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Abstract In this contribution we are concerned with the asymptotic behaviour, as v — oo, of
P{SUPze[o,T] Xu(t) > u}, where X, (t),t € [0,T],u > 0 is a family of centered Gaussian processes with con-
tinuous trajectories. A key application of our findings concerns P{SuPte[o,T] (X(t)+g(t) > u}, as u — 0o,
for X a centered Gaussian process and g some measurable trend function. Further applications include the
approximation of both the ruin time and the ruin probability of the Brownian motion risk model with constant
force of interest.
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1 Introduction

Let X (t),t > 0 be a centered Gaussian process with continuous trajectories. An important problem in
applied and theoretical probability is the determination of the asymptotic behavior of

p(u) =Pq sup (X(@t)+g@E)>up, uw— o0 (1.1)
t€[0,T)
for some T' > 0 and ¢(¢),¢ € [0,7] a bounded measurable function. For instance, if g(t) = —ct, then

in the context of risk theory p(u) has interpretation as the ruin probability over the finite-time horizon
[0,T]. Dually, in the context of queueing theory, p(u) is related to the buffer overload problem; see e.g.,
[19,20,26,28,43].

For the special case that g(t) = 0,t € [0,T] the exact asymptotics of (1.1) is well-known for both
locally stationary and general non-stationary Gaussian processes, see e.g., [2,11,12,25,27,39,50,52] or
monographs [3,7,53,54]. Commonly, for X a centered non-stationary Gaussian process it is assumed
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2 Long Bai et al. Sci China Math

that the standard deviation function o is such that ¢ty = argmaxcp ) o(t) is unique and o(tg) = 1.
Additionally, if the correlation function r and the standard deviation function o satisfy (hereafter ~
means asymptotic equivalence)

L—r(s,t) ~alt—s|", 1—o(to+t)~blt]”,  st—t (1.2)
for some a, b, 8 positive and « € (0, 2], then we have (see [53][Theorem D.3])
p(u) ~ Coula "B P{X (to) > u}, u— oo, (1.3)
where (z)4 = max(0, ) and

a'/ b VBL(1/B 4 D) Ha, if a < B,
Co =1 PYe, if a=4,
1, if a> 4.

Here T'(+) is the gamma function, and

1 «
Ho = lim —E{ sup VO3 PYa—E{ sup VOV L with W(t) = V2B (t) — [t
T—o0 te[0,7T] te[0,00)

are the Pickands and Piterbarg constants, respectively, where B, is a standard fractional Brownian
motion (fBm) with self-similarity index a/2 € (0,1], see [5,13, 15,35, 36,49, 60] for properties of both
constants.

The more general case with non-zero g has also been considered in the literature for both finite- and
infinite-time horizon; see e.g., [18,26,41,47,56,57]. However, most of the aforementioned contributions
related to finite-time horizon treat only restrictive trend functions g. For instance, in [56][Theorem 3] a
Holder-type condition for g is assumed, which excludes important cases of g that appear in applications.
The restrictions are often so severe that simple cases such as the Brownian bridge with drift considered
in Example 3.3 below cannot be covered.

A key difficulty when dealing with p(u) is that X + ¢ is not a centered Gaussian process. It is however
possible to get rid of the trend function g since for any bounded function g and all large u (1.1) can be
re-written as

= su u :ﬂ
pT(u)—P{te[U%]Xu(t)> } Xul) = 1= G tEOLT) (1.4)

The advantage of the above rearrangement is that, for each large u, the process X,(t), t € [0,T] is
centered. However, X, (t) depends on the threshold u, which makes the analysis more complicated than
in the classical centered case (1.2).

Our principal result is Theorem 2.3 which derives the asymptotics of pp(u) for quite general families
of centered Gaussian processes X, under tractable assumptions on the variance and correlation functions
of X,,. To this end, using tailored double sum method, in Theorem 2.2 we first derive the asymptotics of

pa(u) =P¢ sup X,(t)>up, u— o0
teA(u)

for some short compact intervals A(w)C[0,T], u > 0, for which pr(u) ~ pa(u), as u — .

The idea of transformation of the original problem into the crossing probability of some threshold-
dependent Gaussian process and then application of the double sum technique was used also in several
contributions that deal with analogs of (1.1) for infinite time horizon, i.e. for T' = oo; see e.g., [19,
28,45-47]. However, the transformation used there needs different time-scaling than proposed in this
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contribution, i.e. is of the form X, (t) = X (ut)/(1+ g(ut)/u). Then the asymptotics of po(u), as u — oo,

is usually concentrated around ¢, := arg max;e|o,o0) Var (Xu(t) , with the local structure of variance

Var (Xu(t))

——— =1—h(u)o,(t —t,)(1 + o(1)), (1.5)
Var (Xu(tu)>

as t — t,, where 02 = Var(n(t)) and 7 is some Gaussian process with stationary increments. The

factorization present on the right hand side of (1.5) simplifies next steps of the analysis, which is usually
based on the double sum technique.

In this paper we focus on finite-time case T < oo, which requires transformation like in (1.4), where the
local structure of the variance function of X, has more complicated form than (1.5); see assumption A2
in Section 2. It is worth mentioning that a slightly different transformation than (1.4) has also been
adopted in, e.g., [26,41] when dealing with finite-time case; however, in those contributions lower and
upper bounds are derived to reduce the difficulty of the problem, for which some Hélder-type condition
on ¢ has to be imposed.

Theorem 2.3 extends partial results analyzed in literature, as e.g. in [26], from the class of Gaussian
processes with stationary increments with specific drift to more general family of Gaussian processes with
general drift functions. More specifically, applications of our main results include new results for a class
of locally stationary Gaussian processes with general trend (Proposition 3.1) and that of Proposition 3.4
for the class of non-stationary Gaussian processes with trend, as well as those of their corollaries. For
instance, a direct application of Proposition 3.4 yields the asymptotics of (1.1) for a non-stationary X with
standard deviation function o and correlation function r satisfying (1.2) with to = argmaz.cpo,ryo(t). If
further the trend function g is continuous in a neighborhood of g, g(to) = max;cjo, ] g(t) and

g(t) ~ g(to) —clt —to|”, t—to (1.6)

for some positive constants ¢,~y, then (1.3) holds with Cy specified in Proposition 3.7 and 3, u being
substituted by min(/3,2y) and u — g(¢o) respectively. As an application of the derived results, in Section
3.3 we find asymptotics of ruin probability in a Gaussian risk model with constant force of interest.

Complementary, we investigate asymptotic properties of the first passage time (ruin time) of X (¢)+g(t)
to u on the finite-time interval [0, 7], given the process has ever exceeded u during [0,7]. Here all the
derived results are new. In particular, for

To =1nf{t > 0: X(t) >u—g(¢)}, (1.7)

with inf{(} = co, we are interested in the approximate distribution of 7|7, < T, as u — co. Normal and
exponential approximations of various Gaussian models have been discussed in [16,21,22,40,47]. In this
paper, we derive general results for the approximations of the conditional passage time in Propositions
3.3, 3.8. The asymptotics of pa(u) for A(u) displayed in Theorem 2.2 plays a key role in the derivation
of these results.

Organisation of the rest of the paper: In Section 2, the tail asymptotics of the supremum of a family of
centered Gaussian processes indexed by u are given. Several applications and examples are displayed in
Section 3. Finally, we present all the proofs in Section 4 and Section 5.

2 Main Results

Let X, (t),t € R,u > 0 be a family of threshold-dependent centered Gaussian processes with continuous
trajectories, variance functions o2 and correlation functions r,,. Our main results concern the asymptotics
of slight generalization of pa (u) and pr(u) for families of centered Gaussian processes X, satisfying some
regularity conditions for variance and covariance respectively.
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Let Cj(E) be the set of continuous real-valued functions defined on the interval E such that f(0) =0

and for some €3 > €1 > 0
li /|t = oo, li /[t = 0, 2.1
|t\—>£,lteEf( )/[tt = o0 |t|—><l>g,lteEf( )/1t] (2.1)

ifsup{z:z € E} =oc0 or inf{z:x € E} = —o0.
In the following R, denotes the set of regularly varying functions at 0 with index o € R, see [32,58,61]
for details.
We shall impose the following assumptions where A(u) is a compact interval:
A1: For any large u, there exists a point ¢, € R such that o, (¢,) = 1.
A2: There exists some A > 0 such that

(m - 1) u? — f(ut)

lim sup =0 2.2
U0 e A(u) f(uAt) +1 ( )
holds for some non-negative continuous function f with f(0) = 0.
A3: There exists p € Rq /2, € (0,2] such that
1- U tu 7tu t
lim sup r(2 it +)—1‘:0.
U005 teA(u) P (‘t - 5|)
t#s
In the rest of the paper we tacitly assume that
2
o P(s)
"l —llil(l) 82/ € [0, 00,

with A given in A2.
Remarks 2.1. i) If f satisfies f(0) =0 and f(¢) > 0,t # 0, then

_tr
0o (tutt)

lim sup W

U0 e A(u), 140

_1’:()

for some A > 0 implies that (2.2) is valid.

ii) Condition A2 is crucial for getting precise tail asymptotics of sup,¢ Adw) Xu (ty+1t) given in Theorem
2.2. More precisely, together with A3 it guarantees that the conditional process, which plays a key
role in main steps of the proof of Theorem 2.2, weakly converges to v/2aB,(t) — alt|* — f(t) for some
appropriately chosen a > 0, shaping the form of the asymptotic constant in the derived asymptotics; see
(2.3). Assumption A3 extends (1.2) allowing local behavior of the correlation to behave according to the
class of regularly varying functions.

