 20 0 0. Saturn’S zonal winds at cloud level.

Icarus 147, 405–420. doi: 10.10 06/icar.20 0 0.6449 . 
chneider, T., Liu, J., 2009. Formation of jets and equatorial superrotation on Jupiter.

J. Atmos. Sci. 66, 579–601. doi: 0.1175/2008JAS2798.1 . 
imitev, R., Busse, F.H., 2005. Prandtl-number dependence of convection-driven dy-

namos in rotating spherical fluid shells. J. Fluid Mech. 532, 365–388. doi: 10.
1017/S0 0221120 050 04398 . 

mith, E.J., Davis, L., Jones, D.E., Coleman, P.J., Colburn, D.S., Dyal, P., Sonett, C.P.,

1980. Saturn’s magnetic field and magnetosphere. Science 207, 407–410. doi: 10.
1126/science.207.4429.407 . 

reenivasan, B., Jones, C.A., 2011. Helicity generation and subcritical behaviour in
rapidly rotating dynamos. J. Fluid Mech. 688, 5–30. doi: 10.1017/jfm.2011.233 . 

tanley, S., 2010. A dynamo model for axisymmetrizing Saturn’s magnetic field. Geo-
phys. Res. Lett. 37, L05201. doi: 10.1029/2009GL041752 . 

tanley, S., Bloxham, J., 2004. Convective-region geometry as the cause of Uranus’

and Neptune’s unusual magnetic fields. Nature 428, 151–153. doi: 10.1038/
nature02376 . 

tanley, S., Bloxham, J., 2016. On the secular variation of Saturn’s magnetic field.
Phys. Earth Planet. Int. 250, 31–34. doi: 10.1016/j.pepi.2015.11.002 . 

tevenson, D.J., 1982. Reducing the non-axisymmetry of a planetary dynamo and
an application to Saturn. Geophys. Astro. Fluid Dyn. 21, 113–127. doi: 10.1080/

03091928208209008 . 

tevenson, D.J., Salpeter, E.E., 1977. The dynamics and helium distribution in
hydrogen-helium fluid planets. ApJS 35, 239–261. doi: 10.1086/190479 . 

tix, M. , 1976. Differential rotation and the solar dynamo. A&A 47, 243–254 . 
hompson, I.B., Landstreet, J.D., 1985. The extraordinary magnetic variation of the

helium-strong star HD 37776 - A quadrupole field configuration. ApJL 289, L9–
L13. doi: 10.1086/184424 . 

Triana, S.A., Moravveji, E., Pápics, P.I., Aerts, C., Kawaler, S.D., Christensen-
Dalsgaard, J., 2015. The internal rotation profile of the B-type star KIC 10526294

from frequency inversion of its dipole gravity modes. Astrophys. J. 810, 16.

doi: 10.1088/0 0 04-637X/810/1/16 . 
icht, J. , Heyner, D. , 2014. Mercury’s Magnetic Field in the MESSENGER Era. In:

Jin, S. (Ed.), Planetary Geodesy and Remote Sensing, Taylor & Francis. Taylor &
Francis, pp. 223–262 . 

oshimura, H., 1976. Phase relation between the poloidal and toroidal solar-cycle
general magnetic fields and location of the origin of the surface magnetic fields.

Sol. Phys. 50, 3–23. doi: 10.10 07/BF0 0206186 . 

hang, K., Kong, D., Schubert, G., 2015. Thermal-gravitational wind equation for
the wind-induced gravitational signature of giant gaseous planets: mathemat-

ical derivation, numerical method, and illustrative solutions. Astrophys. J. 806,
270. doi: 10.1088/0 0 04-637X/806/2/270 . 

https://doi.org/10.1016/j.pepi.2013.06.010
https://doi.org/10.1093/mnras/stv2726
https://doi.org/10.1088/0067-0049/202/1/5
https://doi.org/10.1051/0004-6361/201219799
https://doi.org/10.1016/j.icarus.2012.03.018
https://doi.org/10.1016/j.icarus.2013.02.031
https://doi.org/10.1002/2014GL060814
https://doi.org/10.1016/j.pepi.2010.03.006
https://doi.org/10.1209/0295-5075/83/59001
https://doi.org/10.1017/jfm.2014.542
https://doi.org/10.1016/j.icarus.2006.10.023
https://doi.org/10.1038/nature04208
https://doi.org/10.1029/2011GL047562
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0030
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0030
https://doi.org/10.1029/95JE03437
https://doi.org/10.1016/0019-1035(82)90011-2
https://doi.org/10.1016/j.icarus.2014.06.020
https://doi.org/10.1016/j.icarus.2011.08.014
https://doi.org/10.1016/j.icarus.2009.05.022
https://doi.org/10.1029/2009GL041385
https://doi.org/10.1046/j.1365-8711.1998.01572.x
https://doi.org/10.1051/0004-6361:20064932
https://doi.org/10.1175/2010JAS3492.1
https://doi.org/10.1103/PhysRevB.84.235109
https://doi.org/10.1186/BF03351896
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0042
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0042
https://doi.org/10.1016/j.icarus.2013.04.018
https://doi.org/10.1029/1999JB900013
https://doi.org/10.1086/146087
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0046
https://doi.org/10.1080/03091927708240386
https://doi.org/10.1016/j.icarus.2015.12.009
https://doi.org/10.1002/2015JE004951
https://doi.org/10.1098/rsta.1972.0074
https://doi.org/10.1006/icar.2000.6449
https://doi.org/0.1175/2008JAS2798.1
https://doi.org/10.1017/S0022112005004398
https://doi.org/10.1126/science.207.4429.407
https://doi.org/10.1017/jfm.2011.233
https://doi.org/10.1029/2009GL041752
https://doi.org/10.1038/nature02376
https://doi.org/10.1016/j.pepi.2015.11.002
https://doi.org/10.1080/03091928208209008
https://doi.org/10.1086/190479
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0061
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0061
https://doi.org/10.1086/184424
https://doi.org/10.1088/0004-637X/810/1/16
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0064
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0064
http://refhub.elsevier.com/S0019-1035(17)30052-0/sbref0064
https://doi.org/10.1007/BF00206186
https://doi.org/10.1088/0004-637X/806/2/270

	Anelastic spherical dynamos with radially variable electrical conductivity
	1 Introduction
	1.1 Zonal flows
	1.2 Magnetic fields, parity and classification
	1.3 Radially variable electrical conductivity

	2 Variable electrical conductivity and magnetic Reynolds number
	3 Models and methods
	4 Results
	4.1 Zonal flows and the conservation of angular momentum
	4.2 Kinetic helicity
	4.3 Dynamo solutions
	4.4 Magnetic trigram
	4.5 Saturn-like models

	5 Discussion and conclusions
	 Acknowledgments
	 References