Using that o, (t,) = 1, assumption A2 covers the case o, (t, +t) = 1 — cu™"t?(1 + o(1)) for suitably
chosen v, 8 and power function f. For example, if ¢, = 0,0,(t) = 1 — % and A(u) = [0,u"!], then (2.2)
holds with f(¢) =#% and A = 1.

Next we introduce some further notation, starting with the Pickands-type constant defined by

Ho[0,T] =ES sup eV2Ba ()=t , T >0,
t€[0,T

where B, is an fBm. Further, define for f € Cg([S,T]) with S,T € R, S < T and a positive constant a

PL IS, T)=E{ sup eV2eBa®=altl®=f() L (2.3)
’ te[S,T)

and set

Plal0,00) = lim PL[0,T), PL,(-00,00)=_  lim  PL,[S,T].
—00

S——o00,T—00
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The finiteness of P/ ,[0,00) and PZ ,(—o0,00) is guaranteed under weak assumptions on f, which will
be shown in the proof of Theorem 2.2, see [17,19, 20,23, 28, 38,51, 52] for various properties of H,, and
P ,[0,00) and [13,14,29,30] for relations with max-stable processes.

Denote by Iy} the indicator function. For the regularly varying function p(-), we denote by o) its
asymptotic inverse (which is asymptotically unique). Throughout this paper, we set 0 - co = 0 and
u=>® =0if u>0. Let ¥(u) := P{N > u}, with A a standard normal random variable.

In the next theorem we shall consider two functions 1 (u),z2(u), u € R such that z1(}) € Ry, z2(3) €
Ry, with pg, us > A, and

lim w’z;(u) = x; € [~00,00],i = 1,2, with z; < zo. (2.4)
uU—r 00

Theorem 2.2. Let X, (t),t € R be a family of centered Gaussian processes with variance functions
o2 and correlation functions r,. If A1-A3 are satisfied with A(u) = [z1(u), z2(u)], and f € Cg([z1, x2]),
then for M, satisfying M, ~ u,u — oo, we have

IP’{ sup Xy (t, +1t) > Mu} ~C (u’\ﬁ(u_l))_ﬂ{”:w} U (M), u— oo, (2.5)
teA(u)
where
He [0 eI 0dt, if n= oo,
C =1 P [x1,22], if ne(0,00), (2.6)
SUD e gy 0] € 10y if 7 =0,
and P/, (—o0,00) € (0,00).

Remark 2.1. Let a € (0,2],a > 0 be given. If f € C§([z1,x2]) for z1,22,y € R, 21 < x2, as shown in
Appendix, we have, with f,(¢) = f(y+1t),t € R

,Pg:,a[xl’l'ﬂ :,Pi?a[xl —Y, T2 _y]7 ,P(ic,a[xhoo) :ng?a[xl —y,OO). (27)
In particular, if f(t) = ct,c¢ > 0, then for any x € R
Paralz, 00) = PET0,00) = €= PgL,[0, 00).

Next, for any fixed T' € (0, 00), in order to analyse pr(u) we shall suppose that:
A1’: For all large u, o, (t) attains its maximum over [0, 7] at a unique point ¢, such that

ou(ty) =1 and uan;O ty, =to € [0, 7).

A4: For all u large enough

q
f 1 n p(Inw)
t€[0, T\ (tu+A(w) Ty (t)
holds for some constants p > 0,q > 1.

A5: For some positive constants G,¢ > 0

E{(Xu(t) = Xu(5))*} <Gt s

holds for all s, € {z € [0,T] : o(x) # 0} and Xy (t) = 327

Below we define for A given in A2 and v, d positve

0, 6] if t, =0,

to, Ou) if t,~du"andv >\,

Ouy Out] if t, ~du™ or T —t, ~du™ when v <\, or tg € (0,7T), (2.9)
Ou, T —ty], it T—1t, ~du""and v > A,

0w, 0] if ¢, =T,

)
?

b
£
I

A
where 6, = (%) with ¢ given in A4.
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Theorem 2.3. Let X,(t),t € [0,T] be a family of centered Gaussian processes with variance functions
02 and correlation functions r,. Assume that A1°,A2-A5 are satisfied with A(u) = [c1(u), ca(u)] given

in (2.9) and

A

lim ¢;(u)u” = x; € [—o0,00],i =1,2, x1 < Za.

U—r 00

If f € C§([x1,x2]), then for M, such that lim, ,c M, /u =1 we have

P sup Xy (t) > M, p ~ C (5 (u™) " w(M,,), u— o, (2.10)
t€[0,T]

where C' is the same as in (2.6) if n € (0,00] and C =1 if n = 0.

Remark 2.2.  In the case that A(u) does not depend on the time horizon T and ¢y < 0o, the asymptotic
result in (2.10) in some cases allows for replacement of T' by co. In this case, Theorem 2.3 can be applied
directly for the asymptotics of the tail probability of maximum over infinite-time horizon of Gaussian
processes with trend, under appropriate conditions on variance of X (¢) or/and trend function g(t) as
t — oo.

3 Applications

3.1 Locally stationary Gaussian processes with trend

In this section we consider the asymptotics of (1.1) for X (¢),t € [0,T] a centered locally stationary
Gaussian process with unit variance and correlation function r satisfying

1—r(t,t+h
lim sup —r(_,—k‘)

T aml=o0 3.1
€20 4¢(0,77,|h|<e || 0 3-1)

with a € (0,2], a(+) a positive continuous function on [0, 7] and further
r(s,t) <1, Vs,t € [0,T] and s # t. (3.2)

We refer to e.g., [6,7,10,44,53] for results on locally stationary Gaussian processes. Extensions of this
class to a(t)-locally stationary processes are discussed in [4,25,42].
Regarding the continuous trend function g, we define g,,, = max,c[o,r) g(t) and set

H:={s€[0,T):9(s) =gm}-
Set below, for any tq € [0, T

—o0, if tg € (0,7),

(3.3)
0, iftoZOOI'tOZT.

Qt, = 1+ Ioc0m))> Wi = {

Proposition 3.1.  Suppose that (3.1) and (3.2) hold for a centered locally stationary Gaussian process
X(t),t €10,T) and let g : [0,7] — R be a continuous function.
i) If H = {to} and (1.6) holds, then as u — oo

IP’{ sup (X (t)+g(t)) > u} ~ C’tou(%f%)ﬂll (U= gm), (3.4)
t€[0,T)

where (set a = a(tg))
Qi a" YT (1 )y + 1) Ha, if o < 27,
Cty = Pt [wry, 00), if =2y,

1, if a>2y.
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i) If H=[A,B] C[0,T] with 0 < A< B <T, then as u — o0

te[0,7] A

B 2
g { sup (X (t) +g(t)) > “} ~ Ha / (a(®)/*dtu= U (u— gm) -

Remarks 3.2. i) If H = {t1,...,t,}, then as mentioned in [53], the tail distribution of the correspond-
ing supremum is easily obtained assuming that for each ¢; the assumptions of Proposition 3.1 statement
i) hold, implying that

IP’{ sup (X(¢)+g(t) > u} ~ (Z Ctj)u(%7%)+\ll (U—gm), u— 0.
te[0,T) i=1

ii) The novelty of Proposition 3.1 statement i) is that for the trend function g only a polynomial local
behavior around ty is assumed. In the literature so far only the case that (1.6) holds with v = 2 has been
considered (see [57]).

iii) By the proof of Proposition 3.1 statement i), if g(¢) is a measurable function which is continuous in
a neighborhood of ¢y and smaller than g, — ¢ for some £ > 0 in the rest part over [0, 7], then the results
still hold.

We present below the approximation of the conditional passage time 7|7, < T with 7, defined in
(1.7).
Proposition 3.3.  Suppose that (3.1) and (3.2) hold for a centered locally stationary Gaussian process
X(t),t €10,T). Let g : [0,7] — R be a continuous function, H = {to} and (1.6) holds.
i) If tg € [0,T'), then for any x € (wy,, 00)

et/ f‘fto eIt ag

o ram o fa<2y
clt|Y Wi & .
P{Ul/v(Tu*t0)<I|Tu<T}N ;‘%, if o = 27,
a,a Wty ,00

SUDy¢ [, o] et if o > 2.

ii) If to = T, then for any = € (—o00,0)

yet/ = e—cltl” g4

77 S if a < 27,

et g 0o .
LT TEoE O e
e—clel” if a > 27.

Example 3.1. Let X (t),t € [0,7] be a centered stationary Gaussian process with unit variance and
correlation function r that satisfies r(¢t) = 1 — alt|*(1 + o(1)), t — 0 for some a > 0, « € (0,2], and
r(t) <1, for all t € (0,T]. Let 7, be defined as in (1.7) with g(¢t) = —ct,c > 0. Then we have

“lal/oH € (0,2
}P’{ max (X(t) —ct) > u} ~ u(%*l)ﬂp(u) ca o a€(0,2),
t€[0,T7] nga[o, ), «a=2,

and for any x positive

1—e " «a€(0,2),
Ty < T} ~Y Plaloal

P {m’u <z
Pgtal0,00)7

Example 3.2. Let X(t),t > 0 be a standardized fBm, i.e., X(t) = B,(t)/t*/? with B, an fBm. Let
¢, T be positive constants. Then for any n € N, we have

27t LY T 2_1
P X(t in | — ~ o a2 (u —
{te[TI,I(lv?fl)T] < ( )+csm< T )> > u} Zaj Ha \/ﬂu 2 (u — c),

j=1
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. —
where@z%(%) ,i=1,...,n.

3.2 Non-stationary Gaussian processes with trend

In this section we consider the asymptotics of (1.1) for X (¢),t € [0,T] a centered Gaussian process with
non-constant variance function 0. Define below whenever o(t) # 0

X(t) = f((tt)) te[0,7],

and set for a continuous function g

o(t)
my(t) = ——~——, t€[0,T], wu>0. (3.5)
1= g/
Proposition 3.4. Let X and g be as above. Assume that t, = argmaz.cp,rym.(t) is unique with
limy, ooty = to and o(tg) = 1. Further, we suppose that A2-A5 are satisfied with o, (t) = T;n“((tt)),

ru(s,t) = 7(s,t), Xo(t) = X(¢t) and A(u) = [c1(u), ca(u)] given in (2.9). If in A2 f € Cg([x1,2]) and

lim ¢;(u)u® = x; € [~00,00],i = 1,2, x; < o,
uU—r 00
then we have
¢ = - tu
P sup (X(8) +g(t) > uy ~C (u 5 () "= v (“g()> w00, (3.6)
t€[0,T) o(ty)

where C is the same as in (2.6) when n € (0,00] and C =1 when n = 0.

Remarks 3.5. i) Proposition 3.4 extends [56][Theorem 3] and the results of [26] where (1.1) was
analyzed for special X with stationary increments and special trend function g.

ii) The assumption that o(to) = 1 is not essential in the proof. In fact, for the general case where
o(tg) # 1 we have that (3.6) holds with

0o SHa [72 €00 W, it = oo,
—2
C _ PUO ;fzn[xl’.’l/'g], 1f n S (O,OO>7 gg — U(to)
«,00
1 if n= 07

7

Proposition 3.6. Under the notation and assumptions of Proposition 3.4 without assuming A3,A5,
if X is differentiable in the mean square sense such that

r(s,t) <l,s#t, E{X"(to)} > 0"(to),
and E {X"2(t)} — ¢’%(t) is continuous in a neighborhood of ¢, then (3.6) holds with

1
a=2 o) =3 (E{X"(t) ] - 0™(t0)) "
The next result is an extension of a classical theorem concerning the extremes of non-stationary Gaus-
sian processes discussed in the Introduction, see [53][Theorem D.3].

Proposition 3.7. Let X(¢),t € [0,T] be a centered Gaussian process with correlation function r and
variance function 2 such that t, = argmatco, 7o (t) is unique with o(tp) = o > 0. Suppose that g is a
bounded measurable function being continuous in a neighborhood of tg such that (1.6) holds. If further
(1.2) is satisfied, then

1@{ sup (X(t)+g(t)) > u} ~ Cou'a )+ @ (“_9(’50)> , (3.7)

t€[0,T o
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where $* = min(g, 2v),

o—2/egl/ay I, e Tt if o < B*,
to
CO = ”)i,o'*za[

1, if a > 8%,

Wiy, 00), if a = B*,

with f(t) = B [t[°Tis=p+} + 5 [t|"[{24=-} and wy, defined in (3.3).

Proposition 3.8. i) Under the conditions and notation of Proposition 3.4, for any = € [z1,22] we have

Iz e T gy .
f:} e—F®)dt? lf 77 = OO,
; Mr _ )< < — ) Pl w14 . ,
uh_{lgop {u (Tu tu) XX x|7-u S T} 77)57]’[?61@2]7 if RS (07 OO), (3 8)

SUDy¢ (2, 2] e~ 1M if n=0.

ii) Under the conditions and notation of Proposition 3.7, if ¢ty € [0,T"), then for z € (wy,, c0)

fjt e T gt

0

T e Td
(0]

lim P {u?/"" (r, — to) <a|ry ST ={ Phaligsl i o= B

u—roo PLalwig,00)’

if a < B%,

SuptG[wtO,z] eif(t)a if o> /3*3

and if tg = T, then for x € (—00,0)

f_ix; e*f(f)dt

= eroap i o < B

. 2/8* vy Pia —x, .
ul;n;OP{u /B (1 — o) < |7, < T} = ﬁ, if @ = 8%,
e~ f@) if a > p*.

Example 3.3. Let X(t) = B(¢) — tB(1),t € [0,1], where B(t) is a standard Brownian motion and
suppose that 7, is defined by (1.7) with g(¢t) = —ct. Then

P< sup (X(t) —ct) > u} e 2w Feu) (3.9)
t€(0,1]

u
P -——F | <
{u (m c—|—2u> s

We note that according to [9][Lemma 2.7], the result in (3.9) is actually exact, i.e. for any u > 0,
P {SuPte[o,l] (X(t)—ct) > u} = e 2(u teu),
Now, let T'= 1/2. It appears that the asymptotics in this case is different, i.e.,

Tu < 1} ~ ®(4x), x € (—00,00).

IP’{ sup (X(t) —ct) > u} ~ @(0)6_2(“2+C“), (3.10)
t€[0,1/2]
and

Plu(r— — L 2 (4z) x € (—o0,c/4]

“oct2u ) O(c)’ ’
Similarly, we have
1 —2(u?—cu)
P< sup X(t)+§—c t—§ >up ~2¥(c)e (3.11)
t€0,1]
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and

f:lio e_(m;uﬂ dt
TuS<lp~w—=—on——— € (—00,00).

Fe(ng) e 0

We conclude this section with an application of Proposition 3.4 to the calculation of the ruin probability
of a Brownian motion risk model with constant force of interest over infinite-time horizon.

3.3 Ruin probability in Gaussian risk model

Consider risk reserve process U (t), with interest rate 6 modeled by

t t
Ul(t) = ue® + c/ A dy — O’/ B, >0,
0 0

where ¢, §, 0 are some positive constants and B is a standard Brownian motion. The corresponding ruin
probability over infinite-time horizon is defined as

p(u):P{ inf U(t)<0}.

te[0,00)

For this model we also define the ruin time 7, = inf{t > 0: U(t) < 0}. Set below

h(t)z%(x/t—l—ﬂ—ry, t € [0, 00), r=<.

)

We present next approximations of the ruin probability and the conditional ruin time 7|7, < oo as
U — 00.

Proposition 3.9. Asu — o

1 vV 20u? + 4cu) (3.12)

g

pla) Pl [=1%00) ¥

and for z € (—r?, o)

2 Ph ) —7“2,.%‘
P{u? | e 207 — < < |y < o0 M.
Fute Pl e 7%, 0)

Remark 3.4.  According to [37] (see also [31]) for any ¢, positive we have

i {tei[REO)U(t) < 0} v (‘fﬁé (u+ r)> /qf (ﬁ;) . (3.13)
By (3.12) and (2.7

]P’{ inf Ut NE{ sup exp( 2—(;B(t)—iz(\/t—ﬂa—?" — )} 1\/25u2+40u>
o o

te[0,00] te[—r2,00) o

sup exp <\/§B() <t+> \/ It> W( 025 (U+7‘))

E{ sup exp \@B()f2t+ 2c \/E)}W(?(qur)),

te[0,00) \[

which combined with (3.13) implies that for any ¢, d, o positive

(;{;) {tesggo) exp <\/§B (t) —2t+ :\%ﬁ) } =1 (3.14)
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4 Proofs

In the proofs presented in this section C;,7 € N are some positive constants which may be different from
line to line.
We first give two preliminary lemmas, which play an important role in the proof of Theorem 2.2.

Lemma 4.1. If p be a regularly varying function at 0 with index «/2 € (0,1], then there exists
a centered stationary Gaussian process £(t),t € R with unit variance, continuous sample paths and
correlation function r satisfying

1—r(t) ~ap*(Jt]), t—0, a>0. (4.1)

Moreover, if f is a continuous function, and K, isbe family of index sets, then for

(P (uh)t)

Zu t) = ) t ’ )
(8= 1 +u2f (% (uD)urt) € 191, 9]
where A > 0 and —oco < 57 < S < 00, we we have
1

lim sup |=———+——=P sup  Zyu(t) > My(u) p — RE[S1, So]| =0, 4.2

u—o0 ke, | U( Mg (u)) {te[Sl,Sz] (¥ ( )} n[ b 52l (4.2)
provided that My (u), k € K, is such that

lim sup ‘Mk—(u) - 1’ =0, (4.3)

U0 ke, u

where 7 := limy o % € (0,00] and h(t) = f(n~'/*t) for n € (0,00), h(t) = £(0) for n = oo and

o p(n-1/a Holat/ Sy, al/eS ) =0,
RfI[S&,Sz] =E sup eV2aBa(t)—alt|*=f(n/*t) | _ h[a 1, @ o] f0) .
te[S1,Sa] Py alS1,52] otherwise.

Proof of Lemma 4.1: The existence of £ is guaranteed by the Assertion in [45][p.265] and follows
from [33,34].
Next, set n~1/* = 0 if ) = co and set further

qu = ?(u_l)' (4.4)

The proof follows by checking the conditions of [24][Theorem 2.1] where the results still holds if we omit
the requirements f(0) = 0 and 0 € [S1,S2]. By (4.3)

lim inf Mjg(u) = oco.
u—oo ke K,

By continuity of f we have

lim sup ME(w)u~2f(quut) — f(n~ )| = 0. (4.5)
U= ke K, ,tE[S1,S55]

Moreover, (4.1) implies

Var(é(qut) — €(qut’)) = 2 = 2r (lqu(t = ¢')]) ~ 2ap® (Ju(t — )]}, u — o0,
holds for ¢,t" € [Sy,S2]. Thus

lim sup sup M7 (u) Var(€(gut) = &laut’)) _ 1| =0. (4.6)

u=0 ke K, ttvelSse) | 2au2p? (Jqu(t — t')])
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Since p? € R, which satisfies the uniform convergence theorem (UCT) for regularly varying function,
see, e.g., [8], i.e.,

im  sup  [u?p? (lgult — 1)) — |t~ 1| = 0, (47)

U0 ¢ 4/€[S1,5]

and further by the Potter’s bound for p?, see [8] we have

2 .2 /
t—t _
limsup sup ue (\Qu(a_a ) < Cy max (\Sl — So|*TF 1S — Sg|a+61) < 0, (4.8)
U— 00 t,t’G[Sl,Sz] |t—t/| !
tAt

where €1 € (0, min(1, )). We know that for a € (0, 2]

anl

[[E]" = 1¢|"] < CaJt —#'|*, t,¢' €[Sy, Sa). (4.9)
By (4.1) for any small ¢ > 0, when u large enough
r(qut) <1=p*(qu (1 =€), r(qut) > 1= p*(qu [t)(1 +€) (4.10)

hold for ¢ € [S1, S2], then by (4.3) for u large enough

sup sup M (w)E{[€(qut) — &(qut")]E(0)}
kEK, |t—t'|<e,t,t’'€[S1,52]

< Cau? sup [7(qut) = (qut’)]
[t—t'|<e,t,t'€[S1,52]
< Cy sup (10%0® (qu ) = *p*(qu [E'D)] + € [u*p* (gu D] + € [u*p* (g [£)])
[t—t/|<e,t,t’€[S1,S2]
<Cs sup (Ju®p® (lgu(®)]) = 1t1%] + |u?p® (lqu(®)]) = [¢1%] + |1t]* = 1|

[t—t/|<e,t,t’€[S1,52]
+Cae (|77 +1¢1°7)) o

< Ce®M + Cge, u — 00 4.12)

—~

—0,e = 0,e = 0,
where in (4.11) we use (4.8) and (4.12) follows from (4.7) and (4.9).
Hence the proof follows from [24][Theorem 2.1]. O
Lemma 4.2. Let Z,(s,t),(s,t) € R? be a centered stationary Gaussian field with unit variance and

correlation function rz, (-, ) satisfying

S

(1) m)) . (s) R, (4.13)

with a > 0 and (+) a positive function. If K, is some index sets, then for My (u), k € K, satisfying (4.3)
and for any S7,.55,T1,T5 > 0 such that max(S7,.S2) > 0, max(71,T>) > 0, we have

a/2 ‘ t

1—rz,(s,t) =exp (—au_2 (‘

r(u)

:0’

1
lim sup |—~—FP sup  Zu(s,t) > My(u) p — F(S1, 52,11, T:
u—oo pef, | U(Mg(u)) {(s,t)eD(u) (s,1) k( )} (51,82, T1,T»)

where D(u) = [—k(u)S7, k(u)S2] X [—k(u)T, k(u)T3] and
F(S1,8,T1,T3) = Ha/2[—a2/a51, GQ/QSQ]Ha/z[—GQ/aTh a?/*Ty).
Proof of Lemma 4.2: The proof follows by checking the conditions of [16][Lemma 5.3].
For D = [-51, Ss] x [-T1,Tz] we have

IP’{ sup  Zy(s,t) > Mk(u)} = IP’{ sup Z,(k(u)s, k(u)t) > Mk(u)} .

(s,t)€D,, (s,t)eD
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Since by (4.13)

Var(Z,(k(u)s, k(u)t) — Zy(k(u)s', k(u)t')) = 2 = 2rz, (k(u)(s — s), k(u)(t —t"))
~ au~? <|s - s’|0¢/2 + |t = t'|a/2) ,

we obtain
Zu t)— Z, ! t
T L A L DR AR QIR
U0 ke R, (s,8)£ (s #')ED 2a(|s — s'[/2 + |t — t'|2/2)
Further, since for a/2 € (0,1]
|t|a/2_ |t/|o¢/2‘ <(Cl |t—t/|a/2, and |s|a/2_ ‘8/|a/2 <C2|S—S/‘a/2

hold for ¢, ¢’ € [-T1,T5],s,s" € [—51,52], we have by (4.13)

sup sup M (WE {[Zu(k(u)s, w(u)t) — Zu(r(u)s', &(u)t")] Z,(0,0)}
kEK, |(s,t)—(s',t")|<e
(s,t),(s",t")eD

< Csu®  sup rz, (k(u)s, k(w)t) = 7z, (K(u)s', K(u)t')|
[(s,t)—(s",t")|<e
(s,t),(s",t")ED

< Cya sup |S|O‘/2 + |t|o¢/2 - |s'|0‘/2 — |t’|a/2’

[(s,t)—(s",t")|<e
(s,t),(s",t")ED

<Cia sup  (|IsI2 =1 102 112
[(s,t)—(s",t")|<e
(s,t),(s’,t")eD

< C5e*? 50, u — 00,6 = 0.

Hence the claim follows from [16][Lemma 5.3].
Proof of Theorem 2.2: We have from A3 (recall the definition of ¢, in (4.4))

2
p-(t)
tgr(l) $2/A

=ne 0,00, lim utg, =y

Without loss of generality, we consider only the case ¢, = 0 for u large enough.
By A2 for t € A(u), for sufficiently large u,

1 1

) < ou(t) < m

m v Fuze(t) =1+ u? [(1 + 5)f(u>\t) + 5]

for small constant € € (0,1). Since further

teA(u) teA(u)

m(u) = ]P’{ sup X, (¢t) > Mu} = IP’{ sup X, (t)ou(t) > Mu},
we have

ﬂ(u)gﬂ”{ sup Xu(t)>Mu}, ﬂ(u)}ﬂ”{ sup Xu(t)>Mu}.

teA(u) Fu,—e(t)
Set for some positive constant S
I (u) = [kquS, (k +1)quS], k€ Z.

Further, define

gu,+a(k) - Mu sup fu,+6(8)7 Nl(u) =
s€l(u)

zi(w) | 4
Squ {Ilgo})

13

(4.14)

(4.15)

(4.16)
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xa(u)
(k) = My inf Fou_o(s), Na(u) = I(z,<0}-
Gu,—<(k) sé}l(u) (8), Na(u) {Squ J + Lza<o0y

In view of [45], we can find centered stationary Gaussian processes Yi.(t),t € R with continuous trajec-
tories, unit variance and correlation function satisfying

rac(t) = 1= (L )2 (H)(L + o(1)), ¢ — 0.

Case 1) n = o0
For any positive u

Na(u)—1 2 Nj(u)
Z IP’{ sup X, ( } ZAZ ) < Z ]P’{ sup Xu(t)>Mu}, (4.17)

k=N, (u)+1 tely (’LL) i=1 k=N, (u) tely (u)

where Nt

2 U

A (u) = Z ]P’{ sup X, (t) > M,, sup X,(t)> Mu},
k=N (u) tel, (u) t€ly 1 (u)
and
Ao(u) = Z IP’{ sup X, (t) > M,, sup X,(t) > Mu} .
N1 (W) <k <N (u) Izk+2  (EE1k(W) teli(u)
Set below
He [*2

O(u) = e IO aru(M,).

A
U GQu J oy

which is well-defined since fff e~ 7Mdt < oo follows by the assumption f € Cg([z1,x2]). By Slepian
inequality (see e.g., [1]), (4.16) and Lemma 4.1

N2('U4) NQ(U)
Z P{ sup Xu(t)>Mu} < Z IF’{ sup X, (t) > Gu _e(k }
k=N(u) (t€Le(w) k=Ni(u) \t€Lk(w)
Ng(’u)
< Z IF’{ sup Yy (t) > Gy —-(k }
k:Nl(u) tGIk(u)
NQ(U)
= Y P{ sup Yie(t) > Gu—c(k }
k=N, (u) tefo(u)
N2 u)
~ Y Hal0,(142)VS1W(Gy, o (K))
k= Nl(u)
Nz(u)
~ Hal0 (L )P, DT e e [0S0
k:Nl(u)
1/a i
- HQ[O;(1+€) / S]/ zef(lfs)f(t)jLEdt‘I/(Mu)
Surqy, o
~ O(u), u— 00,5 —00,e—0. (4.18)
Similarly, we derive that
(u)—1
Z ]P’{ sup X, (t) > u} > (140(1))O(u),u — o0, S — 00, € = 0. (4.19)
k=Ni(u)+1  (PEL(W)

Moreover,

Na(u)
M) <Y <IP’{ sup Y+E(t)>§u7€(k)}+]}”{ sup Y+E(t)>g“u,a(k>}
)

k:Nl(u telk(u) t61k+1(u)
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-P { sup Yo (t) > @ﬁe(@ })
telk(u)ulk+1(u)

N (u)
<Y (2Hal0, (14 9)V08] = Hal0,201 — )V/°5]) B(Gu e (k)
k=N1(u)
Nz (u)
< (2%[0,(1 Fo)Vos] —Ha[0,2(1 — ¢ 1/“5) S UG o(k
k=Ni(u)
= 0(0O(u)), u— 00,5 = 00,6 = 0, (4.20)

where
Gu,—c(k) = min(Gy,—c(k), Gu,—<(k + 1)), Gu,JrE(k) = max(Gu, +e(k), Gu,re(k +1)).
By A3 for any (s,t) € Ix(u) x I;(u) with Ny(u) < k,1 < No(u),l > k+ 2 we have

<Var (Xu(s) + Xu(t) =4 —2(1 — ry(s,t)) <4 —p*(t — s|) <4=Cru?|(l - k — 1)8|*/?

and for (s,t),(s',t") € Ix(u) x I;(u) with Ny (u) < k,1 < No(u)

1—-Cov ( Xu(s) + Xu(t) Xu(s') + X‘u(tl) )
Var (%ulo) + Xu0) Var (Sals!) + Xu(t)
_lg Xu(s)+ Xut) X () + Xu(t) )2
2 \Var (Kats) + Xu0) - Var (Xu() + Xult)
1 Y ~ () ~ /) 2
T Var (a9 + Xu0) {(Fulo) = Xul) + Xilh) - X))}

_ 1 1 2
Var (Xu(s ) B
e ( (m (Gule) + X)) Var (%) +Xu<t’>>)
<28 { (Xuls) - Xuls)”} # 28 { (Ful) - )"} + E { (Fal) - Kuls) + Falt) - Kalt)}
<8(1 —ry(s,8") + 1 —ry(t, t)
g (|8 —8|a/2 |t —t /2
— 16u~ (‘ - +’tqut )

In view of our assumptions, we can find centered homogeneous Gaussian random fields Z,(s,t) with

t |a/2
rz,(s,t) = exp (—32u2 ( — >> .

qu
Slepian inequality, Lemma 4.2 and (4.18) imply

correlation

a/2

S

qu

Ao(u) < Z ]P’{ sup X, (s) > My, sup X,(t) > Mu}

Ny () <k, I<Na(u),zk4+2  \5ETRW) teli(u)

Z ]P’{( ) sup (

N1 (w) <k I< Na (w), 1 k+2 ) €L (u)x I (u)

2G, _
Z ]P’{ sup Zu(s,t) g“’ ek, l)
(wishrz  BDEL X To(w \/4 Cru2|(l —k —1)S[*/2

N1 (u)<k,I<N2

2/aar) 2 2G,,, . (k,1)
> (Ha/2[0,32 / S]) w( = = 1)S|a/2>

Ny (u)<kI<Na (uw),I2k+2 \/4 —Cru=?|(l -k

N

u(S) +X7u(t)) > 2§u,—s(ka l)}

N

N
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N2 u) N2 u) Nl )

2 2Gu, < (k)
<2 Hayal0,32%/25]) W ’
K %:(u) ; ( ! ) V4 — Cru=2(15)a/?
Ng(u) 0o /2
<2 > (Haplo, 32%5]) (G (k) S e~C209
k= Nl(u) =1
/2 Ng(’u.)
< 2Mq 232785 N P 5[0, 32%/ 81T (G, o ()
k:Nl(u)

= 0(©(u)), u— 00,8 —00,e—0,
where gu,_a(k, 1) = min(G, —-(k), Gy —-(1)). Combing (4.17)-(4.20) with (4.21), we obtain
m(u) ~ O(u), u— 0.

Case 2) n € (0,00): This implies A\ = 2/a.
Set for any small constant 6 € (0,1) and any constant S; > 0

o —51, if 2y = —o0; s (zo — O)n'/®, if 25 € (—00, 00);
! (z1 + O)nt/*, if z; € (—o0,00), y S1, if x9 = 00,

G -5, if x1 = —o0; G (zg + O)nt/®, if 25 € (—o0, 0);
! (z1 — O)pl/e, if 21 € (—00,00), - S, if x5 = oc.

With K* = [¢,S57, ¢uS5] and K** = [¢, ST, ¢.S5*] we have for any S; > 0 and u large enough

m(u) > ]P’{ sup X, (t) > Mu} )
teK*

Na(u)
m(u) < IP’{ sup X, (t) > Mu} + Z P< sup X, (t) > M, ;.
teEK** k=N (u) telk (u)
k#0,—1

Using Slepian inequality and Lemma 4.1, we have that

P{Supxu@wu}m{sup LU

te K* teK* u+5(
hs
+[‘5'1752] ( u)vu_>ooa

where hic(t) = (1 +£&)f(n~/%) + ¢, and similarly

IP’{ sup Xu(t)>Mu} gIP{ sup () >Mu}
teEK* teK*= u7—a(t)

~ PREISH, S5 U (M,), u — oo.
Moreover, in light of (2.1), the Slepian inequality and Lemma 4.1

P< sup X,(t) > M, < P{ sup ——~ > M,
Z ) { } Z {telk(u) ‘Fu —s(t)

k=N (u) \P€lk(w) k=N, (u)
k#—1,0 k#-1,0
N (u)
< > P{ sup Y+E<t)>gu,g(k>}
k=Ny(u) \t€lo(®)

k#—1,0

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)
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Ng(u)
~ DD Hal0, (14 ST (Gu e (R))
k=N1(u)
k#-1,0
NQ(U)
~ He, [0 (1—}—5)1/0‘3] Z e —infier, ket ((1 e)f(sn~te8)— 5)
k= Nl(u)
k#-1,0
~ (C4'Ha\p(Mu)SefC;,(n—l/as)q/zes
=0(¥(M,)), u— 00,5 = 00,6 = 0. (4.27)

Letting e — 0, S1 — 00, S — 00, and § — 0 we obtain
m(u) ~ Pi’n[ml,xg]\I/(Mu), u — 00.
Next, if we set z1(u) = — (M)A ,xo(u) = (ln“) then
T =—00, xT3=o00, S7=-5, S;=051, SF=-5 S57=05.
Inserting (4.26), (4.27) into (4.25) and letting ¢ — 0 leads to

“1/agyer/?

lim m(w)

<pf [_ —Cs(n
A8, S Pam[ S, 5]+ CyH,Se

< 0.

By (4.24), we have

) m(u) 7
B TR

[=51,51] >

Letting S; — 00,5 — 0o we obtain

Pg)n(—oo,oo) € (0,00), w(u) ~ Pgn( 00,00)¥(M,), u— oo.

Case 3) n = 0: Note that

Nz(’u.)
m(u) < P{ sup X (t)o,(t) > Mu} + Z IP’{ sup X, (t)ou(t) > Mu} =: Ji(u) + Jo(u).
(11 (w)UTo(w)NA(w)) vy S 10 A
k#—1,0
By (4.15)
1 1 1

<ou(t) < (4.28)

Fur®) Fuo®) S Tt uZind,cagml(l— o)/ (s) — &

holds for all t € A(u). Hence Lemma 4.1 implies

Ji(u) < IP’{ sup X, (t) > M, (1 +u~? inf [(1—¢)f(us)— 5]) }

te[—quS,quS] s€EA(u)

< IP’{ [ sup  Yi.(t) > M, <1 +u~? inf [(1—e&)f(uts)— 5])}

—quS,quS] s€A(u)

~ Hal0,2(1 + )8 ( (1+u 2 inf [(1—e)f(u*s)—a]>>

seA(u)
~ H, [O 2(1+€)1/QS] ( ) —(1—e)w*+e
~ \Il(Mu)e_“’*7 u—00, S—0,e—0,
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where w* = inf;c(y, 4,1 f(t). Furthermore, by Lemma 4.1, for any x > 0

No(u) No(u)
Bo(w) < 7 E”{ sup Yie(t) > Gu,—e(k } > Hal0,(146)" S (G, (k)

k=N (u) \t€lo(w) k=N, (u)
k#-1,0 k#-1,0

—(1—2¢)(kazS)1/242¢

< 2Ha[0, (1 +&)YOS1U(M,) D e

[M]8

b
Il
—_

< CGHQ‘I’(MU)SG_C7(wS)El/2 =0 (VU (M,)), u— oo,z — 00, S =0, (4.29)

hence
m(u) <e ™, u—o .

B0,
Next, since f € C§([x1, z2]) there exists y(u) € A(u) satisfying
ulgroloy(u)u}‘ =ye{z €[z, ma]: f(2) =w"}.
Consequently, in view of (4.28)

P{Xu(y(u)) > M.}
P ) > My(1+[(1+¢e)f(uy(u) +elu™)}
=U (Mu 1+(1+ 5)[f(u>‘y(u)) + 5]u72))
\\

which implies that

establishing the proof. O
Proof of Theorem 2.3: Clearly, for any u > 0

m(u) < IF’{ sup X, (t) > Mu} < w(u) + m(u),

t€[0,T]

where with D(u) :=[0,T] \ (t, + A(u)),

m(u) ::IP’{ sup X, (t, +1t) >Mu}, 71 (u) ::P{ sup Xu(t)>Mu}.

teA(u) teD(u)
Next, we derive an upper bound for 71 (u) which will finally imply that
m(u) = o(n(u)), u— oo. (4.30)

Thus by A4, A5 and Piterbarg inequality (see e.g., [53][Theorem 8.1], [55][Theorem 3] and [16][Lemma
5.1])

m(u) = ]P’{ sup X, (t)ou(t) > Mu}

teD(u)

< ]P’{ sup X, (t) > M, +Cy pnw)? }
teD(u) u

< CoT M2 w (M +c, 22 p(inw)” )
u

=0o(V (M), u— oo. (4.31)
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Since A1’ implies A1, by Theorem 2.2 and A2, A3, we have

o ("2 o=fM) gt if 5= oo,

UA(Iu xy
m(u) ~ U (M,) Pgm[xl,xQL if ne(0,00), u— o0, (4.32)
1, if n=20,

where the result of case n = 0 comes from the fact that f(¢) > 0 for ¢t € [z1,x2], f(0) = 0 and 0 € [z1, z2].
Consequently, it follows from (4.31) and (4.32) that (4.30) holds, and thus the proof is complete. O

Proof of Proposition 3.1: Without loss of generality we assume that g,,, = g(to) = 0.
a\ 1/7
i) We present first the proof for ¢y € (0,7). Let A(u) = [—d(u),d(u)], where §(u) = (%) with

some large ¢ > 1. By (1.6) for u large enough and some small € € (0,1)

(L-eelt _ 1 w—glitt)) _ gltht) _  (teeld’

1 < = =1z <1 4.33
* u ou(t + o) u u + u (433)
holds for all ¢ € [—6,6],0 > 0. It follows that
I(u) < IF’{ sup (X(t) +g(t)) > U} < H(u) + 11 (u),
t€[0,7]
with
I (u) := P sup (X)) +9@) >up,
t€([0,T]\[to—0,t0+0]
and
M(u) :=P sup  (X(t)+g({#) >up=P sup  X(t) LS aub.
t€[to—0,to+0) t€[to—0,to+0) u—g(t)
By (4.33), we may further write
1 1 1 1
im  sup |20 = fim osup |2 g, (4.34)
U0 teA(u),t£0 | CU |t|’Y U004 A (), 1£0 | CUT |’U, /’Yt|"/
and
— q
> 1 > (1—¢)e(lnw) .
te[—0,0\A(u) 0y (t + to) u?

In addition, from (3.1) we have that

177”(t0+t,t()+8)

lim sup -1 =0,
Uu—00 s tEA(u) a|t — S|a
t#s

and

sup E{X(t) - X(s))*} < sup (2 —2r(s,t)) < Cyft —s|”
s,t€[to—0,t0+0] 5,6€[to—0,t0+0]

hold when 6 is small enough. Therefore, by Theorem 2.3
Hoaw [ emeltdt, if o <2y,
to

(u) ~ ul &0 (u) { P [y, 00), it o= 27,

1, if a>2y.
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Moreover, since g := Sup;co, 1)\ [to—0,t+0] 9(t) < 0 We have

T
1 2
M (u) <P sup X@t)>u—gpy~Ha / ——dt u= U (u—gg) = o(Il(u)), u — o0,
t€[0,T]\[to—0,t0+6] 0 a(t)
hence the claims follow.
For to = 0 and tg = T, we just need to replace A(u) by A(u) = [0,0(w)] and A(u) = [—d(u),0],

respectively.
ii) Applying [53][Theorem 7.1] we obtain

B

]P’{ sup (X (t) +g(t)) > u} = IP’{ sup X(¢t) > u} N/ (a(t) V¥ dtHqu= T (u) .
te[A,B] te[A,B] A

Set A, =[A—¢,B+¢]N[0,T] for some & > 0, then we have

IP’{ sup (X(¢) +g(t)) >u} = IF’{ sup (X(t) +g(t)) >u}7

te[0,T] te[A,B]

]P’{ sup (X (t) +g(t)) > u} < P{sup (X(t)+g(t) > u} +IF’{ sup (X (t) +g(¢t)) > u}

t€[0,T] teA, te[0,T\Ax
Since g is a continuous function and g. := sup,c(o rpa. 9(t) <0
]P’{ sup (X(t)+g(t))>u} g]P’{ sup X(t)>ugs}
te[0, T\ Ae te[0,T1\Ae

< Cou? U (u—g.)=o0 <u2/°‘\II(u)> , u—o00,e—0.

Further, we have

P { sup (X (8) + g(8) > u} <P { sup X(t) > u} N/B+E(a(t))idt7-[aui\11(u)

tEA, teEA. A—e

B
~/ (a(t))édt’}-lau%\ll(u), u — 00, = 0.
A

Hence the claims follow. a
Proof of Proposition 3.3: We give the proof only for ¢ty = 0. In this case, « € (0,00). By definition

P {supyefo,u-2/a (X(H) + 9(t) > u

P {sup;cpo,r (X (8) + () > u}

P{ul/’y(ru —tg) < x’Tu < T} =

Set A(u) = [0,u=/7z]. For all large u

}P’{ sup (X(t)+g(t))>u}:P{ sup X(t) “ >u}.

teA(u) teA(u) u—g(t)

Denote X, (t) = X (t) o and ou(t) =

%. As in the proof of Proposition 3.1 i), by Theorem 2.2 we

u

obtain
avHe J et at, if o< 2y,
IP’{ sup (X (t) +g(t)) > u} ~ulE Y (u) g‘jf [0, 2], if a=2y,
A(u
rea 1, if a> 2y,

Consequently, by Proposition 3.1 statement i), the results follow. O
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Proof of Proposition 3.4: Clearly, for any u > 0

</ Mu(t) u— g(tu)
P< sup (X(t)+g(t) >up=P< sup X(¢ > )
{te[O,T] 0 ) te0,1] ( )mu(tu) o(tu)
and A1’ is satisfied. By the continuity of o (t), lim,_ t, = to and o(tg) = 1, we have that for u large
enough

o(t,) >0, and u=9(ts) ~ U, U — 00.
o(ty)
Set next 0
— My,
X, (t) =X (¢t , telo,T],
(6 =X e 0.1)
M (b +t)

which has standard deviation function o, (t) = and correlation function ry(s,t) = r(s,t) satis-

o _ ma(tu)
fying assumptions A2—-A4. Further, X ,(¢) = X(¢) implies A5. Hence the claims follow from Theorem
2.3. O

Proof of Proposition 3.6: For all large u

E{[X(tu +t) — X(ta+8)]*} = [0(tu +t) — o(tu + 5)]?
20 (ty, +t)o(ty + s) ’

1—r(ty +tty+5) = (4.35)

Using that

E{[X(ty+t) — X(tu +8)]*} = E{X?(tu + )} (t — 5)> + o((t — 5)*),
[o(tu +1) = oty + )] = 0 (tu + )t = 5)° +o((t — 5)°),

we have, as u — oo

L—7r(ty +t,ty +5) = £ {X%(Z;‘uitz)}aé:ﬁ; ) (t—s)% +o((t —5)?).

_E{X”?®)}-0"()

Since D(s,t) := —Ss(s)eqy 1S continuous at (to,to), then setting D = D(tg,to) we obtain
1—r( t,t
lim sup T(u+’;+s)1'—0,
U0 e A(u),s€A (1) DIt — s|
t#£s

which implies that A3 is satisfied. Next we suppose that o(t) > % for any ¢ € [0,T], since if we set
Ey ={t€[0,T]:0(t) < 3}, by Borell-TIS inequality

2
— g(ty
H”{sup (X(6) +g(t) > u} <exp|-2(u— sup gt)=Ci| | =0 (\1/ <“9()>)
te B te0,T] o(ty)
as u — 0o, where C; = E {SUPte[O,T] X(t)} < 0. Further by (4.35)

E{(X(t)—X(s))*} <2—2r(t,s) <4| sup E{X"?(0)}(t—s)>— inf o”(O)(t—3s)*],
9¢c[0,T)] 0€l0,7]

then A5 is satisfied. Consequently, the conditions of Proposition 3.4 are satisfied and hence the claim
follows. O

Proof of Proposition 3.7: Without loss of generality we assume that g(t) satisfies (1.6) with g(to) = 0.
First we present the proof for ¢ty € (0,T"). Clearly, m,, attains its maximum at the unique point tg. Further,
we have
M, (to) 1 g(to+1)

N () R (e LA v e &
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Consequently, by (1.2) and (1.6)

m (to)

_ B, €y
alto +1) L+ (blt\ + It ) (14+0(1), t—=0 (4.36)

(Inu)?

holds for all large u. Further, set A(u) = [—0(u),d(u)], where 6(u) = ( -
q > 1 with 8* = min(8,2y), and let f(t) = b|t|’Lig=p~y + c[t| T{2y=p+}. We have

2/B"
) for some constant

( ma(to) 1) w? — f(u?/Pt)

Moy (to+t)

lim  sup = 0. (4.37)

U0 e A (u) 120 F2/5°t) + Tigr00
By (1.2)
E{(X(t) - X(5))*} = E{(X()?} +E {(X())2} — 2E {X()X(s)} = 2 - 20(5,1) < 1]t — 5|(4.38)
holds for s,t € [to — 6, to + 6], with 8 > 0 sufficiently small. By (4.36), for any € > 0

Moy, (to) (Inwu)?

—————— 2> 14Cy(1 - 4.39
M (to + 1) 2(1=¢) (4.39)
holds for all t € [—6, 6] \ A(u). Further
(u) i= P{ s (X(8)+g(t) > u} < P{ sup (X(t) +g(t)) > u} < TI() + 1T, (),
te[to—0,to+0] t€[0,T)
with
1y (u) := IP’{ sup (X(t)+g(t) > u} .
te([0,T\[to=0,t0+0])
By(1.2), (4.37)-(4.39) which imply A2-A5 and Proposition 3.4, we have
Hoal/ fu(f e fMat, if a < B*,
0
() ~ uls =550 (u) { Pf [y, 00), if o = B*, (4.40)

17 1f0¢>6*

In order to complete the proof it suffices to show that

Since og = max;e(j0,7)\[to—6,t0+6]) (1) < 1, by the Borell-TIS inequality we have

(u— Cs)z)

2
20

T (u) < ]P’{ sup X(t) > u} < exp ( = o(II(u)),

te([0,T]\[to—0,t0+0])
where C3 = E {SuptG[O,T] X(t)} < 0.
For the cases tg = 0 and tg = T, we just need to replace A(u) by [0,d(u)] and [—d(u), 0], respectively.
Hence the proof is complete. O
Proof of Proposition 3.8: i) We shall present the proof only for the case to € (0,7'). In this case,
[z1,22] = R. By definition, for any z € R

P{suPreio e (X () + 9(1)) > u}

P {supe 0.1 (X (1) + (1)) > u

P {u (1, — tu) < z|r, <T} =
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For u > 0 define ( )
— My (ty + 1

Xo(t) = X(ty +t)—w ™)
(t) ( ) (i)

As in the proof of Proposition 3.4, we obtain

My (Lo + 1)

My ()

ou(t) =

IP’{ sup (X(t)+g(t) > u} = [P{ sup Xu(t) > u—g(ty) } ,
te| T

0,ty+u=>x] te[0,ty, +u— ] U(tu)
and A1’, A2-A5 are satisfied with A(u) = [—6,,u *z]. Clearly, for any u > 0
u— g(tu)
m(u) <P sup Xu(t) > ———= p <a(u) + m1(u),
te[0,ty+u—rz] U(tu)

where

m(u) = ]P’{ sup X, (t) > u—g(tu)}7 m(w) = P {te[ Sup X (t) > u—g(tu)

tE [ty —8 (), by +u—>x] o(ty) 0,t, —6(u)]

Applying Theorem 2.2 we have

w— olt) u’;‘;‘ I e fOdt, if n= oo,
W(U) ~ W <9u> lpg,n(_oovl']’ if ne (0,00),
Supte(-oo,z] e_f(t)7 if n= 0.

In view of (4.31)

hence

]P’{ sup (X(t)+g(t) > u} ~7(u), u-— oo

te[0,ty+u—rz]

and thus the claim follows by (4.41) and Proposition 3.4.
ii) We give the proof of tg = T. In this case = € (—00,0) implying

P {subsefo.1-pu-2/00 2 (X (D) + 9(1)) > u}

P {sup,cio.n (X (6) + 9(1)) > u |

P{uz/ﬂ*(m ~T) < z|m < T} -

a\2/B"
Set 8, = (%) for some ¢ > 1 and let

A) = [ al, o) =
with (1) = o(t) X.(t) = X(t) ()
"= we Y

For all large u, we have

m(u) < ]P’{ sup (X(t) +9(t) > u} < 7(u) +]P’{te[sup (X(t) +9(t) > U}7

te[0,T+u—2/P" z] 0,7—6,]

where

7(u) ::IP’{ sup (X(T+t)+g(T+t))>u}:]P’{ sup Xu(T+t)>u}.

teA(u) teA(u)

23

(4.41)
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As in the proof of Proposition 3.7 it follows that the Assumptions A2-A5 hold with A(u) = [~d,,u~ /% z].
Hence an application of Theorem 2.2 yields

al/*H, [ e Tt if o < B*,
m(u) ~ uETF W () { P [, 00), if o = %, (4.42)
e f@), if a > p*.

In view of (4.31)

IP’{ sup (X(t)+g(t))>u}:IP’{ sup Xu(t)>u}:0(\ll(u)), U — 00

t€[0,T—6,] t€[0,T—6,]
implying
P sup (X(@)+9) >up ~7(u), uw— o0.
te[0,T+u—2/8" z]
Consequently, the proof follows by (4.42) and Proposition 3.7. O

Proof of Proposition 3.9: Set next A(t) = fot e~%%dB(v) and define

t
Ut)=u+ c/ e %%y — g A(t), t>0.
0

Since

S )E{[A(tHQ} =55

implying sup;co, ) E{|A(t)|} < oo, then by the martingale convergence theorem in [48] we have that
U(o0) := limy_,o0 U(t) exists and is finite almost surely. Clearly, for any u > 0

plu) = IP{ inf U(t) < o}

te[0,00)

¢
=P sup (UA(t) — c/ e‘s”dv> >u
t€[0,00] 0

1 C 1
=P< su cA(——Int) — =(1 —t2) ) >u,.
{te[o?l]( ( 20 ) 5( )) }

The proof will follow by applying Proposition 3.4, hence we check next the assumptions therein for this
specific model.
Below, we set Z(t) = 0 A(—5 Int) with variance function given by

—zilnt 2
Vi(t) = Var <a/ ' e_‘s”dB(v)> = ;—6(1 —t), te]0,1].
0

We show next that for u sufficiently large, the function

uVz(t)  ymvVi-t
Gu(t) T+ £(1—11/2)

M, (t) := 0<t<1,

2
with Gy (t) :== u + $(1 — t2) attains its maximum at the unique point ¢, = (M‘;C) . In fact, we have

_ dM,(t) _ dVz(t) u Vz(t) ( cu 1

(M@ = 0 i G o\ nt

z Gu(t) + VZ(t) 5

N _ dVE(t) 2
2% ) - 2G2 (VL)
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u0.2t71/2

- BEGE 5 (u+5) ] (4.43)

Letting [M,(£)]; = 0, we get t, = (M;C) By (4.43), [My ()], > 0 for ¢ € (0,2,) and [M,(t)], < 0 for
t € (tu, 1], so t, is the unique maximum point of M, (t) over [0, 1]. Further

au

M, = M,(t,) =
() V20u? + 4dcu \ﬁ

(1+0(1)), u— .

2
We set 0(u) = (%) for some ¢ > 1, and A(u) = [—ty,d(u)]. Next we check the assumption A2. Tt
follows that

M, [Gu(tu + t)VZ (tu)P - [Gu (tu)VZ(tu -+ t)]Z

—1= .
M, (ty +1) Vz(tu + t)Gu(te)[Gu(tu + 0)Vz(ty) + Vz(ty + 6)Guy(ty)]
We further write

[Gu(tu +1)Vz(ta)]? = [Gu(tu)Vz(ty + 1))
M+ = vmF Tt - [(w+ ) - v T =t -
5) s 2 5) s 2
:<“+§)2(275t (e+5)3 252(W VE)(L = t) - St
:(u+§)2;5t(1 tu)—2(u+§)2%(1—tu)m(m—\/ﬂ)
g2y e o
0.2
_25<

u? 4+ 26611) (VEFty — V1)

Since for any ¢t € A(u)

\/02 02
1-—- - < U < ac )
25( ty —0(u)) < Vz(ty +1t) 55" ty +0(u w(ty+1) <u+

we have for all large u

2
Vi (te + )G (t)[Gulty + 1)V (te) + Vi (tu + )Gu(t)] < % (u + g)
and
0'2 2
Va (tu + G () [Gulty + OV (8) + Valtu + )Gu(t)] > (1=t = () (u+ 5 = 5/ +3(u)
o? c\ 2
> 2 Z)
Z 5% [(“ +3) “]
Thus as © — oo
_ LR )2 2 2
inf MMt £ -1 5 2T A i YR
teA(u),t#0 1 5 ) c 9 l( t+ cz L) (u+ 3)
3 ust + 25 U 2 (6u)? du

where we used the fact that for ¢t € A(u)

(Vi t = Vi)' > ( +(;u)2—;u)
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Furthermore, since

0« ViFti— Vi \/t+(5u)2+5u t+(5 —Vitty
R e T

2 c2
_ Gy V.« ‘W \/ 14—
(VEFu+ VE)(Jt + Gz + VEF T ) 5“

we have as u — oo

M,/ M,(t,+t) —1 c
teAS(ug)t;éO / ( ) 2 -is 16 2 z _1
’ %( u2t+§§—§> u=2 §( t+(5u)2_E>
2
u? + 2y c\2
iy Sy (1 —) 1) — 10 (445
(u+§)?—u + T 5 (4.45)

Consequently, (4.44) and (4.45) imply

lim  sup Mu/Multutt) =1 1| =0. (4.46)

2
u—roo teA(u)7t7£0 1 >
3 [u2t _|_ o 2 w2

Since for 0 < ¢’ <t < 1, the correlation function of Z(¢) equals

—=Int _s, - Int’  _s,
o E{(afo M =50 B(v)) (o [y % M ed dB(v))} VT Py
T y = = = —_ s
—7 — (/1 ¥ —
[22(1—t) /22 (1 - ) VI-t VI—t (VI -t +V1-1)
we have
sup 1_r(tu+t’tu+t/)—1‘ - sup 2 -1
RN o tren(u)t#t | VI =t =t (VI =t —t, + VT =1 —t,)
1
< oy, L 0, u— 0. (4.47)
1= () - (T
Further, for some small 6 € (0,1), we obtain (set below Z(t) = VZZ((tt)))
E(Z(t) - Z(t))* =2 — 2r(t,t') < Cyft — ¥/ (4.48)

for t,t’ € [0,0]. For all large u

T(u) := ]P’{ sup (Z(t) - g(l - t%)) > u} < p(u) < TI(w) + T(w),

t€[0,0]

where
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C252 (u)

(¢a@732+¢ﬂf

> C(Vi- Vi) > (4.49)

holds for any ¢ € [t, + d(u), ], therefore

M, In u)?
inf TSI O GikD)

tetuto(u),6] My(t)

u?
The above inequality combined with (4.46), (4.47), (4.48) and Proposition 3.4 yields

2

1) ~ Pl [~ 3000) ¥ (VB ) o,

Finally, since

(V)

sup VZ(t) <
te(o,1]

(1-0), and Eq sup Z(t) p < Cy < 00,
t€(6,1]

SR

by Borell-TIS inequality

I(u) <P sup Z(t) >up < exp (—
telo,1]

(5(u — (C4)2
o%(1— 0) )

which establishes the proof. Next, we consider that

2 ' U
P e 207 (6 C—i— > <z P{mfte[*flém(t”“*%)m) ut) < O}
u &

P {infte[&oo) ﬁ(t) < O}
P {SUPte[o,tu+u—2z} (O‘A(—% Int) — §(1— t%)) > u}
P {SUpte[o,l] (JA(—% Int) — £(1— t%)> > u}
=P {u? (1} —t,) < x|y <1},

Ty <00 p =

where

e (e [0,1] oA(——Tnt) — S(1—t3) > ul.

20 1)
The proof follows by Proposition 3.8 i). a
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Appendix A

Proof of (2.7): Let &(t),t € R be a centered stationary Gaussian process with continuous sample paths,

unit variance and correlation function r satisfying

1—=r(t) ~alt]*, t =0, a>0, ae(0,2].

In view of by Theorem 2.2, for —oo < 21 < 23 < 00 and f € C§([x1, z2]) we have

£(t) r
P su ——"———— > u, ~ V()P |r1,22], u— 0
tE[u_Q/"ajll,:)u_Q/“wz] 1+ u72f(u2/at) ( ) a,a[ 1 2]

and for any y € R

£(t)

P —_— >y
telu —2/aw1 u—2/am2] 1+ ufzf(uz/at)
§(t+yu ) (1 +u?f(y) s
=P su u(l+u
‘2/“(:r1*u)p “2a(myy)) LT uTAf(y+ud/t) ( F)
~ (u L+ u2f ()Pl W [y -y, 5 — ]

~ U(u)PL D a1 —y, a2 — y].
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Let
Et+yu=) (1 4+u"2f /e 20
Zu(t) = (1122fé+;;%;w% te e -y - y)

and denote its variance function by 0% (t). Then

Lo N2 L+u?f(y+u?ot) u2_f(y+u2/at)—f(y)
(azmﬁ) 1) ‘( T+ 2/(y) 1) =T itaiG)

ie.,

y (7w — 1) Ao
im sup -1/ =0.
u—roo te[u—2/%(z1—y),u"2/*(z2—y)] f(y + u2/at) y f(y)

Consequently, we have
,Pg,a[xlva] = ,Piz,/a[xl — Y T2 — y]
Further, letting z2 — oo yields P/ ,[x1,00) = é:’a [£1 — y,00). This completes the proof. O
Proof of Example 3.1: We have to = 0,y =1, g,,, = 0. In view of Proposition 3.1 statement i)

P X(t) —ct

} ()] € a0 € (0,2),
P& ,[0,00), a=2.

Since for all large u

P {stpyc 12 (X () = 9(8)) > u}
P {sup;cpo,r (X (1) — 9(1) > u}

]P{UTU <z

rugT}:

then using Proposition 3.3, we obtain for z € (0, c0)

joz e—ctdt o
T o=t g7 S (O, 2),
lim ]P{u’l’u <z|my < T} = focte dt
U—00 P(z,a[07w] a=2
Pst,10,00)° -
Proof of Example 3.2: We have that X (t) = % is locally stationary with correlation
function
t|* + |t + h|* — |h|* 1
rx(t b4y =l m' Do e roga), a0
2[t(t+ h)|* 2t
for any ¢ > 0. Since g(t) = esin (2££) ,¢ € [T, (n + 1)T] attains its maximum at ¢; = W,j < n and
T\ 2 9 .
g(t)zc—Qc(T) t—t,2(1+o(1), t = t;, j<n
the claim follows by applying Remarks 3.2 statement i). O

Proof of Example 3.3: First note that the variance function of X (¢) is given by o2(¢) = t(1 —t) and

VAU s <t < 1.

correlation function is given by r(¢,s) =

t(1—s)
Case 1) The proof of (3.9): Clearly, m,(t) := 715;2) attains its maximum over [0, 1] at the unique

€ (0,1) which converges to tg = 3 as u — oo, and m} = my(t,) = ﬁ
c/u

_u_
c+2u

Furthermore, we have

my, . u+ct \/tu(l—ty) 1_(u—|—ct) tu(1 —ty) — (u+ cty)/t(1 = 1)

point ¢, =

My (1) t(1—t) u-+tcty t(1—t)(u+ cty)
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(u+ ct)?t (1 —ty,) — (u+ cty)2t(1 —t)

t(1 =) (u + cto)[(u+ ct)\/tu(1 — ty) + (u+ cty)J/t(1 —t)]

Setting A(u) = [—M, M}, and (t, + A(u)) C [0, 3] for all large u, we have

u u

(u+ ct)*t, (1 —t,) — (u+ cty)*t(1 —t) = u?[(ty —t2) — (t — 1%)] 4+ 2cutt, (t — t,) + ity (t —t,)
= (t—ty)*u(u+c) (A.2)

and

4 1 2
— w2t )t (1 - 1) < = (ut =
c\?2 2 2
2(ut$)

for all t € (t, + A(uw)). Then

- -1 . -1
lim  sup mu/mu(tu2+ ) —1|= lim  sup AL (tg _E? - 1‘ =0. (A3
U0 pe A(u),t£0 2t U= te A(u),t£0 2(ut)?u
Furthermore, since
1— T—1) — (1= -
r(t,s) = s( t):1+\/s( t) \/t( S):l— t—s 7
V(1 = 5) t(1—s) VL = s)(V/s(1—t) +/t(1 —s))
and
53 VIO 0+ VT <5+
2w T2 w
for all s <t, s,t € (tu + Au)), we have
1—
lim sup rltutttuts) 1| = 0.
U0 ¢ seA(u) 2|t - S|
t#s
Next for some small § € (0,1 ), we have
— — [t — s
E{(X(0) - X(:)*) =20~ (1) € 53
2
holds for all s,t € [£ — 6, % 4 6]. Moreover, by (A.1), (A.2) and
1 ! 2
2(u+ct)*[t(1 —t)] < 2 [u +c (2 + 0)] (2 + 9)
for all ¢t € [3 — 6, 5 + 6], we have that for any ¢ € [+ — 60,2 + 6]\ (t. + A(u))
ma s (In )2
ma) 7 Aur e+ PG 0P
and further
my (Inw)? 1 1
>1 ) ~=—0,= u+ Aw)). A4
(D +C 2 t€[2 92+9]\(t + A(u)) (A.4)

Consequently, by Proposition 3.4

(o)
P sup (X(t)—ct)>up~ 8H1u/ e 8 a4t T (2 cu + u2) ~ e~ 2w Feu)
tE[to—Q,tU-‘rQ] —00
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In addition, since oy := max;c(o,1)/[to—0,t0+0] O(t) < o(to) = %, by Borell-TIS inequality

2
(U —E {Supte[o,l] X(t)})

P sup (X@t)—ct)>up <P sup X({t)>up <exp | — 5

t€[0,1)\[to—0,t0+6] t€[0,1)\[to—0,t0-+6) 20%

= o(e 2w Feu)y, (A.5)

Thus, by the fact that

te[0,1] te[to—0,to+0]

IP’{ sup (X(t) —ct) > u} > P{ sup  (X(t) —ect) > u}

and

P{sup (X(t)—ct)>u}<]?{ sup (X(t)—ct)>u}+IP{ sup (X(t)—ct)>u}7

te[0,1] te[to—0,t0+0)] te[0,1\[to—0,to+0]

we conclude that

IP’{ sup (X(t) —ct) > u} ~ 2w Feu),
t€[0,1]

For any u > 0

]P’{u(ru—u> <z
c+2u

and by Theorem 2.2

} P{suprego ot (X(8) = ct) > u}
T & 15 =
P {SUPte[o,1] (X(t) —ct) > u}

P sup (X(@t)—ct)>up ~ 8H1u/ 8 qr (2 cu + u2> .
te[ty— U282 ¢, fu—1a] —oo

The above combined with (A.4) and (A.5) implies that as u — oo
P sup (X)) —ct)>up~P sup (X(@t)—ct)>up~ 87—[1u/ e 8 gty (2 cu + u2) .
te[0,ty+u—1x] te[tufw,tu%»uflz] —00

Consequently,

P{u(ru— Y ) <z
c+ 2u

Case 2) The proof of (3.10): We have t, = % € (0, 1), which converges to ty = % as u — oo. Since

J? e84t
Tu < 1} = = ®(4x), z € (—00,0).

- [ e—8qt

oo

1
tu

¢
Sy~ —, U= 00
2 4’ ’

by Proposition 3.4
c/4 ) )
Pq sup (X(t)—ct)>up~ 87—[1u/ e 8 At (2 cu + u2> ~ B(c)e 2w Feu)
t€[0,1/2] —oo

As for the proof of Case 1) we obtain further

T ey
Plul 71, — u <zlmy < 1 ~ L"’i
c+2u 2 fC/4 e—8t2 ¢

~= B(4x)®(c), = € (—o0,c/4].
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Case 3) The proof of (3.11): The variance function ¢?(¢) is maximal for ¢ € [0,1] at the unique point
to = %, which is also the unique maximum point of § — ¢ ‘t — %| ,t € [0,1]. Furthermore,

o(t) = t<1—t>~;—(t—;)2, i)

and
1
r(t,s) ~1—2|t — s, s,t—>§.

By Proposition 3.7 as u — oo

tefo,1] 2

1 o
]P{ sup (X(t) + g —c|t— D > u} ~ 87—[1u/ e~ (887 +4elt]) gy (2u—c) ~ 2\11(0)6_2(“2_6“)
— 00

and in view of Proposition 3.8 ii)

U — 00.

I o (Bt +4cltl) 7
T|Ty < 15~ 7020 2 s
T° (8[t[+4clt]) gy

e~
oo



